Mucilage Yield, Composition, and Physicochemical Properties of Cultivated Cactus Pear Varieties as Influenced by Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
Plant Material and Experimental Process
2.2. Mucilage Extraction
2.3. Analysis of pH and Total Soluble Solids Concentration
2.4. Mucilage Color
2.5. Chemical Composition
2.5.1. Total Carbohydrates
2.5.2. Neutral Sugars
2.5.3. Uronic Acid Content
2.5.4. Monosaccharide Analysis
2.6. Fourier Transform Infrared Spectroscopy (FTIR)
2.7. Viscosity and Molar Mass Determination
2.8. Relative Water Content (RWC)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Mucilage Yield
3.2. Mucilage Color
3.3. Chemical Composition
Sugar and Uronic Acid Composition
3.4. Fourier-Transform Infrared Spectroscopy (FTIR)
3.5. Viscosity and Molar Mass
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, A.; Falisse, A.; Choukr-Allah, R.; Sindic, M. Impact of irrigation during flowering and fruit growth on fruit yield and quality of the cactus Opuntia spp. Acta Agric. Slov. 2021, 117, 1. [Google Scholar] [CrossRef]
- Zegbe, J.A.; Palestina, M. Supplemental irrigation to save water while growing cactus pear in semi-arid regions. Irrig. Drain. 2021, 70, 269–280. [Google Scholar] [CrossRef]
- Van Der Merwe, L.L.; Wessels, A.B.; Ferreira, D.I. Supplementary irrigation for spineless cactus pear. Acta Hortic. 1997, 438, 77–82. [Google Scholar] [CrossRef]
- SIAP. (Servicio de Información y Estadística Agroalimentaria y Pesquera). Anuario Estadístico de la Producción Agrícola. Available online: http://infosiap.siap.gob.mx/aagricola_siap_gb/icultivo/index.jsp (accessed on 1 July 2022).
- Zegbe, J.A. Cladode pruning affects yield and fruit quality of ‘Roja lisa’ cactus pear [Opuntia ficus-indica (L.) mill.]: A preliminary study. Asian Plant Res. J. 2020, 6, 86–90. [Google Scholar] [CrossRef]
- Procacci, S.; Bojorquez Quintal, E.; Platamone, G.; Maccioni, O.; Lo Vecchio, G.; Morreale, V.; Alisi, C.; Balducchi, R.; Bacchetta, L. Opuntia ficus-indica Pruning Waste Recycling: Recovery and Characterization of Mucilage from Cladodes. Nat. Resour. 2021, 12, 91–107. [Google Scholar] [CrossRef]
- Trachtenberg, S.; Mayer, A.M. Composition and properties of Opuntia ficus-indica mucilage. Phytochemistry 1981, 20, 2665–2668. [Google Scholar] [CrossRef]
- Bhurat, M.; Kawatikwar, P.; Sanghavi, R.; Umarkar, A.; Salunkhe, P. Isolation and Characterization of Remusatia Vivipara tubers Mucilage. Int. J. Pharm. Biol. Sci. 2011, 1, 457–461. [Google Scholar]
- Soto-Castro, D.; Chávez, G.M.; León-Martínez Frank, M.; Araceli, S.-G.P.; Irais, A.-L.; Franco, A.-A. Spray drying microencapsulation of betalain rich extracts from Escontria chiotilla and Stenocereus queretaroensis fruits using cactus mucilage. Food Chem. 2019, 272, 715–722. [Google Scholar] [CrossRef]
