Optimizing Soil Management for Sustainable Viticulture: Insights from a Rendzic Leptosol Vineyard in the Nitra Wine Region, Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Setup in the Vineyard
- Grass strips (G): In this practice representing a control treatment because it involves the smallest or no human intervention (mechanical) in the soil environment during the experiment. A mixture of grasses, including Lolium perenne L. (50%), Poa pratensis L. (20%), Festuca rubra subsp. commutata Gaudin (25%), and Trifolium repens L. (5%), was sown between the vine rows. Plant cover is maintained in and between the vine rows by mechanized mowing 4 times a year on average, and by leaving all cuttings in situ as mulch. No fertilization is applied.
- Tillage (T): Tillage represents intensive vineyard management and a typical winegrower model in this area. Soil tillage in the interrow of the vine involved annual plowing in the autumn to a depth of 25 cm. Manual weeding between the vine rows using hoes is carried out during the growing season as needed, typically about three times per season. No fertilization is applied.
- Plowed farmyard manure (P + FYM): This practice included autumn plowing to a depth of 25 cm annually. Additionally, farmyard manure was plowed into the soil at a rate of 40 t ha−1 in a 4-year cycle, with applications in 2005, 2009, 2013, 2017, and 2021. Poultry manure was used, containing 55% organic substances, 2.8% Nt, 1.3% P pentoxide (P2O5), and 1.2% K oxide (K2O) in dry matter, with a pH range of 6 to 8. Similar to the T treatment, soil tillage of the interrows was performed mechanically around three times during each growing season.
- Grass strips and NPK fertilization at the first level (G + NPK1): This practice involved the application of 100 kg ha−1 N, 30 kg ha−1 P, and 120 kg ha−1 K. The NPK dose was divided, with half applied in the spring (bud burst—in March) and the other half during flowering (in May). Grass biomass was cut down around three times during the vine’s growing season (remaining on the soil surface as mulch).
- Grass strips and NPK fertilization at the second level (G + NPK2): This practice included the application of 125 kg ha−1 N, 50 kg ha−1 P, and 185 kg ha−1 K. Like the G + NPK1 practice, the NPK dose was divided, with two-thirds applied in the spring and one-third during flowering. As with the other practices, grass biomass was cut down around three times during the vine’s growing season.
2.3. Soil Sampling and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Changes in Soil pH, Sorption Capacity, and Carbonates as a Result of Soil Management Practices
3.2. Changes in Total and Available Nutrients as a Result of Soil Management Practices
3.3. Changes in Risk Elements as a Result of Soil Management Practices
3.4. Relationships between Soil Properties in the Soil of the Vineyard
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lazcano, C.; Decock, D.; Wilson, S.G. Defining and managing for healthy vineyard soils, intersections with the concept of terroir. Front. Environ. Sci. 2020, 8, 68. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Sbraci, S.; Storchi, P.; Mattii, G.B. Sustainable viticulture: Effects of soil management in Vitis vinifera. Agronomy 2020, 10, 1949. [Google Scholar] [CrossRef]
- Celette, F.; Wery, J.; Chantelot, E.; Celette, J.; Gary, C.H. Belowground interactions in a vine (Vitis vinifera L.)-tall fescue (Festuca arundinacea Shreb.) intercropping system: Water relations and growth. Plant Soil 2005, 276, 205–217. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, Q.; You, Q.; Huang, T.; Zhang, X. Influence of vegetation filter strip on slope runoff, sediment yield and nutrient loss. Appl. Sci. 2022, 12, 4129. [Google Scholar] [CrossRef]
