Assimilation of Nitrate into Asparagine for Transport in Soybeans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Treatments
2.2. Sampling Methods
2.3. Analytical Methods
2.4. Data Analysis
3. Results
3.1. Nitrate Reductase Activity in Soybean Roots
3.2. Changes in Glutamine Synthetase Activity in Soybean Roots
3.3. Glutamine and Asparagine Concentration in the Roots
4. Discussion
4.1. Assimilation of Nitrate in Soybean Roots
4.2. Transport of Asparagine in Soybean Roots
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moorhead, G.B.G.; Smith, C.S. Interpreting the plastid carbon, nitrogen, and energy status. A role for PII? Plant Physiol. 2003, 133, 492–498. [Google Scholar] [CrossRef]
- Liu, X.J.; Hu, B.; Chu, C.C. Nitrogen assimilation in plants: Current status and future prospects. J. Genet. Genomics 2022, 49, 394–404. [Google Scholar] [CrossRef]
- Yoneyama, T.; Ishizuka, J. 15N study on the partitioning of the nitrogen taken by soybeans from atmospheric dinitrogen, medium nitrate or ammonium. J. Soil Sci. Plant Nutr. 1982, 28, 451–461. [Google Scholar] [CrossRef]
- Becana, M.; Sprent, J. Nitrogen fixation and nitrate reduction in the root nodule of legumes. Physiol. Plant. 1987, 70, 757–765. [Google Scholar] [CrossRef]
- Ohyama, T.; Norikuni, O.; Sueyoshi, K.; Ono, Y.; Tsutsumi, K.; Ueno, M.; Takashi, S.T.; Takahashi, Y. Amino acid metabolism and transport in soybean plants. In Amino Acid, New Insights and Roles in Plant and Animal; Asano, T., Asaduzzaman, M., Eds.; InTech: Rjeka, Croatia, 2017; pp. 171–196. [Google Scholar] [CrossRef]
- Andrews, M.; Morton, J.; Lieffering, M.; Bisset, L. The partitioning of nitrate assimilation between root and shoot of a range of temperate cereals and pasture grasses. Ann. Bot. 1992, 70, 271–276. [Google Scholar] [CrossRef]
- Garnica, M.; Houdusse, F.; Zamarreno, A.M.; Garcia-Mina, J.M. Nitrate modifies the assimilation pattern of ammonium and urea in wheat seedlings. J. Sci. Food Agric. 2010, 90, 357–369. [Google Scholar] [CrossRef]
- Murphy, A.T.; Lewisf, O.A.M. Effect of nitrogen feeding source on the supply of nitrogen from root to shoot and the site of nitrogen assimilation in maize (Zea mays L. cv. R201). New Phytol. 1987, 107, 327–333. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Wei, M.; Hikosaka, S.; Goto, E. Changes of glutamine and asparagine content in cucumber seedlings in response to nitrate stress. Int. J. Plant Prod. 2011, 5, 1–7. [Google Scholar] [CrossRef]
- Silveira, J.A.G.; Melo, A.R.B.; Martins, M.O.; Ferreira-Silva, S.L.; Aragao, R.M.; Silva, E.N.; Viegas, R.A. Salinity affects indirectly nitrate acquisition associated with glutamine accumulation in cowpea roots. Biol. Plant. 2012, 56, 575–580. [Google Scholar] [CrossRef]
- Camargos, L.S.; Aguiar, L.F.; Souza, L.A.; Justino, G.C.; Azevedo, R.A. Changes in soluble amino acid composition during Canavalia ensiformis development: Responses to nitrogen deficiency. Theor. Exp. Plant Physiol. 2015, 27, 109–117. [Google Scholar] [CrossRef]
