Agronomic Responses of Grapevines to an Irrigation Scheduling Approach Based on Continuous Monitoring of Soil Water Content
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description and Meteorological Data
2.2. Irrigation Treatments and the Experimental Design
2.3. Plant and Soil Parameters
2.3.1. Plant and Soil Water Status
2.3.2. Leaf Gas Exchange Determination
2.4. Berry Sampling, Yield Components, and Quality Determination
2.5. Statistical Analysis
3. Results and Discussion
3.1. Agrometeorological Data and Soil Water Balance
3.1.1. Agrometeorological Data
3.1.2. Soil Water Balance
3.1.3. Plant Water Status
3.2. Yield and Yield Components
3.3. Technological Maturity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. High Level Expert Forum—How to Feed the World in 2050; FAO: Rome, Italy, 2009. [Google Scholar]
- Woznicki, S.A.; Nejadhashemi, A.P.; Parsinejad, M. Climate Change and Irrigation Demand: Uncertainty and Adaptation. J. Hydrol. Reg. Stud. 2015, 3, 247–264. [Google Scholar] [CrossRef]
- Menenti, M.; Alfieri, S.M.; Bonfante, A.; Riccardi, M.; Basile, A.; Monaco, E.; Demichele, C.; De Lorenzi, F. Adaptation of Irrigated and Rainfed Agriculture to Climate Change: The Vulnerability of Production Systems and the Potential of Intraspecific Biodiversity (Case Studies in Italy). In Handbook of Climate Change Adaptation; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Milano, M.; Ruelland, D.; Fernandez, S.; Dezetter, A.; Fabre, J.; Servat, E.; Fritsch, J.M.; Ardoin-Bardin, S.; Thivet, G. Current State of Mediterranean Water Resources and Future Trends under Climatic and Anthropogenic Changes. Hydrol. Sci. J. 2013, 58, 498–518. [Google Scholar] [CrossRef]
- Kulkarni, S.A.; Kulkarni, S. Innovative Technologies for Water Saving in Irrigated Agriculture. Int. J. Water Resour. Arid. Environ. 2011, 1, 226–231. [Google Scholar]
- Sanchez, L.A.; Sams, B.; Alsina, M.M.; Hinds, N.; Klein, L.J.; Dokoozlian, N. Improving Vineyard Water Use Efficiency and Yield with Variable Rate Irrigation in California. Adv. Anim. Biosci. 2017, 8, 574–577. [Google Scholar] [CrossRef]
- Navarro-Hellín, H.; Torres-Sánchez, R.; Soto-Valles, F.; Albaladejo-Pérez, C.; López-Riquelme, J.A.; Domingo-Miguel, R. A Wireless Sensors Architecture for Efficient Irrigation Water Management. Agric. Water Manag. 2015, 151, 64–74. [Google Scholar] [CrossRef]
- Merriam, J.L. A management control concept for determining the economical depth and frequency of irrigation. Trans. ASAE 1966, 9, 492–498. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Ringler, C.; Zhu, T. Water for Agriculture: Maintaining Food Security under Growing Scarcity. Annu. Rev. Environ. Resour. 2009, 34, 205–222. [Google Scholar] [CrossRef]
- Arcieri, M. Water Resources and Soil Management in Italy. Irrig. Drain. 2016, 65, 165–181. [Google Scholar] [CrossRef]
- Natasha, G. Water under Pressure. Nature 2012, 483, 256–257. [Google Scholar]
- Massarutto, A. Agriculture, Water Resources and Water Policies in Italy. SSRN Electron. J. 2000. [Google Scholar] [CrossRef]