- Contreras-Padilla, M.; Rodríguez-García, M.E.; Gutiérrez-Cortez, E.; Valderrama-Bravo, M.d.C.; Rojas-Molina, J.I.; Rivera-Muñoz, E.M. Physicochemical and rheological characterization of Opuntia ficus mucilage at three different maturity stages of cladode. Eur. Polym. J. 2016, 78, 226–234. [Google Scholar] [CrossRef]
- Du Toit, A.; De Wit, M.; Fouché, H.J.; Taljaard, M.; Venter, S.L.; Hugo, A. Mucilage powder from cactus pears as functional ingredient: Influence of cultivar and harvest month on the physicochemical and technological properties. J. Food Sci. Technol. 2019, 56, 2404–2416. [Google Scholar] [CrossRef]
- Rodríguez-González, S.; Martínez-Flores, H.E.; Chávez-Moreno, C.K.; Macías-Rodríguez, L.I.; Zavala-Mendoza, E.; Garnica-Romo, M.G.; Chacón-García, L. Extraction and Characterization of Mucilage From Wild Species of Opuntia. J. Food Process Eng. 2014, 37, 285–292. [Google Scholar] [CrossRef]
- Madera-Santana, T.J.; Vargas-Rodríguez, L.; Núñez-Colín, C.A.; González-García, G.; Peña-Caballero, V.; Núñez-Gastélum, J.A.; Gallegos-Vázquez, C.; Rodríguez-Núñez, J.R. Mucilage from cladodes of Opuntia spinulifera Salm-Dyck: Chemical, morphological, structural and thermal characterization. CYTA J. Food. 2018, 16, 650–657. [Google Scholar] [CrossRef] [Green Version]
- Manhivi, V.E.; Venter, S.; Amonsou, E.O.; Kudanga, T. Composition, thermal and rheological properties of polysaccharides from amadumbe (Colocasia esculenta) and cactus (Opuntia spp.). Carbohydr. Polym. 2018, 195, 163–169. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990; Volume 12. [Google Scholar]
- Mussatto-Solange, I.; Carneiro-Livia, M.; Silva-João, P.A.; Roberto, I.C.; Teixeira, J.A. A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydr. Polym. 2011, 83, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Soto, C.; Cuello, M.; Alfonso, Y.; Cabrera, O.; Sierra, G. Validación de una técnica colorimétrica para la determinación de carbohidratos. VacciMonitor 2002, 11, 11–14. [Google Scholar]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Solomon, O.; Ciutǎ, I. Détermination de la viscosité intrinsèque de solutions de polymères par une simple détermination de la viscosité. J. Appl. Polym. Sci. 1962, 6, 683–686. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, S.W. Understanding the physical properties of food polysaccharides. In Food Carbohydrates Chemistry, Physical Properties, Applications; Cui, S.W., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 162–214. [Google Scholar]
- Quinzio, C.; Ayunta, C.; López de Mishima, B.; Iturriaga, L. Stability and rheology properties of oil-in-water emulsions prepared with mucilage extracted from Opuntia ficus-indica (L). Miller. Food Hydrocoll. 2018, 84, 154–165. [Google Scholar] [CrossRef]
