Antimalarial and Antileishmanial Flavonoids from Calendula officinalis Flowers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Solvents, and Chemicals
2.2. Plant Extract Preparation
2.3. UPLC-PDA-ESI-MS/MS Analysis of C. officinalis Extract
2.4. Chromatographic Conditions and Procedure for Standardization
2.5. Standard, Sample Preparation, and Calibration Curve
2.6. Validation of Method
2.6.1. Accuracy (Recovery)
2.6.2. Method and Intermediate Precision (Repeatability and Reproducibility)
2.6.3. Limits of Detection (LOD) and Quantification (LOQ)
2.7. In Vitro Antileishmanial Activity
2.8. In Vivo Antimalarial Activity
2.9. Molecular Docking Study
2.10. Statistical Analyses
3. Results
3.1. UPLC-ESI-MS Analysis of C. officinalis Extract
3.2. Method Development for Standardization
3.3. Validation of Method
3.4. Quantification of Hesperidin and Rutin in C. officinalis Extract
3.5. Antileishmanial Activity
3.6. Antimalarial Activity
3.7. Molecular Docking Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varela-Aramburu, S.; Ghosh, C.; Goerdeler, F.; Priegue, P.; Moscovitz, O.; Seeberger, P.H. Targeting and Inhibiting Plasmodium falciparum Using Ultra-small Gold Nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 43380–43387. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, P.; Rahimi Esboei, B.; Pourhajibagher, M.; Fakhar, M.; Shahmoradi, Z.; Hejazi, S.H.; Hassannia, H.; Omran, A.N.; Hasanpour, H. Anti-leishmanial effects of resveratrol and resveratrol nanoemulsion on Leishmania major. BMC Microbiol. 2022, 22, 56. [Google Scholar] [CrossRef] [PubMed]
- Rufin Marie, T.K.; Mbetyoumoun Mfouapon, H.; Madiesse Kemgne, E.A.; Jiatsa Mbouna, C.D.; Tsouh Fokou, P.V.; Sahal, D.; Fekam Boyom, F. Anti-Plasmodium falciparum Activity of Extracts from 10 Cameroonian Medicinal Plants. Medicines 2018, 5, 115. [Google Scholar] [CrossRef] [PubMed]
- Haldar, A.K.; Sen, P.; Roy, S. Use of antimony in the treatment of leishmaniasis: Current status and future directions. Mol. Biol. Int. 2011, 2011, 571242. [Google Scholar] [CrossRef] [PubMed]
- Sebisubi, F.M.; Tan, G.T. Phytochemistry and Pharmacognosy: Natural Products with Antimalarial Activity; UNESCO-EOLSS: Paris, France, 2016. [Google Scholar]
- Abdelwahab, S.I.; Taha, M.M.E.; Taha, S.M.E.; Alsayegh, A.A. Fifty-year of Global Research in Calendula officinalis L. (1971−2021): A Bibliometric Study. Clin. Complement. Med. Pharmacol. 2022, 2, 100059. [Google Scholar] [CrossRef]
- Ercetin, T.; Senol, F.S.; Orhan, I.E.; Toker, G. Comparative assessment of antioxidant and cholinesterase inhibitory properties of the marigold extracts from Calendula arvensis L. and Calendula officinalis L. Ind. Crops Prod. 2012, 36, 203–208. [Google Scholar] [CrossRef]
- Hernández-Saavedra, D.; Pérez-Ramírez, I.F.; Ramos-Gómez, M.; Mendoza-Díaz, S.; Loarca-Piña, G.; Reynoso-Camacho, R. Phytochemical characterization and effect of Calendula officinalis, Hypericum perforatum, and Salvia officinalis infusions on obesity-associated cardiovascular risk. Med. Chem. Res. 2016, 25, 163–172. [Google Scholar] [CrossRef]
- Silva, D.; Ferreira, M.S.; Sousa-Lobo, J.M.; Cruz, M.T.; Almeida, I.F. Anti-Inflammatory Activity of Calendula officinalis L. Flower Extract. Cosmetics 2021, 8, 31. [Google Scholar] [CrossRef]
- Shahane, K.; Kshirsagar, M.; Tambe, S.; Jain, D.; Rout, S.; Ferreira, M.K.M.; Mali, S.; Amin, P.; Srivastav, P.P.; Cruz, J.; et al. An Updated Review on the Multifaceted Therapeutic Potential of Calendula officinalis L. Pharmaceuticals 2023, 16, 611. [Google Scholar] [CrossRef]