- Vanino, S.; Nino, P.; De Michele, C.; Bolognesi, S.F.; Pulighe, G. Earth Observation for Improving Irrigation Water Management: A Case-Study from Apulia Region in Italy. Agric. Agric. Sci. Procedia 2015, 4, 99–107. [Google Scholar] [CrossRef]
- Mccarthy, M.G. The Effect of Transient Water Deficit on Berry Development of Cv. Shiraz (Vitis vinifera L.). Aust. J. Grape Wine Res. 1997, 3, 102–108. [Google Scholar] [CrossRef]
- Roby, G.; Harbertson, J.F.; Adams, D.A.; Matthews, M.A. Berry Size and Vine Water Deficits as Factors in Winegrape Composition: Anthocyanins and Tannins. Aust. J. Grape Wine Res. 2004, 10, 100–107. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under Deficit Irrigation: Hints from Physiological and Molecular Data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef] [PubMed]
- Mataffo, A.; Scognamiglio, P.; Molinaro, C.; Corrado, G.; Basile, B. Early Canopy Management Practices Differentially Modulate Fruit Set, Fruit Yield, and Berry Composition at Harvest Depending on the Grapevine Cultivar. Plants 2023, 12, 733. [Google Scholar] [CrossRef] [PubMed]
- Cifre, J.; Bota, J.; Escalona, J.M.; Medrano, H.; Flexas, J. Physiological Tools for Irrigation Scheduling in Grapevine (Vitis vinifera L.): An Open Gate to Improve Water-Use Efficiency? Agric. Ecosyst. Environ. 2005, 106, 159–170. [Google Scholar] [CrossRef]
- Calderan, A.; Cogato, A.; Braidotti, R.; Alberti, G.; Lisjak, K.; Herrera, J.C.; Peterlunger, E.; Sivilotti, P. Physiological Characterization of Vitis Hybrid Cv Merlot Khorus under Two Different Water Regimes in Northeastern Italy. Sci. Hortic. 2023, 321, 112318. [Google Scholar] [CrossRef]
- Al-Kaisi, M.; Lowery, B. Soil Health and Intensification of Agroecosystems; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Grote, K.; Anger, C.; Kelly, B.; Hubbard, S.; Rubin, Y. Characterization of Soil Water Content Variability and Soil Texture Using GPR Groundwave Techniques. J. Environ. Eng. Geophys. 2010, 15, 93–110. [Google Scholar] [CrossRef]
- Lozoya, C.; Mendoza, C.; Aguilar, A.; Román, A.; Castelló, R. Sensor-Based Model Driven Control Strategy for Precision Irrigation. J. Sens. 2016, 2016, 9784071. [Google Scholar] [CrossRef]
- Kukal, S.S.; Hira, G.S.; Sidhu, A.S. Soil Matric Potential-Based Irrigation Scheduling to Rice (Oryza sativa). Irrig. Sci. 2005, 23, 153–159. [Google Scholar] [CrossRef]
- Yu, X.; Wu, P.; Han, W.; Zhang, Z. A Survey on Wireless Sensor Network Infrastructure for Agriculture. Comput. Stand. Interfaces 2013, 35, 59–64. [Google Scholar] [CrossRef]
- Khan, S.; Lloret, J.; Loo, J. Intrusion Detection and Security Mechanisms for Wireless Sensor Networks. Int. J. Distrib. Sens. Netw. 2014, 10, 747483. [Google Scholar] [CrossRef]
- Campi, P.; Palumbo, A.D.; Mastrorilli, M. Evapotranspiration Estimation of Crops Protected by Windbreak in a Mediterranean Region. Agric. Water Manag. 2012, 104, 153–162. [Google Scholar] [CrossRef]