- Horel, A.; Zsigmond, T.; Molnár, S.; Zagyva, I.; Bakacsi, Z. Long-term soil water content dynamics under different land uses in a small agricultural catchment. J. Hydrol. Hydromech. 2022, 70, 284–294. [Google Scholar] [CrossRef]
- Šimanský, V.; Wójcik-Gront, E.; Horváthová, J.; Pikuła, D.; Lošák, T.; Parzych, A.; Lukac, M.; Aydın, E. Changes in relationships between humic substances and soil structure following different mineral fertilization of Vitis vinifera L. in Slovakia. Agronomy 2022, 12, 1460. [Google Scholar] [CrossRef]
- Obi, M.E. The physical and chemical responses of a degraded sandy clay loam soil to cover crops in southern Nigeria. Plant Soil 1999, 211, 165–172. [Google Scholar] [CrossRef]
- Demková, L.; Árvay, J.; Bobul’ská, L.; Hauptvogl, M.; Michalko, M.; Michalková, J.; Jančo, I. Evaluation of soil and ambient air pollution around un-reclaimed mining bodies in Nižná Slaná (Slovakia) post-mining area. Toxics 2020, 8, 96. [Google Scholar] [CrossRef]
- Celette, F.; Gaudin, R.; Gary, C. Spatial and temporal changes to the water regime of a Mediterranean vineyard due to the adoption of cover cropping. Eur. J. Agron. 2008, 29, 153–162. [Google Scholar] [CrossRef]
- Vaněk, V.; Ložek, O.; Balík, J.; Pavlíková, D.; Tlustoš, P. Výživa Pol’ných a Záhradných Plodín [Nutrition of Field and Garden Crops]; Profi Press: Praha, Czech Republic, 2013; p. 175. (In Slovak) [Google Scholar]
- Costantini, E.A.C.; Bucelli, P. Soil and terroir. In Soil Security for Ecosystem Management, Mediterranean Soil Ecosystems 1; Kapur, S., Ersahin, S., Eds.; Springer: Cham, Switzerland, 2014; pp. 97–133. [Google Scholar] [CrossRef]
- Jankowski, M.; Šimanský, V.; Markiewicz, M.; Pilichowska, A.; Michalak, J. Differently Used Soils of the Tribeč Mountain Range and Nitra Valley Slope. In Soil Sequences Atlas IV; Switoniak, M., Charzyński, P., Eds.; Nicolaus Copernicus University: Toruń, Poland, 2018; pp. 139–158. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.H.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 13 June 2021).
- Šimanský, V. Changes in soil structure and soil organic matter due to different severities of fire. Ekológia 2015, 34, 226–234. [Google Scholar] [CrossRef]
- Fecenko, J.; Ložek, O. Výživa a Hnojenie Poľných Plodín [Nutrition and Fertilization of Field Crops]; SPU: Nitra, Slovakia, 2000; p. 442. (In Slovak) [Google Scholar]
- Hrivňáková, K.; Makovníková, J.; Barančíková, G.; Bezák, P.; Bezáková, Z.; Dodok, R.; Grečo, V.; Chlpík, J.; Kobza, J.; Lištjak, J.; et al. Jednotné Pracovné Postupy Rozborov Pôd. [Uniform Operation Procedures of Soil Analyses]; VÚPOP: Bratislava, Slovakia, 2011; p. 113. (In Slovak) [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Reichert, J.M.; Gubiani, P.I.; Rheinheimer dos Santos, P.; Reinert, D.J.; Aita, C.; Giacomini, S.J. Soil properties characterization for land-use planning and soil management in watersheds under family farming. Int. Soil Water Conserv. Res. 2022, 10, 119–128. [Google Scholar] [CrossRef]
- Busari, M.A.; Bankole, G.O.; Adiamo, I.A.; Abiodun, R.O.; Ologunde, O.H. Influence of mulch and poultry manure application on soil temperature, evapotranspiration and water use efficiency of dry season cultivated okra. Int. Soil Water Conserv. Res. 2023, 11, 382–392. [Google Scholar] [CrossRef]
- Hanes, J. Analýza Sorpčných Vlastností Pôd [Analyzes of Soil Sorptive Characteristics]; SSCRI: Bratislava, Slovakia, 1999; p. 138. (In Slovak) [Google Scholar]
- Rahman, M.A.; Lee, S.H.; Ji, H.; Kabir, A.; Jones, C.; Lee, K.W. Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: Current status and opportunities. Int. J. Mol. Sci. 2018, 19, 3073. [Google Scholar] [CrossRef] [PubMed]
- Yuang, J.H.; Xu, R.K. The forms of alkalis in the biochars produced from crop residues at different tepmeratures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Šimanský, V.; Polláková, N. Soil organic matter and sorption capacity under different soil management practices in a productive vineyard. Arch. Agron. Soil Sci. 2014, 60, 1145–1154. [Google Scholar] [CrossRef]