- López-Palacios, C.; Peña-Valdivia, C.B.; Reyes-Agüero, J.A.; Rodríguez-Hernández, A.I. Effects of domestication on structural polysaccharides and dietary fiber in nopalitos (Opuntia spp.). Genet. Resour. Crop Evol. 2012, 59, 1015–1026. [Google Scholar] [CrossRef]
- Zegbe-Domínguez, J.A.; Behboudian, M.H.; Lang, A.; Clothier, B.E. Deficit irrigation and partial rootzone drying maintain fruit dry mass and enhance fruit quality in ‘Petopride’ processing tomato (Lycopersicon esculentum, Mill.). Sci. Hortic. 2003, 98, 505–510. [Google Scholar] [CrossRef]
- Zaferanieh, M.; Mahdavi, B. Effect of water stress on morphological traits, mucilage percentage and yield of Alyssum homolocarpum. DESERT 2021, 26, 99–113. [Google Scholar] [CrossRef]
- Nobel, P.S.; Cavelier, J.; Andrade, J.L. Mucilage in Cacti: Its Apoplastic Capacitance, Associated Solutes, and Influence on Tissue Water Relations. J. Exp. Bot. 1992, 43, 641–648. [Google Scholar] [CrossRef]
- Neupane, D.; Mayer, J.A.; Niechayev, N.A.; Bishop, C.D.; Cushman, J.C. Five-year field trial of the biomass productivity and water input response of cactus pear (Opuntia spp.) as a bioenergy feedstock for arid lands. GCB Bioenergy 2021, 13, 719–741. [Google Scholar] [CrossRef]
- Pandey, R. Mineral Nutrition of Plants. In Plant Biology and Biotechnology: Volume I: Plant Diversity, Organization, Function and Improvement; Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K.V., Eds.; Springer: New Delhi, India, 2015; pp. 499–538. [Google Scholar]
- Winter, K.; Smith, J.A.C. CAM photosynthesis: The acid test. New Phytol. 2021, 233, 599–609. [Google Scholar] [CrossRef]
- Dick, M.; Dal Magro, L.; Rodrigues, R.C.; Rios, A.D.O.; Flôres, S.H. Valorization of Opuntia monacantha (Willd.) Haw. cladodes to obtain a mucilage with hydrocolloid features: Physicochemical and functional performance. Int. J. Biol. Macromol. 2019, 123, 900–909. [Google Scholar] [CrossRef]
- Teterycz, D.; Sobota, A.; Zarzycki, P.; Latoch, A. Legume flour as a natural colouring component in pasta production. J. Food Sci. Technol. 2020, 57, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Casamali, B.; van Iersel, M.W.; Chavez, D.J. Nitrogen Partitioning in Young “Julyprince” Peach Trees Grown with Different Irrigation and Fertilization Practices in the Southeastern United States. Agronomy 2021, 11, 350. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, X.; Yan, J.; Yuan, Z.; Gu, M. Effects of Salt Stress on Growth, Photosynthesis, and Mineral Nutrients of 18 Pomegranate (Punica granatum) Cultivars. Agronomy 2020, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response Mechanism of Plants to Drought Stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Slewinski, T.L.; Braun, D.M. Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Sci. 2010, 178, 341–349. [Google Scholar] [CrossRef]