- Samra, R.M.; Maatooq, G.T.; Zaki, A.A. A New Antiprotozoal Compound from Calendula officinalis. Nat. Prod. Res. 2022, 36, 5747–5752. [Google Scholar] [CrossRef]
- Agrawal, P.K.; Agrawal, C.; Blunden, G. Pharmacological Significance of Hesperidin and Hesperetin, Two Citrus Flavonoids, as Promising Antiviral Compounds for Prophylaxis Against and Combating COVID-19. Nat. Prod. Commun. 2021, 16, 1934578X2110425. [Google Scholar] [CrossRef]
- Jadeja, R.N.; Devkar, R.V. Polyphenols and Flavonoids in Controlling Non-Alcoholic Steatohepatitis. Polyphen. Hum. Health Dis. 2014, 1, 615–623. [Google Scholar]
- Tabrez, S.; Rahman, F.; Ali, R.; Akand, S.K.; Alaidarous, M.A.; Banawas, S.; Dukhyil, A.A.B.; Rub, A. Hesperidin Targets Leishmania donovani Sterol C-24 Reductase to Fight against Leishmaniasis. ACS Omega 2021, 6, 8112–8118. [Google Scholar] [CrossRef] [PubMed]
- Alam, P.; Alam, A.; Anwer, M.K.; Alqasoumi, S.I. Quantitative estimation of hesperidin by HPTLC in different varieties of citrus peels. Asian Pac. J. Trop.Biomed. 2014, 4, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, J.; Gu, S.; Liu, Z.; Zhang, Y.; Zhang, X. Simultaneous determination of flavonoids in different parts of Citrus reticulata ‘Chachi’ fruit by high performance liquid chromatography Photodiode Array Detection. Molecules 2010, 15, 5378–5388. [Google Scholar] [CrossRef] [PubMed]
- Sofic, E.; Copra-Janicijevic, A.; Salihovic, M.; Tahirovic, I.; Kroyer, G. Screening of medicinal plant extracts for quercetin-3-rutinoside (rutin) in Bosna and Herzegovina. Med. Plants 2010, 2, 97–102. [Google Scholar]
- Hafez, M.M.; Al-Harbi, N.O.; Al-Hoshani, A.R.; Al-hosaini, K.A.; Al Shrari, S.D.; Al Rejaie, S.S.; Sayed-Ahmed, M.M.; Al-Shabanah, O.A. Hepato-protective effect of rutin via IL-6/STAT3 pathway in CCl4-induced hepatotoxicity in rats. Biol. Res. 2015, 48, 30. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabi, N.A.; Arasu, M.V.; Park, C.H.; Park, S.U. An up-to-date review of rutin and its biological and pharmacological activities. EXCLI J. 2015, 14, 59–63. [Google Scholar]
- Dubey, S.; Ganeshpurkar, A.; Shrivastava, A.; Bansal, D.; Dubey, N. Rutin exerts antiulcer effect by inhibiting the gastric proton pump. Indian J. Pharmacol. 2013, 45, 415–417. [Google Scholar]
- Bhatt, D.; Kumar, S.; Kumar, P.; Bisht, S.; Kumar, A.; Maurya, A.K.; Pal, A.; Bawankule, D.U. Rutin ameliorates malaria pathogenesis by modulating inflammatory mechanism: An in vitro and in vivo study. Inflammopharmacology 2022, 30, 159–171. [Google Scholar] [CrossRef]
- Rigane, G.; Younes, S.B.; Ghazghazi, H.; Salem, R.B. Investigation into the biological activities and chemical composition of L. growing in Tunisia. Int. Food Res. J. 2013, 20, 3001–3007. [Google Scholar]
- Abdallah, S.H.; Mostafa, N.M.; Mohamed, M.; Nada, A.S.; Singab, A.N.B. UPLC-ESI-MS/MS profiling and hepatoprotective activities of Stevia leaves extract, butanol fraction and stevioside against radiation-induced toxicity in rats. Nat. Prod. Res. 2022, 36, 5619–5625. [Google Scholar] [CrossRef] [PubMed]
- ICH Guidelines Q2 (R1), Validation of Analytical Procedures, Text and Methodology. 1995. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjT0JSajaSCAxXOyTgGHeULAH4QFnoECBsQAQ&url=https%3A%2F%2Fwww.ema.europa.eu%2Fen%2Fdocuments%2Fscientific-guideline%2Fich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf&usg=AOvVaw23XHf7pVaw-fLLJp-OMmSC&opi=89978449 (accessed on 28 June 2023).
