Evaluation of Organic Matter Contribution Using Absorbance and Chromatographic Parameters in Lake Paldang, Republic of Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sample Collection
2.2. Precipitation and Water Quality Monitoring
2.3. Natural Organic Matter (NOM) Weathering Experiment
2.4. Elemental Analysis
2.5. UV-Vis Spectroscopy
2.6. Liquid Chromatography-Organic Carbon Detection (LC-OCD)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Water Quality Characteristics of the Paldang Watershed
3.2. Organic Matter Characteristic Analysis
3.3. Contribution of Organic Matter Originating from Humic Substances
3.4. Correlation Analysis and Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matilainen, A.; Gjessing, E.T.; Lahtinen, T.; Hed, L.; Bhatnagar, A.; Sillanpȁȁ, M. An overview of the methods used in the characterisation of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere 2011, 83, 1431–1442. [Google Scholar] [CrossRef]
- Mojela, H.; Gericke, G.; Madhav, H.; Malinga, S.P. Seasonal variations of natural organic matter (NOM) in surface water supplied to two coal-fired power stations. Environ. Sci. Pollut. Res. 2023, 30, 15454–15463. [Google Scholar] [CrossRef]
- Xiao, R.; Lei, H.; Zhang, Y.; Xiao, Z.; Yang, G.; Pan, H.; Hou, Y.; Yu, J.; Sun, K.; Dong, Y. The Influence of Aerated Irrigation on the Evolution of Dissolved Organic Matter Based on Three-Dimensional Fluorescence Spectrum. Agronomy 2023, 13, 980. [Google Scholar] [CrossRef]
- Chen, X.; Liu, J.; Chen, J.; Wang, J.; Xiao, X.; He, C.; Shi, Q.; Li, G.; Jiao, N. Oxygen availability driven trends in DOM molecular composition and reactivity in a seasonally stratified fjord. Water Res. 2022, 220, 118690. [Google Scholar] [CrossRef] [PubMed]
- Chaukura, N.; Marais, S.S.; Moyo, W.; Mbali, N.; Thakalekoala, L.C.; Ingwani, T.; Mamba, B.B.; Jarvis, P.; Nkambule, T.T.I. Contemporary issues on the occurrence and removal of disinfection byproducts in drinking water—A review. J. Environ. Chem. 2020, 8, 103659. [Google Scholar] [CrossRef]
- Bai, L.; Liu, X.; Wu, Y.; Cheng, H.; Wang, C.; Jiang, H.; Wang, A. Distinct seasonal variations of dissolved organic matter across two large freshwater lakes in China: Lability profiles and predictive modeling. J. Environ. Manag. 2023, 339, 117880. [Google Scholar] [CrossRef]
- Versal, S.E.; Nasi, F.; Auriemma, R.; Del Negro, P. Effects of organic enrichment on bioturbation attributers: How does the macrofauna community respond in two different sedimentary impacted areas? Diversity 2023, 15, 449. [Google Scholar] [CrossRef]
- Hanamachi, Y.; Hama, T.; Yanai, T. Decomposition process of organic matter derived from freshwater phytoplankton. Limnology 2008, 9, 57–69. [Google Scholar] [CrossRef]