- Saini, S.S.; Soni, D.; Malhi, S.S.; Tiwari, V.; Goyal, A. Automatic irrigation control system using Internet of Things (IoT). J. Discret. Math. Sci. Cryptogr. 2022, 25, 879–889. [Google Scholar] [CrossRef]
- Arshad, J.; Aziz, M.; Al-Huqail, A.A.; Zaman, M.H.U.; Husnain, M.; Rehman, A.U.; Shafiq, M. Implementation of a LoRaWAN based smart agriculture decision support system for optimum crop yield. Sustainability 2022, 14, 827. [Google Scholar] [CrossRef]
- Seager, R.; Hooks, A.; Williams, A.P.; Cook, B.; Nakamura, J.; Henderson, N. Climatology, Variability, and Trends in the U.S. Vapor Pressure Deficit, an Important Fire-Related Meteorological Quantity. J. Appl. Meteorol. Climatol. 2015, 54, 1121–1141. [Google Scholar] [CrossRef]
- Murray, F.W. On the Computation of Saturation Vapor Pressure. J. Appl. Meteorol. 1967, 6, 203–204. [Google Scholar] [CrossRef]
- De Mastro, G.; Vivaldi, G.; Camposeo, S.; Tedone, L.; Berardi, M.; Grandolfo, F.; Diaferia, A.; Sciusco, A.; Lastella, A.; Arvizzigno, A.; et al. Deepfield Connect, an Innovative Decision Support System for Crops Irrigation Management under Mediterranean Conditions; ISHS: Matera, Italy, 2019. [Google Scholar]
- Bosch. Deepfield Connect Field Monitoring Basic; Bosch: Stuttgart, Germany; Available online: https://appcenter.bosch.com/applications/deepfield-field-monitoring-rm (accessed on 14 November 2023).
- Misra, N.N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet Things J. 2022, 9, 6305–6324. [Google Scholar] [CrossRef]
- Ortega-Farias, S.; Espinoza-Meza, S.; López-Olivari, R.; Araya-Alman, M.; Carrasco-Benavides, M. Effects of Different Irrigation Levels on Plant Water Status, Yield, Fruit Quality, and Water Productivity in a Drip-Irrigated Blueberry Orchard under Mediterranean Conditions. Agric. Water Manag. 2021, 249, 106805. [Google Scholar] [CrossRef]
- Myers, B.J. Water Stress Integral- a Link between Short-Term Stress and Long-Term Growth. Tree Physiol. 1988, 4, 313–323. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving Water Use Efficiency of Vineyards in Semi-Arid Regions. A Review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef]
- R Studio Team. RStudio; R Studio Team: Boston, MA, USA, 2020. [Google Scholar]
- Systat Software. SigmaPlot; Systat Software: Palo Alto, CA, USA, 2017. [Google Scholar]
- Olivo, N.; Girona, J.; Marsal, J. Seasonal Sensitivity of Stem Water Potential to Vapour Pressure Deficit in Grapevine. Irrig. Sci. 2009, 27, 175–182. [Google Scholar] [CrossRef]
- Caruso, G.; Palai, G.; Gucci, R.; D’Onofrio, C. The Effect of Regulated Deficit Irrigation on Growth, Yield, and Berry Quality of Grapevines (Cv. Sangiovese) Grafted on Rootstocks with Different Resistance to Water Deficit. Irrig. Sci. 2023, 41, 453–467. [Google Scholar] [CrossRef]
- Basile, B.; Girona, J.; Behboudian, M.H.; Mata, M.; Rosello, J.; Ferré, M.; Marsal, J. Responses of “Chardonnay” to Deficit Irrigation Applied at Different Phenological Stages: Vine Growth, Must Composition, and Wine Quality. Irrig. Sci. 2012, 30, 397–406. [Google Scholar] [CrossRef]