- Osei, E.; Jafri, S.H.; Gassman, P.W.; Saleh, A. Simulated ecosystem and farm-level economic impacts of conservation tillage in a northeastern Iowa County. Agriculture 2023, 13, 891. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Lv, W.X.; Zhao, Z.Q.; Yang, Y.P.; Zhang, L.X.; Wang, L.Y.; Jing, C.Y.; Duan, G.L.; Zhu, Y.G. Aluminum adsorption and antimonite oxidation dominantly regulate antimony solubility in soils. Chemosphere 2022, 309, 136651. [Google Scholar] [CrossRef]
- Novara, A.; Favara, V.; Novara, A.; Francesca, N.; Santangelo, T.; Columba, P.; Chironi, S.; Ingrassia, M.; Gristina, L. Soil carbon budget account for the sustainability improvement of a Mediterranean vineyard area. Agronomy 2020, 10, 336. [Google Scholar] [CrossRef]
- Šimanský, V.; Aydın, E.; Horák, J. Is it possible to control the nutrient regime of soils with different texture through biochar substrates? Agronomy 2022, 12, 51. [Google Scholar] [CrossRef]
- Kováčik, P.; Ryant, P. Agrochémia, Princípy a Prax [Agrochemistry, Principles and Practice]; SPU: Nitra, Slovakia, 2019; p. 358. (In Slovak) [Google Scholar]
- Kacprzak, M.; Malińska, K.; Grosser, A.; Sobik-Szołtysek, J.; Wystalska, K.; Dróżdż, D.; Jasińska, A.; Meers, E. Cycles of carbon, nitrogen and phosphorus in poultry manure management technologies—Environmental aspects. Crit. Rev. Environ. Sci. Technol. 2022, 53, 914–938. [Google Scholar] [CrossRef]
- Casson, J.P.; Bennett, D.R.; Nolan, S.C.; Olson, B.M.; Ontkean, G.R. Degree of phosphorus saturation thresholds in manure-amended soils of Alberta. J. Environ. Qual. 2006, 35, 2212–2221. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.Y.; Hosseini-Bai, S.; Hao, Y.; Rachaputi, R.; Wang, H.; Xu, Z.; Wallace, H. Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environ. Sci. Pollut. Res. 2015, 22, 6112–6125. [Google Scholar] [CrossRef] [PubMed]
- White, R.E. Understanding Vineyard Soils; Oxford University Press: New York, NY, USA, 2015; p. 280. [Google Scholar]
- Musilova, J.; Arvay, J.; Vollmannova, A.; Toth, T.; Tomas, J. Environmental contamination by heavy metals in region with previous mining activity. Bull. Environ. Contam. Toxicol. 2016, 97, 569–575. [Google Scholar] [CrossRef]
- Demková, L.; Árvay, J.; Bobuľská, L.; Tomáš, J.; Stanovič, R.; Lošák, T.; Harangozo, L.; Vollmannová, A.; Bystrická, J.; Musilová, J.; et al. Accumulation and environmental risk assessment of heavy metals in soil and plants of four different ecosystems in a former polymetallic ores mining and smelting area (Slovakia). J. Environ. Sci. Health A 2017, 52, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Zbierka Zákonov č. 220/2004. Available online: https://www.mpsr.sk/zakon-c-220-2004-z-z/27-23-27-8366/ (accessed on 29 November 2023).
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Taylor and Francis: Abingdon, UK, 2010; p. 358. [Google Scholar]
- Kobza, J.; Barančíková, G.; Makovníková, J.; Pálka, B.; Styk, J.; Širaň, M. Current state and development of land degradation processes based on soil monitoring in Slovakia. Agriculture 2017, 63, 74–85. [Google Scholar] [CrossRef]
- MacKie, K.A.; Müller, T.; Kandeler, E. Remediation of copper in vineyards—A mini review. Environ. Pollut. 2012, 167, 16–26. [Google Scholar] [CrossRef]
- Pham, N.T.H.; Babcsányi, I.; Balling, P.; Farsang, A. Accumulation patterns and health risk assessment of potentially toxic elements in the topsoil of two sloping vineyards (Tokaj-Hegyalja, Hungary). J. Soils Sediments 2022, 22, 2671–2689. [Google Scholar] [CrossRef]
- Čurlík, J.; Šefčík, P. Geochemický Atlas Slovenskej Republiky. Pôdy. [Geochemical Atlas of the Slovak Republic. Soils]; MŽP SR: Bratislava, Slovakia, 1999; p. 185.
