Analyzing Evapotranspiration in Greenhouses: A Lysimeter-Based Calculation and Evaluation Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Overview
2.2. Measurement Items
2.2.1. Crop Evapotranspiration Measurement
2.2.2. Meteorological Environment Measurement
2.3. Model and Evaluation Indicators
2.3.1. Penman–Monteith Model
2.3.2. Hargreaves–Samani Model
2.3.3. Pan Evaporation Model
2.3.4. Neural Network Model
2.3.5. ETC Calculation Model
2.3.6. Evaluation Indicators
3. Results
3.1. Analysis of the Test Environment
3.2. Analysis of Evapotranspiration Variation
3.3. Irrigation Effect Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ge, J.; Zhao, L.; Yu, Z.; Liu, H.; Zhang, L.; Gong, X.; Sun, H. Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model. Plants 2022, 11, 1923. [Google Scholar] [CrossRef]
- Xu, G.; Xue, X.; Wang, P.; Yang, Z.; Yuan, W.; Liu, X.; Lou, C. A lysimeter study for the effects of different canopy sizes on evapotranspiration and crop coefficient of summer maize. Agric. Water Manag. 2018, 208, 1–6. [Google Scholar] [CrossRef]
- Incrocci, L.; Thompson, R.B.; Fernandez-Fernandez, M.D.; De Pascale, S.; Pardossi, A.; Stanghellini, C.; Rouphael, Y.; Gallardo, M. Irrigation management of European greenhouse vegetable crops. Agric. Water Manag. 2020, 242, 106393. [Google Scholar] [CrossRef]
- Evett, S.R.; Marek, G.W.; Colaizzi, P.D.; Ruthardt, B.B.; Copeland, K.S. A Subsurface Drip Irrigation System for Weighing Lysimetry. Appl. Eng. Agric. 2018, 34, 213–221. [Google Scholar] [CrossRef]
- Helmer, T.; Ehret, D.L.; Bittman, S. CropAssist, an automated system for direct measurement of greenhouse tomato growth and water use. Comput. Electron. Agric. 2005, 48, 198–215. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Local Calibration of the Hargreaves and Priestley-Taylor Equations for Estimating Reference Evapotranspiration in Arid and Cold Climates of Iran Based on the Penman-Monteith Model. J. Hydrol. Eng. 2011, 16, 837–845. [Google Scholar] [CrossRef]
- Singh, P.; Patel, S.K.; Jayswal, P.S.; Chinchorkar, S. Usefulness of class A Pan coefficient models for computation of reference evapotranspiration for a semi-arid region. Mausam 2014, 65, 521–528. [Google Scholar] [CrossRef]
- Liu, H.-J.; Kang, Y. Sprinkler irrigation scheduling of winter wheat in the North China Plain using a 20 cm standard pan. Irrig. Sci. 2006, 25, 149–159. [Google Scholar] [CrossRef]
- Snyder, R.L.; Orang, M.; Matyac, S.; Grismer, M.E. Simplified estimation of reference evapotranspiration from pan evaporation data in California. J. Irrig. Drain. Eng. 2005, 131, 249–253. [Google Scholar] [CrossRef]
- Gundekar, H.G.; Khodke, U.M.; Sarkar, S.; Rai, R.K. Evaluation of pan coefficient for reference crop evapotranspiration for semi-arid region. Irrig. Sci. 2008, 26, 169–175. [Google Scholar] [CrossRef]
- Sabziparvar, A.A.; Tabari, H.; Aeini, A.; Ghafouri, M. Evaluation of Class A Pan Coefficient Models for Estimation of Reference Crop Evapotranspiration in Cold Semi-Arid and Warm Arid Climates. Water Resour. Manag. 2010, 24, 909–920. [Google Scholar] [CrossRef]
- Wang, H.; Sánchez-Molina, J.A.; Li, M.; Berenguel, M.; Yang, X.T.; Bienvenido, J.F. Leaf area index estimation for a greenhouse transpiration model using external climate conditions based on genetics algorithms, back-propagation neural networks and nonlinear autoregressive exogenous models. Agric. Water Manag. 2017, 183, 107–115. [Google Scholar] [CrossRef]
- Heydari, M.M.; Heydari, M. Evaluation of pan coefficient equations for estimating reference crop evapotranspiration in the arid region. Arch. Agron. Soil Sci. 2013, 60, 715–731. [Google Scholar] [CrossRef]