- Larsen, S.; Anderson, T.; Hessen, D.O. Climate change predicted to cause severe increase of organic carbon in lakes. Grobal Chang. Biol. 2011, 17, 1186–1192. [Google Scholar] [CrossRef]
- Li, P.; Hur, J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 131–154. [Google Scholar] [CrossRef]
- Gbadegesin, L.A.; Liu, X.; Tang, X.; Liu, C.; Cui, J. Leaching of Sulfadiazine and Florfenicol in an Entisol of a Chicken-Raising Orchard: Impact of Manure-Derived Dissolved Organic Matter. Agronomy 2022, 12, 3228. [Google Scholar] [CrossRef]
- Pan, H.; Shi, L.; Liu, X.; Lei, H.; Yu, J.; Yang, G. Characteristics of Soil DOM and Its Effect on the Transformation of Potentially Toxic Elements (PTE) Forms under Organic Fertilizer Return Conditions. Agronomy 2023, 13, 630. [Google Scholar] [CrossRef]
- Lee, M.H.; Lee, S.Y.; Yoo, H.O.; Shin, K.H.; Hur, J. Comparing optical versus chromatographic descriptors of dissolved organic matter (DOM) for tracking the non-point sources in rural watersheds. Ecol. Indic. 2020, 117, 106682. [Google Scholar] [CrossRef]
- Park, Y.S.; Kwon, Y.S.; Hwang, S.J.; Park, S. Characterizing effects of landscape and morphometric factors on water quality of reservoirs using a self-organizing map. Environ. Modell. Softw. 2014, 55, 214–221. [Google Scholar] [CrossRef]
- Boopathi, T.; Wang, H.; Lee, M.D.; Ki, J.S. Seasonal Changes in Cyanobacterial Diversity of a Temperate Freshwater Paldang Reservoir (Korea) Explored by using Pyrosequencing. Environ. Biol. Res. 2018, 36, 424–437. [Google Scholar] [CrossRef]
- Cho, Y.C.; Im, J.K.; Han, J.; Kim, S.H.; Kang, T.; Lee, S. Comprehensive Water Quality Assessment Using Korean Water Quality Indices and Multivariate Statistical Techniques for Sustainable Water Management of the Paldang Reservoir, South Korea. Water 2023, 15, 509. [Google Scholar] [CrossRef]
- Atique, U.; An, K.G. Landscape heterogeneity impacts water chemistry, nutrient regime, organic matter and chlorophyll dynamics in an agricultural reservoirs. Ecol. Indic. 2020, 110, 105813. [Google Scholar] [CrossRef]
- Arya, M.S.; Biju, A.; Benchamin, A. Assessment of spatial and temporal variations in water quality using multivariate statistical analysis in the Munroe Island, Kerala, India. Acta Ecol. Sin. 2023, 43, 751–763. [Google Scholar] [CrossRef]
- Han, J.; Cho, Y.C.; Lee, S.; Kang, T.; Kim, S. Short-Term Water Quality Prediction of the Paldang Reservoir using Recurrent Neural Network Models. J. Korean Soc. Water Environ. 2023, 39, 46–60. [Google Scholar]
- Im, J.K.; Kim, Y.S.; Cho, Y.C.; Kang, T.; Kim, S.H. Water Quality, Source Identification, and Risk Assessment of Heavy Metals Using Multivariate Analysis in the Han River Watershed, South Korea. Agronomy 2022, 12, 3111. [Google Scholar] [CrossRef]
- Ministry of Environment (MOE). The Water Pollution Standard Method; Ministry of Environment: Sejong, Republic of Korea, 2022.