- Temraz, M.G.; Elzahhar, P.A.; Bekhit, A.E.-D.A.; Bekhit, A.A.; Labib, H.F.; Belal, A.S.F. Anti-leishmanial click modifiable thiosemicarbazones: Design, synthesis, biological evaluation and in silico studies. Eur. J. Med. Chem. 2018, 151, 585–600. [Google Scholar] [CrossRef] [PubMed]
- Fidock, D.A.; Rosenthal, P.J.; Croft, S.L.; Brun, R.; Nwaka, S. Antimalarial drug discovery: Efficacy models for compound screening. Nat. Rev. Drug Discov. 2004, 3, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Kalra, B.S.; Chawla, S.; Gupta, P.; Valecha, N. Screening of antimalarial drugs: An overview. Indian J. Pharmacol. 2006, 38, 5–12. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Treatment of Malaria; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Belay, Y.; Gurmu, A.E.; Wubneh, Z.B. Antimalarial Activity of Stem Bark of Periploca linearifolia during Early and Established Plasmodium Infection in Mice. Evid.-Based Complement. Altern. Med. 2018, 2018, 4169397. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, N.M.; Mostafa, A.M.; Ashour, M.L.; Elhady, S.S. Neuroprotective Effects of Black Pepper Cold-Pressed Oil on Scopolamine-Induced Oxidative Stress and Memory Impairment in Rats. Antioxidants 2021, 10, 1993. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, N.M. β-Amyrin Rich Bombax ceiba Leaf Extract with Potential Neuroprotective Activity against Scopolamine-Induced Memory Impairment in Rats. Rec. Nat. Prod. 2018, 12, 480–492. [Google Scholar] [CrossRef]
- Matei, O.; Gatea, F.; Radu, G.L. Analysis of phenolic compounds in some medicinal herbs by LC–MS. J. Chromatogr. Sci. 2015, 53, 1147–1154. [Google Scholar] [CrossRef]
- Grati, W.; Samet, S.; Bouzayani, B.; Ayachi, A.; Treilhou, M.; Téné, N.; Mezghani-Jarraya, R. HESI-MS/MS Analysis of Phenolic compounds from Calendula aegyptiaca Fruits Extracts and Evaluation of Their Antioxidant Activities. Molecules 2022, 27, 2314. [Google Scholar] [CrossRef]
- Santos Ferreira, C.D.; Pereyra, A.; Patriarca, A.; Mazzobre, M.F.; Polak, T.; Abram, V.; Buera, M.P.; PoklarUlrih, N. Phenolic Compounds in Extracts from Eucalyptus globulus Leaves and Calendula officinalis Flowers. J. Nat. Prod. Resour. 2016, 2, 53–57. [Google Scholar]
- El-Zahar, H.; Menze, E.T.; Handoussa, H.; Osman, A.K.; El-Shazly, M.; Mostafa, N.M.; Swilam, N. UPLC-PDA-MS/MS Profiling and Healing Activity of Polyphenol-Rich Fraction of Alhagi maurorum against Oral Ulcer in Rats. Plants 2022, 11, 455. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Akobirshoeva, A.; Zilfikarov, I.N.; Vennos, C. Isorhamnetin and Quercetin Derivatives as Anti-Acetylcholinesterase Principles of Marigold (Calendula officinalis) Flowers and Preparations. Int. J. Mol. Sci. 2017, 18, 1685. [Google Scholar] [CrossRef] [PubMed]