- Benbi, D.K.; Kiranvir, B.; Sharma, S. Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system. Pedosphere 2015, 25, 534–545. [Google Scholar] [CrossRef]
- Garousi, F.; Shan, Z.; Ni, K.; Yang, H.; Shan, J.; Cao, J.; Jiang, Z.; Yang, J.; Zhu, T.; Müller, C.H. Decreased inorganic N supply capacity and turnover in calcareous soil under degraded rubber plantation in the tropical Karst region. Geoderma 2021, 381, 114754. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation as a reason for inadequate human nutrition. Food Secur. 2009, 1, 45–57. [Google Scholar] [CrossRef]
- Wiszniewska, A.; Hanus-Fajerrska, E.; Muszynska, E.; Ciarkowska, K. Natural organic amendments for improved phytoremediation of polluted soils: A review of recent progress. Pedosphere 2016, 26, 1–12. [Google Scholar] [CrossRef]
- Kucharik, C.; Brye, J.K.R.; Norman, J.M.; Foley, J.A.; Gower, S.T.; Bundy, L.G. Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: Potential for SOC sequestration during the next 50 Years. Ecosystem 2021, 4, 237–258. [Google Scholar] [CrossRef]
Variable | Year | Treatment | Depth | Year × Treatment | Year × Depth | Treatment × Depth | |
---|---|---|---|---|---|---|---|
Total | C | 0.001 | <0.001 | <0.001 | 0.340 | 0.382 | 0.078 |
N | <0.001 | 0.006 | <0.001 | 0.618 | 0.580 | 0.039 | |
S | <0.001 | 0.007 | <0.001 | 0.001 | 0.990 | 0.263 | |
P | 0.012 | <0.001 | <0.001 | 0.303 | 0.269 | 0.157 | |
K | <0.001 | <0.001 | 0.002 | 0.063 | 0.915 | 0.583 | |
Ca | 0.474 | <0.001 | 0.016 | 0.045 | 0.710 | 0.021 | |
Available | P | 0.014 | <0.001 | <0.001 | 0.239 | 0.787 | 0.133 |
K | <0.001 | <0.001 | <0.001 | 0.105 | 0.053 | 0.001 | |
Ca | <0.001 | <0.001 | 0.001 | 0.084 | 0.422 | 0.051 | |
Cr | <0.001 | <0.001 | 0.001 | 0.043 | 0.523 | 0.287 | |
Cu | 0.004 | 0.325 | <0.001 | 0.680 | 0.189 | 0.007 | |
Ni | <0.001 | <0.001 | <0.001 | 0.042 | 0.291 | 0.099 | |
Pb | <0.001 | <0.001 | <0.001 | 0.356 | 0.711 | 0.978 | |
Zn | 0.004 | <0.001 | <0.001 | 0.553 | 0.077 | 0.064 | |
Ha | <0.001 | 0.008 | 0.003 | 0.299 | 0.494 | 0.017 | |
SBC | 0.001 | <0.001 | <0.001 | 0.002 | 0.490 | <0.001 | |
CEC | 0.001 | <0.001 | <0.001 | 0.002 | 0.497 | <0.001 | |
Bs (%) | 0.015 | 0.002 | 0.005 | 0.307 | 0.429 | 0.006 | |
CaCO3 | 0.088 | <0.001 | <0.001 | 0.005 | 0.020 | 0.400 | |
pH | <0.001 | <0.001 | <0.001 | 0.003 | 0.858 | <0.001 |
Grass Strips | Tillage | Plowed FYM | Grass Strips + NPK 1 | Grass Strips + NPK 2 | |
---|---|---|---|---|---|
0–30 cm | |||||