- Peoples, M.; Sudin, M.; Herridge, D. Translocation of nitrogenous compounds in symbiotic and nitrate-fed amide-exporting legumes. J. Exp. Bot. 1987, 38, 567–579. [Google Scholar] [CrossRef]
- Ohyama, T.; Kumazawa, K. Assimilation and transport of nitrogenous compounds originated from 15N2 fixation and 15NO3 absorption. Soil Sci. Plant Nutr. 1979, 25, 9–19. [Google Scholar] [CrossRef]
- Mizukoshi, K.; Nishiwaki, T.; Ohtake, N.; Minagawa, R.; Ikarashi, T.; Ohyama, T. Nitrate transport pathway into soybean nodules traced by tungstate and 15NO3. Soil Sci. Plant Nutr. 1995, 41, 75–88. [Google Scholar] [CrossRef]
- Yamashita, N.; Tanabata, S.; Ohtake, N.; Sueyoshi, K.; Sato, T.; Higuchi, K.; Saito, A.; Ohyama, T. Effects of different chemical forms of nitrogen on the quick and reversible inhibition of soybean nodule growth and nitrogen fixation activity. Front. Plant Sci. 2019, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Ueda, S.; Ikeda, M.; Yamakawa, T. Provision of carbon skeletons for amide synthesis in non-nodulated soybean and pea roots in response to the source of nitrogen supply. Soil Sci. Plant Nutr. 2008, 54, 732–737. [Google Scholar] [CrossRef]
- Lea, P.J.; Sodek, L.; Parry, M.A.J.; Shewry, P.R.; Halford, N.G. Asparagine in plants. Ann. Appl. Biol. 2007, 150, 1–26. [Google Scholar] [CrossRef]
- Sulieman, S.; Fischinger, S.A.; Gresshoff, P.M.; Schulze, J. Asparagine as a major factor in the N-feedback regulation of N2 fixation in Medicago truncatula. Physiol. Plant. 2010, 140, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Amarante, L.; Lima, J.; Sodek, L. Growth and stress conditions cause similar changes in xylem amino acids for different legume species. Environ. Exp. Bot. 2006, 58, 123–129. [Google Scholar] [CrossRef]
- Mcneil, D.; Atkins, C.; Pate, J. Uptake and utilization of xylem-borne amino compounds by shoot organs of a legume. Plant Physiol. 1979, 63, 1076–1081. [Google Scholar] [CrossRef]
- Antunes, F.; Aguilar, M.; Pineda, M.; Sodek, L. Nitrogen stress and the expression of asparagine synthetase in roots and nodules of soybean (Glycine max). Physiol. Plant. 2008, 133, 736–743. [Google Scholar] [CrossRef]
- Ono, Y.; Fukasawa, M.; Sueyoshi, K.; Ohtake, N.; Sato, T.; Tanabata, S.; Toyota, R.; Higuchi, K.; Saito, A.; Ohyama, T. Application of nitrate, ammonium, or urea changes the concentrations of ureides, urea, amino acids and other metabolites in xylem sap and in the organs of soybean plants (Glycine max (L.) Merr.). Int. J. Mol. Sci. 2021, 22, 4573. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, T.; Isaka, M.; Saito, A.; Higuchi, K. Effects of nodulation on metabolite concentrations in xylem sap and in the organs of soybean plants supplied with different N forms. Metabolites 2023, 13, 319. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xiao, F.; Yang, D.; Lyu, X.; Ma, C.; Dong, S. Yan, C.; Gong, Z. Nitrate transport and distribution in soybean plants with dual-root systems. Front. Plant Sci. 2021, 12, 661054. [Google Scholar] [CrossRef]
- Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of development descriptions for soybeans, Glycine Max (L.) Merrill. Crop Sci. 1971, 11, 929–931. [Google Scholar] [CrossRef]