- Rahimikhoob, A.; Behbahani, M.R.; Fakheri, J. An Evaluation of Four Reference Evapotranspiration Models in a Subtropical Climate. Water Resour. Manag. 2012, 26, 2867–2881. [Google Scholar] [CrossRef]
- Tabari, H. Evaluation of Reference Crop Evapotranspiration Equations in Various Climates. Water Resour. Manag. 2010, 24, 2311–2337. [Google Scholar] [CrossRef]
- Trajkovic, S.; Kolakovic, S. Evaluation of Reference Evapotranspiration Equations under Humid Conditions. Water Resour. Manag. 2009, 23, 3057–3067. [Google Scholar] [CrossRef]
- Kool, D.; Agam, N.; Lazarovitch, N.; Heitman, J.L.; Sauer, T.J.; Ben-Gal, A. A review of approaches for evapotranspiration partitioning. Agric. For. Meteorol. 2014, 184, 56–70. [Google Scholar] [CrossRef]
- Gong, X.; Wang, S.; Xu, C.; Zhang, H.; Ge, J. Evaluation of Several Reference Evapotranspiration Models and Determination of Crop Water Requirement for Tomato in a Solar Greenhouse. Hortscience 2020, 55, 244–250. [Google Scholar] [CrossRef]
- Li, L.; Chen, S.; Yang, C.; Meng, F.; Sigrimis, N. Prediction of plant transpiration from environmental parameters and relative leaf area index using the random forest regression algorithm. J. Clean. Prod. 2020, 261, 121136. [Google Scholar] [CrossRef]
- Tao, H.; Diop, L.; Bodian, A.; Djaman, K.; Ndiaye, P.M.; Yaseen, Z.M. Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso. Agric. Water Manag. 2018, 208, 140–151. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; Paper No. 56; Food and Agricultural Organization of the United Nations (FAO) Irrigation and Drain: Rome, Italy, 1998. [Google Scholar]
- Subedi, A.; Chávez, J.L.; Andales, A.A. ASCE-EWRI standardized Penman-Monteith evapotranspiration (ET) equation performance in southeastern Colorado. Agric. Water Manag. 2017, 179, 74–80. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Niranjan, S.; Nandagiri, L. Effect of local calibration on the performance of the Hargreaves reference crop evapotranspiration equation. J. Water Clim. Chang. 2021, 12, 2654–2673. [Google Scholar] [CrossRef]
Method | R2 | MAE mm/d | MBE mm/d | RMSE mm/d | d |
---|---|---|---|---|---|
PM model | 0.91 | 0.6 | −0.57 | 0.8 | 0.81 |
HS model | 0.58 | 0.88 | 0.19 | 1.19 | 0.73 |
PAN model | 0.88 | 0.54 | 0.3 | 0.7 | 0.9 |
ANN model | 0.94 | 0.3 | −0.15 | 0.42 | 0.95 |
Method | Output kg | Total Water Consumption m3 | Water Use Efficiency kg/m3 |
---|---|---|---|
PM model | 258.62 | 7.01 | 36.89 |
HS model | 298.62 | 9.09 | 32.85 |
PAN model | 331.68 | 9.46 | 35.06 |
ANN model | 339.38 | 8.39 | 40.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Zhang, X.; Xue, X.; Feng, F.; Zheng, W.; Chen, L. Analyzing Evapotranspiration in Greenhouses: A Lysimeter-Based Calculation and Evaluation Approach. Agronomy 2023, 13, 3059. https://doi.org/10.3390/agronomy13123059
Shi W, Zhang X, Xue X, Feng F, Zheng W, Chen L. Analyzing Evapotranspiration in Greenhouses: A Lysimeter-Based Calculation and Evaluation Approach. Agronomy. 2023; 13(12):3059. https://doi.org/10.3390/agronomy13123059
Chicago/Turabian StyleShi, Wei, Xin Zhang, Xuzhang Xue, Feng Feng, Wengang Zheng, and Liping Chen. 2023. "Analyzing Evapotranspiration in Greenhouses: A Lysimeter-Based Calculation and Evaluation Approach" Agronomy 13, no. 12: 3059. https://doi.org/10.3390/agronomy13123059
APA StyleShi, W., Zhang, X., Xue, X., Feng, F., Zheng, W., & Chen, L. (2023). Analyzing Evapotranspiration in Greenhouses: A Lysimeter-Based Calculation and Evaluation Approach. Agronomy, 13(12), 3059. https://doi.org/10.3390/agronomy13123059