- Ribeiro, E.; Silva, N.; Lima Filho, J.L.; Brito, J.; Silva, M. Study of carbohydrates present in the cladodes of Opuntia ficus-indica (fodder palm), according to age and season. Ciência Tecnol. Aliment. 2010, 30, 933–939. [Google Scholar] [CrossRef]
- Mokoboki, K.; Sebola, N. Chemical composition and feed intake of Opuntia cladodes varieties offered to goats. J. Anim. Plant Sci. 2017, 32, 5096–5103. [Google Scholar]
- Muñoz de Chávez, M.; Chávez, A.; Valles, V.; Roldán, J.A. The nopal: A plant of manifold qualities. World Rev. Nutr. Diet. 1995, 77, 109–134. [Google Scholar] [CrossRef] [PubMed]
- Bayar, N.; Kriaa, M.; Kammoun, R. Extraction and characterization of three polysaccharides extracted from Opuntia ficus indica cladodes. Int. J. Biol. Macromol. 2016, 92, 441–450. [Google Scholar] [CrossRef] [PubMed]
- York, W.S. Structural Analysis of Xyloglucans Produced by Diverse Plant Species-Evolutionary and Functional Implications; Invited Lecture; Tsukuba University: Tsukuba, Japan, 2004. [Google Scholar]
- Atwell, B.J.; Kriedemann, P.E.; Turnbull, C.G. Plants in Action: Adaptation in Nature, Performance in Cultivation; Macmillan Education AU: Brisbane, Australia, 1999. [Google Scholar]
- Cruz-Rubio, J.M.; Mueller, M.; Loeppert, R.; Viernstein, H.; Praznik, W. The Effect of Cladode Drying Techniques on the Prebiotic Potential and Molecular Characteristics of the Mucilage Extracted from Opuntia ficus-indica and Opuntia joconostle. Sci. Pharm. 2020, 88, 43. [Google Scholar] [CrossRef]
- Li, F.; Zhang, M.; Guo, K.; Hu, Z.; Zhang, R.; Feng, Y.; Yi, X.; Zou, W.; Wang, L.; Wu, C.; et al. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol. J. 2015, 13, 514–525. [Google Scholar] [CrossRef]
- Vargas-Solano, S.V.; Rodríguez-González, F.; Martínez-Velarde, R.; Campos-Mendiola, R.; Hurtado-Salgado, M.; Jonathan, M.P. Chemical composition of nopal mucilage at different maturity stages. Agrociencia 2022, 56, 126–137. [Google Scholar] [CrossRef]
- De Andrade-Vieira, É.; Alves-Alcântara, M.; Albuquerque- Dos Santos, N.; Duarte-Gondim, A.; Iacomini, M.; Mellinger, C.; Tribuzy-De Magalhães Cordeiro, A.M. Mucilages of cacti from Brazilian biodiversity: Extraction, physicochemical and technological properties. Food Chem. 2021, 346, 128892. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids acting as emulsifying agents—How do they do it? Food Hydrocoll. 2018, 78, 2–14. [Google Scholar] [CrossRef]
- Wu, Y.; Cui, W.; Eskin, N.A.M.; Goff, H.D. Fractionation and partial characterization of non-pectic polysaccharides from yellow mustard mucilage. Food Hydrocoll. 2009, 23, 1535–1541. [Google Scholar] [CrossRef]
- Bernardino-Nicanor, A.; Montañez-Soto, J.L.; Conde-Barajas, E.; Negrete-Rodríguez, M.d.l.L.X.; Teniente-Martínez, G.; Vargas-León, E.A.; Juárez-Goiz, J.M.S.; Acosta-García, G.; González-Cruz, L. Spectroscopic and Structural Analyses of Opuntia Robusta Mucilage and Its Potential as an Edible Coating. Coatings 2018, 8, 466. [Google Scholar] [CrossRef] [Green Version]