- Streeter, J.G.; Bosler, M.E. Comparison of in vitro and in vivo assays for nitrate reductase in soybean leaves. Plant Physiol. 1972, 49, 448–450. [Google Scholar] [CrossRef] [PubMed]
- McCormack, D.K.; Farnden, K.J.; Boland, M.J. Purification and properties of glutamine synthetase from the plant cytosol fraction of lupin nodules. Arch. Biochem. Biophys. 1982, 218, 561–571. [Google Scholar] [CrossRef]
- Minamisawa, K.; Arima, Y.; Kumazawa, K. Characteristics of asparagine pool in soybean nodules in comparison with ureide pool. Soil Sci. Plant Nutr. 1986, 32, 1–14. [Google Scholar] [CrossRef]
- Matsunami, H.; Arima, Y.; Watanabe, K.; Ishioka, N.S.; Watanabe, S.; Osa, A.; Sekine, T.; Uchida, H.; Tsuji, A.; Matsuhashi, S.; et al. 13N-nitrate uptake sites and rhizobium-infectible region in a single root of common bean and soybean. Soil Sci. Plant Nutr. 1999, 45, 955–962. [Google Scholar] [CrossRef]
- Reynolds, P.H.S.; Boland, M.J.; McNaughton, G.S.; More, R.D.; Jones, W.T. Induction of ammonium assimilation: Leguminous roots compared with nodules using a split root system. Physiol. Plant. 1990, 79, 359–367. [Google Scholar] [CrossRef]
- Ohyama, T.; Kato, N.; Saito, K. Nitrogen transport in xylem of soybean plant supplied with 15NO3. Soil Sci. Plant Nutr. 1989, 35, 131–137. [Google Scholar] [CrossRef]
- Ohyama, T. Comparative studies on the distribution of nitrogen in soybean plants supplied with N2 and NO3− at the pod filling stage. Soil Sci. Plant Nutr. 1983, 29, 133–145. [Google Scholar] [CrossRef]
- Ishikawa, S.; Ono, Y.; Ohtake, N.; Sueyoshi, K.; Tanabata, S.; Ohyama, T. Transcriptome and metabolome analyses reveal that nitrate strongly promotes nitrogen and carbon metabolism in soybean roots, but tends to repress it in nodules. Plants 2018, 7, 32. [Google Scholar] [CrossRef]
- Andrews, M. The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ. 1986, 9, 511–519. [Google Scholar] [CrossRef]
- Hunter, W. Soybean root and nodule nitrate reductase. Physiol. Plant. 1983, 59, 471–475. [Google Scholar] [CrossRef]
- Ortega, J.L.; Moguel-Esponda, S.; Potenza, C.; Conklin, C.F.; Quintana, A.; Sengupta-Gopalan, C. The 3′ untranslated region of a soybean cytosolic glutamine synthetase (GS1) affects transcript stability and protein accumulation in transgenic alfalfa. Plant J. 2006, 45, 832–846. [Google Scholar] [CrossRef] [PubMed]
- Seger, M.; Ortega, J.L.; Bagga, S.; Gopalan, C.S. Repercussion of mesophyll-specific overexpression of a soybean cytosolic glutamine synthetase gene in alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.). Plant Sci. 2009, 176, 119–129. [Google Scholar] [CrossRef]
- do Amarante, L.; Lima, J.D.; Sodek, L. Alterations of xylem transport of key metabolic products of assimilatory activity in soybean: Do similar alterations occur in roots and nodules? Acta Physiol. Plant. 2022, 44, 11. [Google Scholar] [CrossRef]
- Miflin, B.J.; Lea, P.J. Amino acid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1977, 28, 299–329. [Google Scholar] [CrossRef]