Ha (mmol kg−1) | 3.9 ± 1.4 a | 3.9 ± 1.7 a | 4.6 ± 1.7 ab | 5.4 ± 1.9 ab | 10.6 ± 7.7 b |
SBC (mmol kg−1) | 470.9 ± 5.8 d | 303.9 ± 25.9 ab | 431.6 ± 14.6 cd | 363.0 ± 53.7 bc | 247.1 ± 97.2 a |
CEC (mmol kg−1) | 474.8 ± 6.5 d | 307.8 ± 24.6 ab | 436.2 ± 14.5 cd | 368.3 ± 52.2 bc | 257.7 ± 91.3 a |
Bs (%) | 99.2 ± 0.3 b | 98.7 ± 0.6 b | 99.0 ± 0.4 b | 98.5 ± 0.7 b | 94.9 ± 4.1 a |
CaCO3 (g kg−1) | 2.0 ± 0.1 b | 0.6 ± 0.1 a | 1.4 ± 0.2 ab | 1.3 ± 0.5 ab | 0.8 ± 0.9 a |
pH | 7.7 ± 0.3 b | 7.6 ± 0.3 b | 7.7 ± 0.3 b | 7.3 ± 0.4 b | 6.7 ± 0.4 a |
30–60 cm | |||||
Ha (mmol kg−1) | 3.3 ± 1.3 a | 3.4 ± 1.6 a | 4.0 ± 1.8 a | 3.5 ± 1.5 a | 3.8 ± 1.9 a |
SBC (mmol kg−1) | 489.5 ± 4.7 c | 295.8 ± 24.0 a | 434.2 ± 38.8 bc | 459.5 ± 24.6 c | 373.9 ± 59.2 b |
CEC (mmol kg−1) | 492.8 ± 5.3 c | 299.2 ± 22.7 a | 438.1 ± 39.1 bc | 462.9 ± 25.0 c | 377.7 ± 57.5 b |
Bs (%) | 99.3 ± 0.3 b | 98.9 ± 0.6 a | 99.1 ± 0.4 b | 99.3 ± 0.3 b | 98.9 ± 0.7 a |
CaCO3 (g kg−1) | 2.6 ± 0.7 b | 0.8 ± 0.1 a | 1.9 ± 1.1 ab | 2.1 ± 0.5 b | 1.4 ± 0.5 ab |
pH | 7.9 ± 0.3 b | 7.8 ± 0.3 b | 7.8 ± 0.3 b | 7.8 ± 0.3 b | 7.5 ± 0.2 a |
Grass Strips | Tillage | Plowed FYM | Grass Strips + NPK 1 | Grass Strips + NPK 2 | |||
---|---|---|---|---|---|---|---|
0–30 cm | |||||||
Total | C | g kg−1 | 19.5 ± 4.19 b | 12.4 ± 0.34 a | 18.8 ± 1.51 b | 17.1 ± 2.36 b | 17.8 ± 3.42 b |
N | mg kg−1 | 1853.6 ± 330.6 b | 1467.4 ± 99.7 a | 1896.1 ± 136.3 b | 1709.6 ± 168.9 ab | 1936.3 ± 385.0 b | |
S | mg kg−1 | 248.9 ± 56.1 a | 244.5 ± 70.2 a | 278.5 ± 56.4 a | 251.4 ± 101.2 a | 362.5 ± 215.9 a | |
P | mg kg−1 | 909.2 ± 126.9 ab | 772.8 ± 106.8 a | 1216.3 ± 134.6 bc | 1113.8 ± 136.2 abc | 1376.4 ± 434.3 c | |
K | g kg−1 | 25.0 ± 5.41 b | 19.5 ± 3.52 a | 18.1 ± 1.67 a | 26.1 ± 2.68 b | 29.8 ± 4.51 c | |
Ca | g kg−1 | 12.8 ± 1.59 b | 7.86 ± 1.10 a | 12.5 ± 2.01 b | 8.28 ± 1.76 a | 6.34 ± 1.64 a | |
Available | P | mg kg−1 | 201.0 ± 98.7 a | 222.0 ± 104.5 a | 369.2 ± 87.7 ab | 350.0 ± 127.7 ab | 560.3 ± 248.9 b |
K | mg kg−1 | 289.7 ± 83.9 ab | 208.1 ± 40.2 a | 350.1 ± 106.9 bc | 390.3 ± 108.4 bc | 453.5 ± 133.7 c | |
Ca | g kg−1 | 6.77 ± 1.51 c | 5.12 ± 0.99 b | 6.14 ± 0.99 bc | 5.22 ± 1.02 b | 3.52 ± 0.47 a | |
30–60 cm | |||||||
Total | C | g kg−1 | 12.1 ± 2.19 bc | 8.77 ± 1.15 a | 12.4 ± 2.31 c | 10.7 ± 1.25 abc | 9.59 ± 0.92 ab |
N | mg kg−1 | 1 077.8 ± 133.4 ab | 1 081.8 ± 147.4 ab | 1 254.9 ± 272.0 b | 1 027.8 ± 115.9 a | 1 062.7 ± 128.2 ab | |