- Ogbaga, C.; Miller, M.; Athar, H.; Johnson, G. Fourier transform infrared spectroscopic analysis of maize (Zea mays) subjected to progressive drought reveals involvement of lipids, amides and carbohydrates. Afr. J. Biotechnol. 2017, 16, 1061–1066. [Google Scholar] [CrossRef]
- Sáenz, C.; Sepúlveda, E.; Matsuhiro, B. Opuntia spp mucilage’s: A functional component with industrial perspectives. J. Arid Environ. 2004, 57, 275–290. [Google Scholar] [CrossRef]
- Janjarasskul, T.; Krochta, J.M. Edible Packaging Materials. Annu. Rev. Food Sci. Technol. 2010, 1, 415–448. [Google Scholar] [CrossRef]
- Wang, B.; Yan, L.; Guo, S.; Wen, L.; Yu, M.; Feng, L.; Jia, X. Structural Elucidation, Modification, and Structure-Activity Relationship of Polysaccharides in Chinese Herbs: A Review. Front. Nutr. 2022, 9, 908175. [Google Scholar] [CrossRef]
- Huo, J.; Wu, Z.; Sun, W.; Wang, Z.; Wu, J.; Huang, M.; Wang, B.; Sun, B. Protective Effects of Natural Polysaccharides on Intestinal Barrier Injury: A Review. J. Agric. Food Chem. 2022, 70, 711–735. [Google Scholar] [CrossRef]
- Jia, Y.; Xue, Z.; Wang, Y.; Lu, Y.; Li, R.; Li, N.; Wang, Q.; Zhang, M.; Chen, H. Chemical structure and inhibition on α-glucosidase of polysaccharides from corn silk by fractional precipitation. Carbohydr. Polym. 2021, 252, 117185. [Google Scholar] [CrossRef]
Main Effects/Interaction | Yield (% Dry Weight) | pH | TSSC (°Brix) |
---|---|---|---|
Irrigation regime | |||
Non-irrigated (NI) | 17.91 ± 3.14 a a | 7.65 ± 0.35 b | 0.25 ± 0.15 a |
Supplemental irrigation (SI) | 14.36 ± 1.81 b | 7.81 ± 0.31 b | 0.16 ± 0.07 b |
Full irrigation (FI) | 13.76 ± 1.94 b | 8.29 ± 0.18 a | 0.10 ± 0.00 c |
LSD | 0.96 | 0.17 | 0.04 |
Significance | 0.0000 | 0.0000 | 0.0000 |
Variety | |||
‘Roja Lisa’ (RL) | 17.11 ± 1.52 a | 7.83 ± 0.47 b | 0.26 ± 0.16 a |
‘Cristalina’ (C) | 13.25 ± 1.54 c | 8.06 ± 0.30 a | 0.10 ± 0.00 c |
‘Amarilla Olorosa’ (AO) | 16.33 ± 4.58 a | 7.67 ± 0.43 b | 0.20 ± 0.08 b |
‘Dalia Roja’ (DR) | 14.68 ± 1.59 b | 8.11 ± 0.17 a | 0.11 ± 0.04 c |
LSD | 1.10 | 0.19 | 0.05 |
Significance | 0.0000 | 0.0002 | 0.0000 |
Interaction effects | |||
NI × RL | 18.57 ± 0.35 a | 7.51 ± 0.29 ef | 0.45 ± 0.07 a |
NI × C | 14.45 ± 1.76 de | 7.85 ± 0.13 cd | 0.10 ± 0.00 d |
NI × AO | 22.22 ± 0.49 a | 7.22 ± 0.03 f | 0.30 ± 0.00 b |
NI × DR | 16.38 ± 0.91 c | 8.03 ± 0.02 bc | 0.15 ± 0.00 c |
SI × RL | 16.65 ± 1.50 bc | 7.56 ± 0.20 de | 0.25 ± 0.07 b |
SI × C | 13.12 ± 1.46 ef | 8.05 ± 0.26 bc | 0.10 ± 0.00 d |
SI × AO | 14.46 ± 0.39 de | 7.58 ± 0.05 de | 0.20 ± 0.00 c |
SI × DR | 13.22 ± 1.16 ef | 8.06 ± 0.26 bc | 0.10 ± 0.10 d |
FI × RL | 16.12 ± 1.38 cd | 8.42 ± 0.04 a | 0.10 ± 0.00 d |