- Fujihara, S.; Yamaguchi, M. Asparagine formation in soybean nodules. Plant Physiol. 1980, 66, 139–141. [Google Scholar] [CrossRef]
- Yoneyama, T. Partitioning and metabolism of nitrate, asparagine, and allantoin in the soybean shoots at the grain-filling stage. Soil Sci. Plant Nutr. 1984, 30, 583–587. [Google Scholar] [CrossRef]
- Bacanamwo, M.; Harper, J. Regulation of nitrogenase activity in Bradyrhizobium japonicum/soybean symbiosis by plant N status as determined by shoot C:N ratio. Physiol. Plant. 1996, 98, 529–538. [Google Scholar] [CrossRef]
- Bacanamwo, M.; Harper, J.E. The feedback mechanism of nitrate inhibition of nitrogenase activity in soybean may involve asparagine and/or products of its metabolism. Physiol. Plant. 1997, 100, 371–377. [Google Scholar] [CrossRef]
- Puiatti, M.; Sodek, L. Waterlogging affects nitrogen transport in the xylem of soybean. Plant Physiol. Biochem. 1999, 37, 767–773. [Google Scholar] [CrossRef]
- Peoples, M.; Pate, J.; Atkins, C.; Bergersen, F. Nitrogen nutrition and xylem sap composition of peanut (Arachis hypogaea L. cv Virginia Bunch). Plant Physiol. 1987, 82, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Parsons, R.; Baker, A. Cycling of amino compounds in symbiotic lupin. J. Exp. Bot. 1996, 47, 421–429. [Google Scholar] [CrossRef]
- Streeter, J. Nitrogen nutrition of field-grown soybean plants: I. Seasonal variations in soil nitrogen and nitrogen composition of stem exudate. Agronomy J. 1972, 64, 311–314. [Google Scholar] [CrossRef]
- McClure, P.R.; Israel, D.W. Transport of nitrogen in the xylem of soybean plants. Plant Physiol. 1979, 64, 411–416. [Google Scholar] [CrossRef]
- Parsons, R.; Stanforth, A.; Raven, J.A.; Sprent, J.I. Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant Cell Environ. 1993, 16, 125–136. [Google Scholar] [CrossRef]
- Muller, B.; Pascal, T.; Touraine, B. Nitrate fluxes in soybean seedling roots and their response to amino acids—An approach using N-15. Plant Cell Environ. 1995, 18, 1267–1279. [Google Scholar] [CrossRef]
- Pascal, T.; Passama, L.; Gojon, A. Are phloem amino acids involved in the shoot to root control of NO3− upake in Ricinus communis plants? J. Exp. Bot. 1998, 49, 1371–1379. [Google Scholar] [CrossRef]
Treatments | Nitrogen Concentration (mg·L−1) | Phase I | Phase II | Phase III | |||
---|---|---|---|---|---|---|---|
N+ | N− | N+ | N− | N+ | N− | ||
NLLL | 0-0-0 | 3.25 ± 0.10 a | 3.25 ± 0.10 a | 3.37 ± 0.14 a | 3.37 ± 0.14 a | 3.43 ± 0.09 a | 3.43 ± 0.09 a |
NHHH | 100-100-100 | 3.20 ± 0.05 a | 3.33 ± 0.26 a | 3.35 ± 0.09 a | 3.62 ± 0.16 a | 3.62 ± 0.16 a | 3.23 ± 0.03 a |
NHLL | 100-0-0 | 3.67 ± 0.09 a | 3.32 ± 0.09 a | 3.23 ± 0.17 a | 3.26 ± 0.09 a | ||
NHLH | 100-0-100 | 3.40 ± 0.04 a | 3.17 ± 0.11 a |
Treatments | Nitrogen Concentration (mg·L−1) | Phase I | Phase II | Phase III | |||
---|---|---|---|---|---|---|---|
N+ | N− | N+ | N− | N+ | N− | ||
NLLL | 0-0-0 | 10.10 ± 1.01 b | 10.10 ± 1.01 b | 18.73 ± 1.75 b | 18.73 ± 1.75 b | 17.22 ± 2.52 c | 17.22 ± 2.52 b |