- Faci, J.M.; Blanco, O.; Medina, E.T.; Martínez-Cob, A. Effect of Post Veraison Regulated Deficit Irrigation in Production and Berry Quality of Autumn Royal and Crimson Table Grape Cultivars. Agric. Water Manag. 2014, 134, 73–83. [Google Scholar] [CrossRef]
- Janssen, M.; Lennartz, B.; Wöhling, T. Percolation Losses in Paddy Fields with a Dynamic Soil Structure: Model Development and Applications. Hydrol. Process. 2010, 24, 813–824. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Tregoat, O.; Choné, X.; Bois, B.; Pernet, D.; Gaudillére, J.P. Vine Water Status Is a Key Factor in Grape Ripening and Vintage Quality for Red Bordeaux Wine. How Can It Be Assessed for Vineyard Management Purposes? J. Int. Sci. Vigne Vin 2009, 43, 121–134. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Intrigliolo, D.S. Grape Composition under Abiotic Constrains: Water Stress and Salinity. Front. Plant Sci. 2017, 8, 851. [Google Scholar] [CrossRef]
- Zúñiga, M.; Poblete-Echeverría, C.; Riveros, C.; Ortega-Farías, S. Water Stress Integral as Indicator of Grape Quality and Yield Parameters in a “Carménère” Vineyard with Regulated Deficit Irrigation. Acta Hortic. 2017, 1150, 501–506. [Google Scholar] [CrossRef]
- Wong, S.C.; Cowan, I.R.; Farquhar, G.D. Stomatal Conductance Correlates with Photosynthetic Capacity. Nature 1979, 282, 424–426. [Google Scholar] [CrossRef]
- Beis, A.; Patakas, A. Differential Physiological and Biochemical Responses to Drought in Grapevines Subjected to Partial Root Drying and Deficit Irrigation. Eur. J. Agron. 2015, 62, 90–97. [Google Scholar] [CrossRef]
- Zufferey, V.; Spring, J.L.; Verdenal, T.; Dienes, A.; Belcher, S.; Lorenzini, F.; Koestel, C.; Rösti, J.; Gindro, K.; Spangenberg, J.; et al. Influence of Water Stress on Plant Hydraulics, Gas Exchange, Berry Composition and Quality of Pinot Noir Wines in Switzerland. Oeno One 2017, 51, 37–57. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Santos, J.A. Modelling Climate Change Impacts on Viticultural Yield, Phenology and Stress Conditions in Europe. Glob. Chang. Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Opazo, C.; Ortega-Farias, S.; Fuentes, S. Effects of Grapevine (Vitis vinifera L.) Water Status on Water Consumption, Vegetative Growth and Grape Quality: An Irrigation Scheduling Application to Achieve Regulated Deficit Irrigation. Agric. Water Manag. 2010, 97, 956–964. [Google Scholar] [CrossRef]
- Salón, J.L.; Méndez, J.V.; Chirivella, C.; Castel, J.R. Response of Vitis vinifera Cv. “Bobal” and “Tempranillo” to Deficit Irrigation. Acta Hortic. 2004, 640, 91–98. [Google Scholar] [CrossRef]
- Keller, M. Environmental Constraints and Stress Physiology. In The Science of Grapevines; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–356. [Google Scholar]
- Teixeira, A.; Eiras-Dias, J.; Castellarin, S.D.; Gerós, H. Berry Phenolics of Grapevine under Challenging Environments. Int. J. Mol. Sci. 2013, 14, 18711–18739. [Google Scholar] [CrossRef] [PubMed]