- Birru, E.M.; Geta, M.; Gurmu, A.E. Antiplasmodial activity of Indigofera spicata root extract against Plasmodium berghei infection in mice. Malar. J. 2017, 16, 198. [Google Scholar] [CrossRef] [PubMed]
- Boniface, P.K.; Ferreira, E.I. Flavonoids as efficient scaffolds: Recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytother. Res. 2019, 33, 2473–2517. [Google Scholar] [CrossRef] [PubMed]
- Marín, C.; Ramírez-Macías, I.; López-Céspedes, A.; Olmo, F.; Villegas, N.; Díaz, J.G.; Rosales, M.J.; Gutiérrez-Sánchez, R.; Sánchez-Moreno, M. In vitro and in vivo trypanocidal activity of flavonoids from Delphinium staphisagria against Chagas disease. J. Nat. Prod. 2011, 74, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Gohari, A.R.; Saeidnia, S.; Matsuo, K.; Uchiyama, N.; Yagura, T.; Ito, M.; Kiuchi, F.; Honda, G. Flavonoid constituents of Dracocephalum kotschyi growing in Iran and their trypanocidal activity. Nat. Med. 2003, 57, 250–252. [Google Scholar]
- Da Rocha, C.Q.; Queiroz, E.F.; Meira, C.S.; Moreira, D.R.; Soares, M.B.; Marcourt, L.; Vilegas, W.; Wolfender, J.L. Dimeric flavonoids from Arrabidaea brachypoda and assessment of their anti-Trypanosoma cruzi activity. J. Nat. Prod. 2014, 77, 1345–1350. [Google Scholar] [CrossRef]
- Ezenyi, I.C.; Salawu, O.A.; Kulkarni, R.; Emeje, M. Antiplasmodial activity-aided isolation and identification of quercetin-4′-methyl ether in Chromolaena odorata leaf fraction with high activity against chloroquine-resistant Plasmodium falciparum. Parasitol. Res. 2014, 113, 4415–4422. [Google Scholar] [CrossRef]
- Montrieux, E.; Perera, W.H.; García, M.; Maes, L.; Cos, P.; Monzote, L. In vitro and in vivo activity of major constitutents from Pluchea carolinensis against Leishmania amazonensis. Parasitol. Res. 2004, 113, 2925–2932. [Google Scholar] [CrossRef]
- Weniger, B.; Vonthron-Sénécheau, C.; Arango, G.J.; Kaiser, M.; Brun, R.; Anton, R. A bioactive biflavonoid from Campnosperma panamense. Fitoterapia 2004, 75, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Shokri, A.; Emami, S.; Fakhar, M.; Teshnizi, S.H.; Keighobadi, M. In vitro antileishmanial activity of novel azoles (3-imidazolylflavanones) against promastigote and amastigote stages of Leishmania major. Acta Trop. 2017, 167, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Chaianantakul, N.; Sirawaraporn, R.; Sirawaraporn, W. Insights into the role of the junctional region of Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. Malar. J. 2013, 12, 91. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Lukk, T.; Kumar, V.; Choi, J.-Y.; Augagneur, Y.; Voelker, D.R.; Nair, S.; Mamoun, C.B. Structure, Function and Inhibition of the Phosphoethanolamine Methyltransferases of the Human Malaria Parasites Plasmodium vivax and Plasmodium knowlesi. Sci. Rep. 2015, 5, 9064. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Kim, Y.; Alpert, T.D.; Nagata, A.; Jez, J.M. Structure and reaction mechanism of phosphoethanolamine methyltransferase from the malaria parasite Plasmodium falciparum: An antiparasitic drug target. J. Biol. Chem. 2012, 287, 1426–1434. [Google Scholar] [CrossRef] [PubMed]