- Lee, M.H.; Lee, Y.K.; Derrien, M.; Choi, K.; Shin, K.H.; Jang, K.S.; Hur, J. Evaluating the contributions of different organic matter sources to urban river water during a storm event via optical indices and molecular composition. Water Res. 2019, 165, 115006. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yu, H.Q. Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. Water Res. 2021, 190, 116759. [Google Scholar] [CrossRef]
- O’Donnell, J.A.; Aiken, G.R.; Swanson, D.K.; Panda, S.; Butler, K.D.; Baltensperger, A.P. Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon. Grobal Biogeochem. Cycles 2016, 30, 1811–1826. [Google Scholar] [CrossRef]
- Ni, M.; Li, S. Optical properties as tracers of riverine dissolved organic matter biodegradation in a headwater tributary of the Yangtze. J. Hydrol. 2020, 582, 124497. [Google Scholar] [CrossRef]
- Teng, C.; Zhou, K.; Zhang, Z.; Peng, C.; Chen, W. Elucidating the structural variation of membrane concentrated landfill leachate during Fenton oxidation process using spectroscopic analyses. Environ. Pollut. 2020, 256, 113467. [Google Scholar] [CrossRef]
- Zhang, Z.; Teng, C.; Zhou, K.; Peng, C.; Chen, W. Degradation characteristics of dissolved organic matter in nanofiltration concentrated landfill leachate during electrocatalytic oxidation. Chemosphere 2020, 255, 127055. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Pang, W.; Ge, S.; Yu, H.; Dai, C.; Huang, X.; Li, J.; Zhao, M. Characteristics of fluorescence spectra, UV spectra, and specific growth rates during the outbreak of toxic Microcystis Aeruginosa FACHB-902 and non-toxic FACHB-469 under different nutrient conditions in a Eutrophic Microcosmic Simulation Device. Water 2020, 12, 2305. [Google Scholar] [CrossRef]
- Loiselle, S.A.; Bracchini, L.; Dattilo, A.M.; Ricci, M.; Tognazzi, A.; Cozar, A.; Rossi, C. Optical characterization of chromophoric dissolved organic matter using wavelength distribution of absorption spectral slopes. Limnol. Oceanogr. 2009, 54, 590–597. [Google Scholar] [CrossRef]
- Huber, S.A.; Balz, A.; Abert, M.; Pronk, W. Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). Water Res. 2011, 45, 879–885. [Google Scholar] [CrossRef]
- Muhammetoglu, A.; Muhammetoglu, H.; Oktas, S.; Ozgokcen, L.; Soyupak, S. Impact assessment of different management scenarios on water quality of Porsuk river and dam system-Turkey. Water Resour. Manag. 2005, 19, 199–210. [Google Scholar] [CrossRef]
- Acharya, S.; Holland, A.; Rees, G.; Brooks, A.; Coleman, D.; Hepplewhite, C.; Mika, S.; Bond, N.; Silvester, E. Relevance of tributary inflows for driving molecular composition of dissolved organic matter (DOM) in a regulated river system. Water Res. 2023, 237, 119975. [Google Scholar] [CrossRef]
- Cheng, P.; Sun, M. Calculation of seasonal agricultural grey water footprint in monsoon region based on river reference conditions. Ecol. Indic. 2022, 145, 109638. [Google Scholar] [CrossRef]
- Du, X.; Su, J.; Li, X.; Zhang, W. Modeling and Evaluating of Non-Point Source Pollution in a Semi-Arid Watershed: Implications for Watershed Management. CLEAN-Soil Air Water 2016, 44, 247–255. [Google Scholar] [CrossRef]
- Abbas, M.; Dia, S.; Deutsch, E.S.; Alameddine, I. Analyzing eutrophication and harmful algal bloom dynamics in a deep Mediterranean hypereutrophic reservoir. Environ. Sci. Pollut. Res. 2023, 30, 37607–37621. [Google Scholar] [CrossRef] [PubMed]
- Huo, P.; Zhang, W.; Jia, H.; Chen, J.; Gao, P. Characteristics of optical properties of DOM and nutrients in rainwater of different ecological areas of a large reservoir in China. Chemosphere 2023, 342, 140091. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.; Schofield, K.A.; Lee, S.S.; Norton, S.B. Response of chlorophyll a to total nitrogen and total phosphorus concentrations in lotic ecosystems: A systematic review protocol. Environ. Evid. 2017, 6, 18. [Google Scholar] [CrossRef]