FI × C | 12.18 ± 0.63 f | 8.29 ± 0.35 ab | 0.10 ± 0.00 d |
FI × AO | 12.31 ± 1.50 f | 8.20 ± 0.10 ab | 0.10 ± 0.00 d |
FI × DR | 14.43 ± 0.56 de | 8.26 ± 0.09 ab | 0.10 ± 0.00 d |
LSD | 1.92 | 0.334 | 0.007 |
Significance | 0.0000 | 0.0199 | 0.0633 |
Color Parameters a | |||||
---|---|---|---|---|---|
Main Effects | L* | a* | b* | c* | °H |
Irrigation regime | |||||
Non-irrigated | 84.13 ± 3.09 a b | −2.00 ± 1.06 a | 14.33 ± 3.53 b | 14.93 ± 4.81 b | 97.70 ± 2.44 b |
Supplemental irrigation | 82.40 ± 3.50 b | −2.69 ± 1.06 b | 16.50 ± 3.65 a | 16.00 ± 3.88 b | 99.50 ± 2.28 a |
Full irrigation | 80.92 ± 4.19 c | −2.86 ± 0.91 b | 17.08 ± 3.24 a | 17.94 ± 3.53 a | 99.20 ± 1.56 a |
LSD | 1.46 | 0.24 | 1.6 | 1.11 | 1.05 |
Significance | 0.0005 | 0.0000 | 0.0000 | 0.0000 | 0.0228 |
Variety | |||||
‘Roja Lisa’ | 85.86 ± 2.26 a | −1.53 ± 0.52 a | 11.59 ± 1.51 c | 10.81 ± 2.31 d | 97.45 ± 2.03 c |
‘Cristalina’ | 81.13 ± 1.93 c | −2.62 ± 0.52 c | 18.38 ± 1.35 a | 18.40 ± 1.32 b | 98.06 ± 1.64 bc |
‘Amarilla Olorosa’ | 83.98 ± 2.60 b | −2.07 ± 0.32 b | 14.20 ± 1.85 b | 14.56 ± 2.13 c | 98.72 ± 1.79 b |
‘Dalia Roja’ | 78.70 ± 3.30 d | −4.07 ± 0.39 d | 19.29 ± 2.29 a | 20.76 ± 2.04 a | 101.50 ± 0.78 a |
LSD | 1.7 | 0.28 | 1.8 | 1.3 | 1.21 |
Significance | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Main Effects | Moisture (%) | Protein | Ashes | Total Fiber | Total Carbohydrates |
---|---|---|---|---|---|
Non-irrigated | 4.07 ± 0.41 c a | 0.92 ± 0.30 a | 14.30 ± 3.26 c | 65.80 ± 4.11 a | 75.45 ± 6.47 a |
Supplemental irrigation | 4.66 ± 0.50 b | 0.81 ± 0.23 b | 16.09 ± 3.71 b | 61.88 ± 4.42 b | 69.96 ± 8.70 b |
Full irrigation | 5.69 ± 0.21 a | 0.69 ± 0.22 c | 18.03 ± 4.36 a | 59.81 ± 5.27 c | 68.64 ± 7.28 b |
LSD | 0.36 | 0.06 | 0.87 | 1.30 | 3.2 |
Significance | 0.0000 | 0.0000 | 0.0000 | 0.0014 | 0.0000 |
Varieties | |||||
‘Roja Lisa’ | 4.92 ± 0.56 ab | 0.44 ± 0.06 d | 11.13 ± 1.29 c | 68.57 ± 2.14 a | 78.10 ± 3.90 a |
‘Cristalina’ | 4.69 ± 0.75 bc | 0.96 ± 0.18 b | 19.46 ± 1.98 a | 60.20 ± 4.04 c | 64.58 ± 3.53 b |
‘Amarilla Olorosa’ | 4.49 ± 0.99 c | 0.73 ± 0.08 c | 14.69 ± 1.22 b | 63.51 ± 2.86 b | 77.97 ± 3.60 a |
‘Dalia Roja’ | 5.12 ± 0.80 a | 1.04 ± 0.13 a | 19.28 ± 2.68 a | 57.72 ± 3.36 d | 64.76 ± 5.07 b |
LSD | 0.42 | 0.08 | 1.00 | 1.50 | 3.67 |
Significance | 0.0320 | 0.0000 | 0.0000 | 0.0000 | 0.0014 |
Main Effects/Interaction | Glucose | Xylose | Arabinose | Uronic Acids |
---|---|---|---|---|
Irrigation system | ||||
Non-irrigated (NI) | 52.00 ± 8.68 a a | 16.52 ± 6.80 c | 23.26 ± 3.08 a | 8.19 ± 1.02 a |
Supplemental irrigation (SI) | 47.57 ± 9.85 b | 25.59 ± 7.45 b | 20.38 ± 4.24 b | 6.44 ± 1.21 b |
Full irrigation (FI) | 45.42 ± 11.03 c | 30.87 ± 8.67 a | 17.31 ± 3.02 c | 6.38 ± 1.77 b |
LSD | 1.6 | 1.30 | 1.3 | 0.78 |