S | mg kg−1 | 183.4 ± 80.7 a | 189.7 ± 44.1 a | 210.6 ± 70.3 a | 164.0 ± 69.0 a | 218.4 ± 145.0 a | |
P | mg kg−1 | 640 ± 90 ab | 490 ± 100 a | 730 ± 240 ab | 600 ± 110 ab | 780 ± 290 b | |
K | g kg−1 | 27.0 ± 3.97 b | 20.5 ± 3.62 a | 20.1 ± 3.38 a | 28.2 ± 3.97 b | 30.1 ± 4.54 b | |
Ca | g kg−1 | 15.1 ± 1.45 c | 6.82 ± 0.62 a | 12.2 ± 3.27 bc | 11.4 ± 1.18 b | 7.65 ± 1.15 a | |
Available | P | mg kg−1 | 122.8 ± 43.5 a | 93.9 ± 59.3 a | 188.3 ± 95.9 ab | 127.6 ± 43.3 a | 248.5 ± 136.1 b |
K | mg kg−1 | 182.3 ± 56.2 a | 141.6 ± 19.9 a | 178.4 ± 91.7 a | 170.5 ± 39.3 a | 200.7 ± 32.9 a | |
Ca | g kg−1 | 7.99 ± 2.75 b | 4.82 ± 0.75 a | 6.41 ± 1.20 ab | 6.49 ± 0.90 ab | 5.36 ± 0.40 a |
0–30 | C | N | S | P | K | Ca | P | K | Ca | Cr | Cu | Ni | Pb | Zn | Ha | SBC | CEC | Bs | CaCO3 | pH | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
30–60 | Total | Available | ||||||||||||||||||||
C | Total | 0.89 | 0.23 | 0.42 | 0.06 | 0.34 | 0.14 | 0.14 | −0.05 | −0.47 | −0.09 | −0.46 | −0.21 | 0.50 | 0.25 | 0.36 | 0.38 | −0.15 | 0.45 | −0.15 | ||
N | 0.73 | 0.27 | 0.55 | 0.06 | 0.17 | 0.31 | 0.12 | −0.26 | −0.42 | 0.02 | −0.40 | −0.26 | 0.33 | 0.46 | 0.12 | 0.14 | −0.37 | 0.17 | −0.22 | |||
S | 0.18 | 0.04 | 0.44 | 0.42 | −0.20 | 0.33 | −0.05 | −0.28 | −0.06 | 0.42 | −0.07 | 0.03 | 0.26 | −0.15 | 0.01 | 0.01 | 0.12 | −0.07 | −0.38 | |||
P | 0.35 | 0.34 | 0.52 | 0.44 | −0.15 | 0.90 | 0.50 | −0.25 | −0.16 | 0.38 | −0.19 | −0.03 | 0.26 | 0.50 | −0.23 | −0.22 | −0.46 | −0.18 | −0.49 | |||
K | 0.02 | −0.18 | 0.34 | 0.52 | −0.38 | 0.48 | 0.25 | −0.04 | −0.29 | 0.70 | −0.36 | 0.08 | 0.00 | 0.16 | −0.16 | −0.16 | −0.20 | −0.01 | −0.38 | |||
Ca | 0.64 | 0.15 | −0.09 | 0.06 | 0.08 | −0.41 | −0.27 | 0.67 | 0.16 | −0.26 | 0.19 | 0.35 | 0.49 | −0.42 | 0.83 | 0.84 | 0.51 | 0.69 | 0.62 | |||
P | Available | 0.06 | 0.12 | 0.41 | 0.92 | 0.51 | −0.14 | 0.64 | −0.32 | −0.05 | 0.42 | −0.09 | 0.00 | 0.04 | 0.65 | −0.52 | −0.51 | −0.65 | −0.48 | −0.62 | ||
K | −0.23 | −0.35 | −0.25 | 0.26 | 0.17 | 0.09 | 0.46 | −0.28 | −0.39 | 0.18 | −0.36 | −0.24 | −0.03 | 0.60 | −0.45 | −0.43 | −0.61 | −0.29 | −0.65 | |||
Ca | 0.18 | −0.18 | −0.12 | 0.14 | 0.33 | 0.63 | 0.16 | 0.47 | 0.45 | −0.05 | 0.47 | 0.70 | 0.32 | −0.53 | 0.71 | 0.71 | 0.58 | 0.53 | 0.72 | |||
Cr | 0.08 | 0.30 | 0.14 | 0.35 | −0.22 | −0.07 | 0.34 | 0.14 | 0.15 | 0.10 | 0.97 | 0.77 | 0.19 | −0.34 | 0.13 | 0.12 | 0.35 | −0.22 | 0.46 | |||
Cu | 0.64 | 0.57 | −0.03 | 0.32 | 0.00 | 0.37 | 0.13 | −0.01 | 0.30 | 0.43 | 0.06 | 0.41 | 0.11 | 0.07 | −0.16 | −0.16 | −0.15 | −0.20 | −0.21 | |||