- Su, Y.; Li, K.; Zhang, Y.; Liu, Z.; Wang, T.; Jeppesen, E.; Middelburg, J.J.; Smol, J.P. Effects of climate change and nutrient concentrations on carbon sources for zooplankton in a Tibetan Plateau lake over the past millennium. J. Paleolimnol. 2022, 68, 249–263. [Google Scholar] [CrossRef]
- Ramos, M.C.; Lizaga, I.; Gaspar, L.; Quijano, L.; Navas, A. Effects of rainfall intensity and slope on sediment, nitrogen and phosphorous losses in soils with different use and soil hydrological properties. Agric. Water Manag. 2019, 226, 105789. [Google Scholar] [CrossRef]
- del Mar Sanchez-Montoya, M.; Arce, M.I.; Vidal-Abarca, M.R.; Suárez, M.L.; Prat, N.; Gómez, R. Spatial and temporal analysis of pharmaceutical concentrations in the upper Tennessee River basin. Water Res. 2012, 46, 2257–2269. [Google Scholar]
- Araújo, R.G.; Alcantar-Rivera, B.; Meléndez-Sánchez, E.R.; Martínez-Prado, M.A.; Sosa-Hernández, J.E.; Iqbal, H.M.N.; Parra-Saldivar, R.; Martínez-Ruiz, M. Effects of UV and UV-vis Irradiation on the Production of Microalgae and Macroalgae: New Alternatives to Produce Photobioprotectors and Biomedical Compounds. Molecules 2022, 27, 5334. [Google Scholar] [CrossRef]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity od dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Song, Z.; Meng, P.; Fang, Z. Seasonal characterization and identification of dissolved organic matter (DOM) in the Pearl River, China. Environ. Sci. Pollut. Res. 2016, 23, 7462–7469. [Google Scholar] [CrossRef]
- Inamdar, S.; Finger, N.; Singh, S.; Mitchell, M.; Levia, D.; Bais, H.; Scott, D.; McHale, P. Dissolved organic matter (DOM) concentration and quality in a forested mid-Atlantic watershed, USA. Biogeochemistry 2012, 108, 55–76. [Google Scholar] [CrossRef]
- Yang, L.; Chang, S.W.; Shin, H.S.; Hur, J. Tracking the evolution of stream DOM source during storm events using end member mixing analysis based on DOM quality. J. Hydrol. 2015, 523, 333–341. [Google Scholar] [CrossRef]
- Tsialtas, J.T.; Maslaris, N. Leaf carbon isotope discrimination relationships to element content in soil, roots and leaves of sugar beets grown under Mediterranean conditions. Field Crops Res. 2006, 99, 125–135. [Google Scholar] [CrossRef]
- Catalán, N.; Casas-Ruiz, J.P.; von Schiller, D.; Proia, L.; Obrador, B.; Zwirnmann, E.; Marcé, R. Biodegradation kinetics od dissolved organic matter chromatographic fractions in an intermittent river. J. Geophys. Res. Biogeosci. 2017, 122, 131–144. [Google Scholar] [CrossRef]
- Chen, M.; Jaffė, R. Photo-and bio-reactivity patterns of dissolved organic matter from biomass and soil leachates and surface water in a subtropical wetland. Water Res. 2014, 61, 181–190. [Google Scholar] [CrossRef]
- Wang, X.; Dettman, D.L.; Wang, M.; Zhang, J.; Saito, Y.; Quade, J.; Feng, S.; Liu, J.; Chen, F. Seasonal wet-dry variability of the Asian monsoon since the middle Pleistocene. Quat. Sci. Rev. 2020, 247, 106568. [Google Scholar] [CrossRef]
- Chen, M.; He, W.; Choi, I.; Hur, J. Tracking the monthly changes of dissolved organic matter composition in a newly constructed reservoir and its tributaries during the initial impounding period. Environ. Sci. Pollut. Res. 2016, 23, 1274–1283. [Google Scholar] [CrossRef]
- National Institute of Environmental Research (NIER). The Investigation of Organic Matter Distribution and Transportation in Lake Paldang (II); National Institute of Environmental Research: Incheon, Republic of Korea, 2019.