NHHH | 100-100-100 | 33.81 ± 3.10 a | 25.27 ± 3.43 a | 27.12 ± 2.2 a | 25.76 ± 2.18 a | 30.82 ± 2.29 b | 26.55 ± 1.73 a |
NHLL | 100-0-0 | 24.64 ± 0.90 a* | 13.31 ± 1.32 b | 30.68 ± 2.11 b* | 15.02 ± 0.69 b | ||
NHLH | 100-0-100 | 42.99 ± 0.59 a* | 19.45 ± 0.22 b |
Treatments | Nitrogen Concentration (mg·L−1) | Phase I | Phase II | Phase III | |||
---|---|---|---|---|---|---|---|
N+ | N− | N+ | N− | N+ | N− | ||
NLLL | 0-0-0 | 41.7 ± 0.49 a | 41.7 ± 0.49 a | 40.6 ± 2.59 b | 40.6 ± 2.59 a | 59.0 ± 2.15 a | 59.0 ± 2.15 a |
NHHH | 100-100-100 | 30.8 ± 8.97 a | 44.5 ± 1.76 a | 37.0 ± 1.68 b | 25.6 ± 0.42 b | 45.5 ± 3.67 a | 43.5 ± 5.85 b |
NHLL | 100-0-0 | 52.6 ± 2.43 a | 44.1 ± 4.80 a | 44.4 ± 6.41 a | 36.5 ± 1.82 b | ||
NHLH | 100-0-100 | 62.5 ± 2.45 a | 59.6 ± 2.72 a |
Nitrogen Concentration (mg·L−1) | Phase I | Phase II | Phase III | ||||
---|---|---|---|---|---|---|---|
N+ | N− | N+ | N− | N+ | N− | ||
NLLL | 0-0-0 | 60.6 ± 4.55 b | 60.6 ± 4.55 a | 69.7 ± 4.61 b | 69.7 ± 4.61 a | 67.6 ± 2.54 c | 67.6 ± 2.54 b |
NHHH | 100-100-100 | 115.6 ± 5.33 a* | 54.8 ± 7.19 a | 143.4 ± 7.22 a* | 62.0 ± 3.40 a | 210.8 ± 7.98 a* | 125.3 ± 4.65 a |
NHLL | 100-0-0 | 61.5 ± 1.19 b | 61.4 ± 5.51 a | 56.7 ± 2.49 c* | 42.5 ± 4.39 c | ||
NHLH | 100-0-100 | 145.9 ± 4.72 b | 117.3 ± 10.79 a |
Treatments | Nitrogen Concentration (mg·L−1) | Phase I | Phase II | Phase III | ||||
---|---|---|---|---|---|---|---|---|
N+ | N− | N+ | N− | N+ | N− | |||
Phloem+ | NLLL | 0-0-0 | 44.3 ± 1.17 b | 44.3 ± 1.17 b | 39.0 ± 4.25 c | 39.0 ± 4.25 c | 39.0 ± 2.00 c | 39.0 ± 2.00 b |
NHHH | 100-100-100 | 108.9 ± 3.82 a* | 74.4 ± 4.76 a | 103.1 ± 2.12 a* | 70.8 ± 1.21 a | 239.0 ± 5.60 a* | 107.0 ± 6.72 a | |
NHLL | 100-0-0 | 56.3 ± 2.80 b | 48.7 ± 1.87 b | 46.9 ± 1.12 c | 52.6 ± 2.99 b | |||
NHLH | 100-0-100 | 137.6 ± 13.23 b | 113.7 ± 4.83 a | |||||
Xylem+ | NLLL | 0-0-0 | 93.5 ± 9.18 b | 93.5 ± 9.18 a | 69.1 ± 9.44 b | 69.1 ± 9.44 a | 73.7 ± 0.87 b | 73.7 ± 0.87 c |
NHHH | 100-100-100 | 155.1 ± 5.82 a | 101.0 ± 7.64 a | 137.9 ± 8.32 a | 86.6 ± 12.90 a | 304.5 ± 38.69 a | 148.0 ± 2.96 b | |
NHLL | 100-0-0 | 95.7 ± 6.48 b | 73.1 ± 3.46 a | 80.9 ± 5.06 b | 60.5 ± 7.53 c | |||
NHLH | 100-0-100 | 273.1 ± 28.04 a | 194.2 ± 17.08 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Lyu, X.; Wang, X.; Zhao, S.; Ma, C.; Yan, C.; Gong, Z. Assimilation of Nitrate into Asparagine for Transport in Soybeans. Agronomy 2023, 13, 2767. https://doi.org/10.3390/agronomy13112767
Li S, Lyu X, Wang X, Zhao S, Ma C, Yan C, Gong Z. Assimilation of Nitrate into Asparagine for Transport in Soybeans. Agronomy. 2023; 13(11):2767. https://doi.org/10.3390/agronomy13112767
Chicago/Turabian StyleLi, Sha, Xiaochen Lyu, Xuelai Wang, Shuhong Zhao, Chunmei Ma, Chao Yan, and Zhenping Gong. 2023. "Assimilation of Nitrate into Asparagine for Transport in Soybeans" Agronomy 13, no. 11: 2767. https://doi.org/10.3390/agronomy13112767
APA StyleLi, S., Lyu, X., Wang, X., Zhao, S., Ma, C., Yan, C., & Gong, Z. (2023). Assimilation of Nitrate into Asparagine for Transport in Soybeans. Agronomy, 13(11), 2767. https://doi.org/10.3390/agronomy13112767