Ni | 0.02 | 0.31 | 0.10 | 0.27 | −0.28 | −0.08 | 0.28 | 0.08 | 0.11 | 0.98 | 0.35 | 0.75 | 0.16 | −0.37 | 0.13 | 0.12 | 0.35 | −0.22 | 0.51 | |||
Pb | 0.19 | 0.22 | 0.21 | 0.53 | 0.15 | 0.18 | 0.50 | 0.25 | 0.47 | 0.88 | 0.48 | 0.83 | 0.39 | −0.38 | 0.40 | 0.39 | 0.38 | 0.10 | 0.49 | |||
Zn | 0.54 | 0.63 | 0.10 | 0.41 | −0.34 | 0.18 | 0.28 | 0.12 | 0.16 | 0.78 | 0.69 | 0.73 | 0.68 | −0.18 | 0.50 | 0.51 | 0.25 | 0.46 | 0.15 | |||
Ha | 0.05 | 0.19 | −0.53 | 0.02 | −0.32 | −0.09 | 0.10 | 0.31 | 0.00 | 0.05 | 0.08 | 0.00 | −0.09 | 0.25 | −0.66 | −0.63 | −0.97 | −0.49 | −0.66 | |||
SBC | 0.63 | 0.09 | 0.06 | 0.22 | 0.32 | 0.84 | 0.02 | 0.08 | 0.57 | −0.18 | 0.42 | −0.24 | 0.14 | 0.09 | −0.15 | 1.00 | 0.76 | 0.81 | 0.66 | |||
CEC | 0.63 | 0.09 | 0.05 | 0.22 | 0.32 | 0.84 | 0.02 | 0.08 | 0.57 | −0.18 | 0.42 | −0.24 | 0.14 | 0.10 | −0.13 | 1.00 | 0.74 | 0.81 | 0.65 | |||
Bs | 0.21 | −0.11 | 0.46 | 0.09 | 0.37 | 0.41 | −0.05 | −0.20 | 0.23 | −0.11 | 0.15 | −0.10 | 0.14 | −0.13 | −0.88 | 0.56 | 0.55 | 0.57 | 0.69 | |||
CaCO3 | 0.42 | 0.08 | −0.18 | 0.03 | 0.26 | 0.79 | −0.12 | −0.05 | 0.61 | −0.19 | 0.33 | −0.17 | 0.06 | −0.05 | −0.14 | 0.83 | 0.83 | 0.45 | 0.51 | |||
pH | 0.25 | 0.35 | −0.16 | −0.13 | −0.01 | 0.37 | −0.27 | −0.29 | 0.23 | 0.28 | 0.46 | 0.36 | 0.34 | 0.21 | −0.48 | 0.28 | 0.27 | 0.52 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimanský, V.; Wójcik-Gront, E.; Jonczak, J.; Horák, J. Optimizing Soil Management for Sustainable Viticulture: Insights from a Rendzic Leptosol Vineyard in the Nitra Wine Region, Slovakia. Agronomy 2023, 13, 3042. https://doi.org/10.3390/agronomy13123042
Šimanský V, Wójcik-Gront E, Jonczak J, Horák J. Optimizing Soil Management for Sustainable Viticulture: Insights from a Rendzic Leptosol Vineyard in the Nitra Wine Region, Slovakia. Agronomy. 2023; 13(12):3042. https://doi.org/10.3390/agronomy13123042
Chicago/Turabian StyleŠimanský, Vladimír, Elżbieta Wójcik-Gront, Jerzy Jonczak, and Ján Horák. 2023. "Optimizing Soil Management for Sustainable Viticulture: Insights from a Rendzic Leptosol Vineyard in the Nitra Wine Region, Slovakia" Agronomy 13, no. 12: 3042. https://doi.org/10.3390/agronomy13123042
APA StyleŠimanský, V., Wójcik-Gront, E., Jonczak, J., & Horák, J. (2023). Optimizing Soil Management for Sustainable Viticulture: Insights from a Rendzic Leptosol Vineyard in the Nitra Wine Region, Slovakia. Agronomy, 13(12), 3042. https://doi.org/10.3390/agronomy13123042