- Dello Iacono, L.; Di Pisa, F.; Mangani, S. Crystal structure of the ternary complex of Leishmania major pteridine reductase 1 with the cofactor NADP+/NADPH and the substrate folic acid. Acta Crystallogr. F Struct. Biol. Commun. 2022, 78 Pt 4, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Gadelha, A.P.R.; Brigagao, C.M.; da Silva, M.B.; Rodrigues, A.B.M.; Guimarães, A.C.R.; Paiva, F.; de Souza, W. Insights about the structure of farnesyl diphosphate synthase (FPPS) and the activity of bisphosphonates on the proliferation and ultrastructure of Leishmania and Giardia. Parasites Vectors 2020, 13, 168. [Google Scholar] [CrossRef]
Time (min) | % A | % B |
---|---|---|
Initial | 90.0 | 10.0 |
2.00 | 90.0 | 10.0 |
5.00 | 70.0 | 30.0 |
15.00 | 30.0 | 70.0 |
22.00 | 10.0 | 90.0 |
25.00 | 10.0 | 90.0 |
26.00 | 0.0 | 100.0 |
29.00 | 0.0 | 100.0 |
32.00 | 90.0 | 10.0 |
Time (min) | % Water (Solvent A) | % Acetonitrile (Solvent B) |
---|---|---|
0.00 | 93.0 | 7.0 |
0.10 | 93.0 | 7.0 |
2.00 | 50.0 | 50.0 |
4.00 | 40.0 | 60.0 |
6.00 | 40.0 | 60.0 |
6.10 | 0.0 | 100.0 |
12.00 | 0.0 | 100.0 |
12.10 | 93.0 | 7.0 |
15.00 | 93.0 | 7.0 |
No. | Retention Time (min) | [M − H]− | Fragment Ions (m/z) | UV (nm) | Compound | Class of Compound | References |
---|---|---|---|---|---|---|---|
1 | 2.52 | 179 | 135 | 219, 294, 323 | Caffeic acid | Phenolic acid | [32] |
2 | 5.73 | 609 | 300 | 284, 353 | Hesperidin * | Flavonoid | [32] |
3 | 6.14 | 609 | 300, 271, 255 | 254, 354 | Rutin * | Flavonoid | [32] |
4 | 6.30 | 623 | 315, 300 | 254,353 | Isorhamnetin rutinoside (Narcissin) | Flavonoid | [33] |
5 | 6.57 | 477 | 151 | 261, 354 | Quercetin hexuronide | Flavonoid | [34] |
6 | 6.81 | 515 | 191, 173 | 220, 326 | 1,4-di-O-Caffeoyl quinic acid | Phenolic acid | [33] |
7 | 7.1 | 137 | 93 | p-Hydroxybenzoic acid | Phenolic acid | [33] | |
8 | 7.57 | 463 | 300 | 253, 346 | Quercetin hexoside | Flavonoid | [32] |
9 | 7.81 | 971 | - | Betavulgaroside VI | Saponin | [33] | |
10 | 7.90 | 301 | 151 | Quercetin | Flavonoid | [32] | |
11 | 8.97 | 327 | 291 | oxo-dihydroxy octadecenoic acid | Fatty acid | [33] | |
12 | 9.24 | 809 | Glucopyranosyl-glucuronopyranosyl hederagenin | Saponin | [33] | ||
13 | 9.41 | 955 | 793 | Ginsenoside Ro | Saponin | [33] | |
14 | 9.83 | 647 | Glucuronopyranosyl hederagenin | Saponin | [33] | ||
15 | 10.01 | 313 | 201 | 291 | Pinobanksin-O-acetate | Flavonoid | [34] |
16 | 10.20 | 793 | 631 | Calenduloside G | Saponin | [33] | |
17 | 12.82 | 793 | - | 221 | Soyasaponin βe’ | Saponin | [33] |