- Chorti, E.; Guidoni, S.; Ferrandino, A.; Novello, V. Effect of Different Cluster Sunlight Exposure Levels on Ripening and Anthocyanin Accumulation in Nebbiolo Grapes. Am. J. Enol. Vitic. 2010, 6, 23–30. [Google Scholar] [CrossRef]
- Barbagallo, M.G.; Vesco, G.; Di Lorenzo, R.; Lo Bianco, R.; Pisciotta, A. Soil and Regulated Deficit Irrigation Affect Growth, Yield and Quality of ‘Nero d’Avola’ Grapes in a Semi-Arid Environment. Plants 2021, 10, 641. [Google Scholar] [CrossRef]
- Chaves, M.M.; Santos, T.P.; Souza, C.R.; Ortuño, M.F.; Rodrigues, M.L.; Lopes, C.M.; Maroco, J.P.; Pereira, J.S. Deficit Irrigation in Grapevine Improves Water-Use Efficiency While Controlling Vigour and Production Quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Esteban, M.A.; Villanueva, M.J.; Lisarrague, J.R. Effect of Irrigation on Changes in Berry Composition of Tempranillo During Maturation. Sugars, Organic Acids, and Mineral Elements. Am. J. Enol. Vitic. 1999, 50, 418–434. [Google Scholar] [CrossRef]
- Hrazdina, G. Recent Techniques in the Analysis of Antho- Cyanins in Fruits and Beverages. In Liquid Chromatographic Analysis of Food and Beverages; Academic Press: New York, NY, USA, 1979; Volume 1, pp. 141–159. [Google Scholar]
- Du, C.S.; Van Rooyen, P.C. Grape Maturity and Wine Quality. S. Afr. J. Enol. Vitic. 1982, 3, 41–45. [Google Scholar] [CrossRef]
- Pinillos, V.; Ibáñez, S.; Cunha, J.M.; Hueso, J.J.; Cuevas, J. Postveraison Deficit Irrigation Effects on Fruit Quality and Yield of “Flame Seedless” Table Grape Cultivated under Greenhouse and Net. Plants 2020, 9, 1437. [Google Scholar] [CrossRef]
Year | Treatment | Seasonal Irrigation Volume (m3 ha−1) | Saving (%) |
---|---|---|---|
2019 | DSS | 1400 | 10 |
farm irrigation | 1551 | ||
2020 | DSS | 1347 | 17 |
farm irrigation | 1625 |
Year | Treatment | WSI | Year × Treatment | |
---|---|---|---|---|
2019 | DSS | 72.80 ± 2.40 | * | n.s. |
farm irrigation | 82.87 ± 0.49 | |||
2020 | DSS | 61.06 ± 3.56 | n.s. | |
farm irrigation | 68.33 ± 4.18 |
Year | Treatment | Cluster Length (cm) | Year × Treatment | Cluster Weight (g) | Year × Treatment | ||
---|---|---|---|---|---|---|---|
2019 | DSS | 16.6 ± 0.4 | n.s. | * | 274 ± 12.7 | n.s. | ** |
farm irrigation | 16.1 ± 0.3 | 253 ± 11.9 | |||||
2020 | DSS | 16.1 ± 0.4 | * | 251 ± 14.1 | ** | ||
farm irrigation | 17.2 ± 0.3 | 304 ± 11.6 | |||||
Berries per Cluster | Year × Treatment | Weight of Berries per Cluster (g) | Year × Treatment | ||||
2019 | DSS | 156.3 ± 7.6 | n.s. | * | 263.1 ± 12.4 | n.s. | ** |
farm irrigation | 146.1 ± 7 | 243.3 ± 11.3 | |||||
2020 | DSS | 131.9 ± 6.8 | * | 244.2 ± 12.8 | ** | ||
farm irrigation | 154.6 ± 6.5 | 291.1 ± 11.1 | |||||
10 Berries Weight (g) | Year × Treatment | Weight of 10 Skins (g) | Year × Treatment | ||||
2019 | DSS | 17.4 ± 0.7 | n. s. | n.s. | 1.5 ± 0.05 | n.s. | n.s. |
farm irrigation | 18 ± 0.3 | 1.6 ± 0.005 | |||||
2020 | DSS | 26.9 ± 1.7 | n.s. | 2.3 ± 0.3 | n.s. | ||
farm irrigation | 26 ± 1 | 2.3 ± 0.1 | |||||
Seed No. of 10 Berries | Year × Treatment | Seed Weight of 10 Berries (g) | Year × Treatment | ||||