- Ma, Y.; Ni, M.; Gu, S.; Zhang, L.; Li, S. Autochthonous sources and biogeochemical processes drive the spatiotemporal variation of DOM composition and optical indicators in a karst river. J. Hydrol. 2023, 623, 129825. [Google Scholar] [CrossRef]
- Rabara, R.C.; Ferrer, M.C.; Diaz, C.L.; Newingham, M.C.V.; Romero, G.O. Phenotypic Diversity of Farmer’ Traditional Rice Varieties in the Philippines. Agronomy 2014, 4, 217–241. [Google Scholar] [CrossRef]
- Hammam, A.A.; Mohamed, W.S.; Sayed, S.E.E.; Kucher, D.E.; Mohamed, E.S. Assessment of Soil Contamination Using GIS and Multi-Variate Analysis: A Case Study in EI-Minia Governorate, Egypt. Agronomy 2022, 12, 1197. [Google Scholar] [CrossRef]
- Pereira, M.M.A.; Moraes, L.C.; Mogollon, M.C.T.; Borja, C.J.F.; Duarte, M.; Buttros, V.H.T.; Luz, J.M.Q.; Pasqual, M.; Doria, J. Cultivating Biodiversity to Harvest Sustainability: Vermicomposting and Inoculation of Microorganisms for Soil Preservation and Resilience. Agronomy 2023, 13, 103. [Google Scholar] [CrossRef]
- He, W.; Choi, I.; Lee, J.J.; Hur, J. Coupling effects of abiotic and biotic factors on molecular composition of dissolved organic matter in a freshwater wetland. Sci. Total Environ. 2016, 544, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Fellman, J.B.; Hood, E.; Edwards, R.T.; D’Amore, D.V. Changes in the concentration, biodegradability, and fluorescent properties of dissolved organic matter during stormflows in coastal temperate watersheds. J. Geophys. Res.-Biogeo. 2009, 114, G01021. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, D.; Wei, S.; Yan, J.; Liang, J.; Chen, X.; Liu, J.; Wang, Q.; Lu, S.; Gao, J.; et al. Influences of the alternation of wet-dry periods on the variability of chromophoric dissolved organic matter in the water level fluctuation zone of the Three Gorges Reservoir area. China Sci. Total Environ. 2018, 636, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Noori, R.; Ghiasi, B.; Salehi, S.; Esmaeili Bidhendi, M.; Raeisi, A.; Partani, S.; Meysami, R.; Mahdian, M.; Hosseinzadeh, M.; Abolfathi, S. An Efficient Data Driven-Based Model for Prediction of the Total Sediment Load in Rivers. Hydrology 2022, 9, 36. [Google Scholar] [CrossRef]
Forest | Cultivation | Urban | Watershed | Livestock | Etc. | |
---|---|---|---|---|---|---|
PD | 71.1 | 13.0 | 6.9 | 6.1 | 0.3 | 2.6 |
SB | 76.0 | 8.4 | 5.5 | 9.2 | 0.2 | 0.8 |
GS | 71.5 | 14.5 | 6.0 | 5.7 | 0.4 | 2.0 |
KK | 66.2 | 10.8 | 11.2 | 5.5 | 0.2 | 6.1 |
Group | UV-Vis Parameters | Chromatographic Parameters | |||||||
---|---|---|---|---|---|---|---|---|---|
E2/E3 | E2/E4 | SR | UV254 | BP (%) | HS (%) | BB (%) | LMWN (%) | SUVA | |
PD | 6.22 | 18.84 | 1.053 | 0.046 | 8.9 | 41.9 | 22.5 | 26.7 | 2.92 |