Significance | 0.0000 | 0.0000 | 0.0000 | 0.0004 |
Variety | ||||
‘Roja Lisa’ (RL) | 60.08 ± 1.42 a | 17.54 ± 4.65 d | 15.60 ± 3.01 b | 6.76 ± 0.57 b |
‘Cristalina’ (C) | 34.42 ± 4.18 c | 35.78 ± 7.12 a | 22.35 ± 1.71 a | 7.44 ± 1.60 b |
‘Amarilla Olorosa’ (AO) | 49.19 ± 3.25 b | 23.54 ± 9.03 b | 21.78 ± 4.95 a | 5.47 ± 1.55 c |
‘Dalia Roja’ (DR) | 49.64 ± 4.13 b | 20.45 ± 5.56 c | 21.53 ± 2.69 a | 8.36 ± 0.82 a |
LSD | 1.83 | 1.46 | 1.47 | 0.91 |
Significance | 0.0000 | 0.0000 | 0.0000 | 0.0001 |
Interaction effects | ||||
NI × RL | 61.36 ± 1.04 a | 11.77 ± 0.43 f | 19.39 ± 0.76 de | 7.48 ± 0.15 a |
NI × C | 39.08 ± 1.00 a | 27.32 ± 1.73 d | 24.28 ± 0.06 b | 9.32 ± 0.79 a |
NI × AO | 52.93 ± 1.00 a | 12.78 ± 0.77 f | 27.02 ± 0.06 a | 7.27 ± 0.73 a |
NI × DR | 54.66 ± 0.48 a | 14.25 ± 1.95 f | 22.36 ± 2.04 bc | 8.72 ± 0.57 a |
SI × RL | 60.14 ± 0.54 a | 19.58 ± 1.86 e | 13.91 ± 1.32 gh | 6.36 ± 0.00 a |
SI × C | 34.21 ± 0.25 a | 37.03 ± 0.01 b | 21.85 ± 0.74 bcd | 6.89 ± 1.00 a |
SI × AO | 47.84 ± 0.25 a | 25.13 ± 1.02 d | 22.18 ± 1.85 bc | 4.84 ± 0.80 a |
SI × DR | 48.12 ± 2.33 a | 20.62 ± 0.10 e | 23.56 ± 2.43 b | 7.70 ± 0.00 a |
FI × RL | 58.74 ± 1.39 a | 21.29 ± 1.31 e | 13.51 ± 0.12 h | 6.45 ± 0.20 a |
FI × C | 29.98 ± 1.88 a | 42.99 ± 0.71 a | 20.91 ± 1.43 cde | 6.12 ± 0.26 a |
FI × AO | 46.82 ± 1.88 a | 32.72 ± 1.29 c | 16.15 ± 0.94 fg | 4.30 ± 0.94 a |
FI × DR | 46.82 ± 1.88 a | 26.51 ± 0.90 d | 18.66 ± 0.20 ef | 8.67 ± 1.32 a |
LSD | 3.2 | 2.53 | 2.56 | 1.57 |
Significance | 0.0846 | 0.0013 | 0.0026 | 0.1098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna-Zapién, E.A.; Zegbe, J.A.; Meza-Velázquez, J.A.; Contreras-Esquivel, J.C.; Morales-Martínez, T.K. Mucilage Yield, Composition, and Physicochemical Properties of Cultivated Cactus Pear Varieties as Influenced by Irrigation. Agronomy 2023, 13, 419. https://doi.org/10.3390/agronomy13020419
Luna-Zapién EA, Zegbe JA, Meza-Velázquez JA, Contreras-Esquivel JC, Morales-Martínez TK. Mucilage Yield, Composition, and Physicochemical Properties of Cultivated Cactus Pear Varieties as Influenced by Irrigation. Agronomy. 2023; 13(2):419. https://doi.org/10.3390/agronomy13020419
Chicago/Turabian StyleLuna-Zapién, Edén A., Jorge A. Zegbe, Jorge Armando Meza-Velázquez, Juan Carlos Contreras-Esquivel, and Thelma K. Morales-Martínez. 2023. "Mucilage Yield, Composition, and Physicochemical Properties of Cultivated Cactus Pear Varieties as Influenced by Irrigation" Agronomy 13, no. 2: 419. https://doi.org/10.3390/agronomy13020419
APA StyleLuna-Zapién, E. A., Zegbe, J. A., Meza-Velázquez, J. A., Contreras-Esquivel, J. C., & Morales-Martínez, T. K. (2023). Mucilage Yield, Composition, and Physicochemical Properties of Cultivated Cactus Pear Varieties as Influenced by Irrigation. Agronomy, 13(2), 419. https://doi.org/10.3390/agronomy13020419