2019 | DSS | 12.3 ± 0.5 | n.s. | n.s. | 0.42 ± 0.01 | n.s. | n.s. |
farm irrigation | 13.3 ± 0.8 | 0.41 ± 0.01 | |||||
2020 | DSS | 19.3 ± 0.9 | n.s. | 0.63 ± 0.03 | * | ||
farm irrigation | 17.6 ± 0.4 | 0.52 ± 0.02 |
Year | Treatment | No. Clusters per Vine | Year × Treatment | Yield (kg ha−1) | Year × Treatment | Water Productivity (Yield/Irrigation) | ||
---|---|---|---|---|---|---|---|---|
2019 | DSS | 20.75 ± 1.87 | n.s. | n.s. | 23,400 ± 2210 | n.s. | n.s. | 16.71 |
farm irrigation | 22.55 ± 2.19 | 22,800 ± 3100 | 14.70 | |||||
2020 | DSS | 17.22 ± 2.11 | n.s. | 14,700 ± 1500 | n.s. | 10.91 | ||
farm irrigation | 17.66 ± 2.77 | 16,500 ± 1750 | 10.15 |
Year | DOY | Treatment | pH | Year × Treatment | TSS (° Brix) | Year × Treatment | Titratable Acidity (g L−1) | Year × Treatment | |||
---|---|---|---|---|---|---|---|---|---|---|---|
2019 | 282 | DSS | 4.05 ± 0.05 | n.s. | n.s. | 21.5 ± 0.30 | n.s | n.s. | 5.05 ± 0.20 | n.s. | n.s. |
farm irrigation | 3.94 ± 0.10 | 21.2 ± 0.60 | 5.01 ± 0.30 | ||||||||
2020 | 280 | DSS | 2.81 ± 0.07 | n.s. | 23.7 ± 0.34 | n.s | 3.62 ± 0.18 | n.s. | |||
farm irrigation | 2.81 ± 0.09 | 23.1 ± 0.55 | 3.65 ± 0.25 |
Year | Treatment | L | Year × Treatment | A | Year × Treatment | B | Year × Treatment | |||
---|---|---|---|---|---|---|---|---|---|---|
2019 | DSS | 44.71 ± 0.22 | n.s. | n.s. | 0.45 ± 0.04 | n.s. | n.s. | 1.56 ± 0.16 | n.s. | n.s. |
farm irrigation | 45.07 ± 0.31 | 0.51 ± 0.06 | 1.33 ± 0.25 | |||||||
2020 | DSS | 29.81 ± 0.51 | n.s. | −0.08 ± 0.12 | n.s. | −3.23 ± 0.30 | n.s. | |||
farm irrigation | 30.28 ± 0.53 | −0.04 ± 0.10 | −2.64 ± 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garofalo, S.P.; Intrigliolo, D.S.; Camposeo, S.; Alhajj Ali, S.; Tedone, L.; Lopriore, G.; De Mastro, G.; Vivaldi, G.A. Agronomic Responses of Grapevines to an Irrigation Scheduling Approach Based on Continuous Monitoring of Soil Water Content. Agronomy 2023, 13, 2821. https://doi.org/10.3390/agronomy13112821
Garofalo SP, Intrigliolo DS, Camposeo S, Alhajj Ali S, Tedone L, Lopriore G, De Mastro G, Vivaldi GA. Agronomic Responses of Grapevines to an Irrigation Scheduling Approach Based on Continuous Monitoring of Soil Water Content. Agronomy. 2023; 13(11):2821. https://doi.org/10.3390/agronomy13112821
Chicago/Turabian StyleGarofalo, Simone Pietro, Diego Sebastiano Intrigliolo, Salvatore Camposeo, Salem Alhajj Ali, Luigi Tedone, Giuseppe Lopriore, Giuseppe De Mastro, and Gaetano Alessandro Vivaldi. 2023. "Agronomic Responses of Grapevines to an Irrigation Scheduling Approach Based on Continuous Monitoring of Soil Water Content" Agronomy 13, no. 11: 2821. https://doi.org/10.3390/agronomy13112821
APA StyleGarofalo, S. P., Intrigliolo, D. S., Camposeo, S., Alhajj Ali, S., Tedone, L., Lopriore, G., De Mastro, G., & Vivaldi, G. A. (2023). Agronomic Responses of Grapevines to an Irrigation Scheduling Approach Based on Continuous Monitoring of Soil Water Content. Agronomy, 13(11), 2821. https://doi.org/10.3390/agronomy13112821