18 | 13.3 | 313 | 201, 277 | Dihydroxyoctadecenoic acid | Fatty acid | [33] | |
19 | 13.87 | 631 | 3-O-Glucuronopyranosyl oleanolic acid | Triterpene glycoside | [33] | ||
20 | 15.46 | 295 | 277 | 9-hydroxy-10,12-octadecadienoic acid | Fatty acid | [33] |
Reference Standard | Amount Tested (mg/mL) | Amount Found (mg/mL) | Recovery (%) | Mean Recovery (%) |
---|---|---|---|---|
Hesperidin | 0.2 | 0.195 | 97.54 | 99.70 |
0.4 | 0.407 | 101.86 | ||
0.8 | 0.798 | 99.70 | ||
Rutin | 0.1 | 0.103 | 102.85 | 100.23 |
0.2 | 0.192 | 95.81 | ||
0.4 | 0.403 | 100.68 | ||
0.8 | 0.813 | 101.57 |
Validation Parameters | Hesperidin | Rutin |
---|---|---|
Accuracy (mean ± % RSD) | 99.70 ± 2.16 | 100.23 ± 3.07 |
Precision (% RSD) | ||
Repeatability | 2.16 | 3.07 |
Intermediate precision | ||
Intraday | 1.38 | 1.59 |
Interday | 1.46 | 2.71 |
Regression equation | y = 602.1x + 18.63 | y = 11251x − 23.62 |
Linearity range (mg mL−1) | 0.2–0.8 | 0.1–0.8 |
Linearity | ||
Intercept | 18.63 | −23.62 |
Slope | 602.1 | 11251 |
Correlation coefficient (r) | 0.9995 | 0.9995 |
LOD (mg mL−1) | 0.06 | 0.03 |
LOQ (mg mL−1) | 0.1939 | 0.09 |
Sample | Antipromastigotes | |
---|---|---|
* IC50, ng µL−1 ± SD | IC50, µM | |
Rutin | 118.86 ± 12.3 | 194.69 |
Hesperidin | 98.62 ± 8.2 | 161.62 |
Calendula extract | 104.74 ± 14.2 | - |
Miltefosine | 2.889 ± 0.56 | 7.09 |
Sample | % Parasitemia * | % Suppression | Mean Survival Time (Days) |
---|---|---|---|
Rutin | 45 ± 0.8 | 48.27 | 5.9 ± 0.21 |
Hesperidin | 48 ± 0.2 | 44.82 | 5.8 ± 0.24 |
Calendula extract | 46 ± 1.2 | 47.12 | 6.1 ± 0.26 |
Control | 87 ± 1.4 | 0.00 | 3.33 |
Chloroquine phosphate | 0.0 | 100 | 13.22 |
Compound | Pf-DHFR-TS | Pf-PMT | Lm-PTR1 | Lm-FPPS |
---|---|---|---|---|
Rutin | −27.6 | −28.91 | −19.5 | −32.63 |
Hesperidin | −26.4 | −29.21 | −19.4 | −35.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Huqail, A.A.; Bekhit, A.A.; Ullah, H.; Ayaz, M.; Mostafa, N.M. Antimalarial and Antileishmanial Flavonoids from Calendula officinalis Flowers. Agronomy 2023, 13, 2765. https://doi.org/10.3390/agronomy13112765
Al-Huqail AA, Bekhit AA, Ullah H, Ayaz M, Mostafa NM. Antimalarial and Antileishmanial Flavonoids from Calendula officinalis Flowers. Agronomy. 2023; 13(11):2765. https://doi.org/10.3390/agronomy13112765
Chicago/Turabian StyleAl-Huqail, Arwa A., Adnan A. Bekhit, Hammad Ullah, Muhammad Ayaz, and Nada M. Mostafa. 2023. "Antimalarial and Antileishmanial Flavonoids from Calendula officinalis Flowers" Agronomy 13, no. 11: 2765. https://doi.org/10.3390/agronomy13112765
APA StyleAl-Huqail, A. A., Bekhit, A. A., Ullah, H., Ayaz, M., & Mostafa, N. M. (2023). Antimalarial and Antileishmanial Flavonoids from Calendula officinalis Flowers. Agronomy, 13(11), 2765. https://doi.org/10.3390/agronomy13112765