SB | 6.33 | 19.18 | 1.058 | 0.037 | 7.5 | 42.3 | 22.6 | 27.6 | 2.76 |
GS | 6.76 | 22.16 | 0.969 | 0.047 | 8.6 | 41.7 | 22.9 | 26.9 | 3.02 |
KK | 6.75 | 18.75 | 0.960 | 0.064 | 8.8 | 36.5 | 23.4 | 31.3 | 2.60 |
Group | NOM | Elemental Composition | UV-Vis Parameters | Chromatographic Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C (%) | N (%) | C/N Ratio | E2/E3 | E2/E4 | SR | UV254 | BP (%) | HS (%) | BB (%) | LMWA (%) | LMWN (%) | SUVA | ||
Leaves | Mixture | 43.9 | 11.8 | 0.027 | 3.89 | 11.93 | 0.711 | 3.550 | 4.5 | 71.8 | 7.4 | <0.1 | 16.2 | 5.41 |
Broadleaf tree | 46.1 | 10.7 | 0.023 | 4.68 | 15.38 | 0.765 | 15.415 | 3.8 | 49.1 | 17.3 | 2.3 | 27.5 | 3.83 | |
Conifer | 46.9 | 13.5 | 0.029 | 22.40 | 1691.6 | 0.984 | 6.344 | 0.9 | 10.1 | 15.2 | <0.1 | 73.7 | 0.25 | |
Green leaves | Maple leaf | 42.6 | 34.1 | 0.080 | 4.05 | 11.16 | 0.470 | 4.924 | 0.2 | 6.8 | 16.7 | 9.8 | 66.6 | 0.56 |
Bracken | 41.2 | 31.7 | 0.077 | 18.58 | 174.82 | 1.131 | 1.941 | 6.7 | 5.8 | 5.8 | 16.5 | 65.1 | 0.61 | |
Conifer | 46.1 | 11.6 | 0.025 | 2.88 | 86.98 | 0.204 | 14.156 | 8.1 | 10.9 | 10.4 | 25.2 | 45.4 | 0.61 | |
Forest soil | Tample soil | 11.3 | 8.0 | 0.071 | 5.03 | 17.00 | 0.722 | 1.210 | 11.4 | 61.4 | 12.6 | <0.1 | 14.6 | 4.01 |
Red clay | 3.9 | 3.0 | 0.077 | 3.56 | 7.24 | 1.026 | 0.780 | 12.8 | 58.8 | 12.8 | <0.1 | 15.6 | 3.24 | |
Paddy soil | TC soil | 0.4 | 1.2 | 0.339 | 8.63 | 42.72 | 0.448 | 0.731 | 2.2 | 51.6 | 23.8 | <0.1 | 22.3 | 3.55 |
CW soil | 5.6 | 6.2 | 0.111 | 4.44 | 13.89 | 0.651 | 1.869 | 9.9 | 65.4 | 8.9 | <0.1 | 15.8 | 6.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.J.; Seong, K.S.; Byeon, M.S.; Kang, T.; Im, J.K. Evaluation of Organic Matter Contribution Using Absorbance and Chromatographic Parameters in Lake Paldang, Republic of Korea. Agronomy 2023, 13, 2766. https://doi.org/10.3390/agronomy13112766
Cho YJ, Seong KS, Byeon MS, Kang T, Im JK. Evaluation of Organic Matter Contribution Using Absorbance and Chromatographic Parameters in Lake Paldang, Republic of Korea. Agronomy. 2023; 13(11):2766. https://doi.org/10.3390/agronomy13112766
Chicago/Turabian StyleCho, Yeon Jung, Ki Seon Seong, Myeong Seop Byeon, Taegu Kang, and Jong Kwon Im. 2023. "Evaluation of Organic Matter Contribution Using Absorbance and Chromatographic Parameters in Lake Paldang, Republic of Korea" Agronomy 13, no. 11: 2766. https://doi.org/10.3390/agronomy13112766
APA StyleCho, Y. J., Seong, K. S., Byeon, M. S., Kang, T., & Im, J. K. (2023). Evaluation of Organic Matter Contribution Using Absorbance and Chromatographic Parameters in Lake Paldang, Republic of Korea. Agronomy, 13(11), 2766. https://doi.org/10.3390/agronomy13112766