Framework for Assessing Collective Irrigation Systems Resilience to Climate Change—The Maiorga Case Study
Abstract
:1. Introduction
- to develop a methodology framework, including both qualitative and quantitative information, to carry out the climate resilience analysis of Collective Irrigation Systems. The methodology integrates three CIS components: (i) crop production systems; (ii) on-farm irrigation systems; and (iii) rehabilitation alternatives for the conveyance and distribution of the irrigation water from the source to the farmer fields;
- to test the methodology for the Maiorga Collective Irrigation Scheme, for which four design rehabilitation and modernization alternatives were analyzed, and their resilience towards climate change scenarios was assessed. Analysis was performed at both levels supply and demand, for two climate change scenarios, RCP4.5 and RCP8.5, and two periods, 2041–2070 and 2071–2100.
2. Materials and Methods
2.1. Methodological Framework
2.1.1. Climate Change Scenarios
Climate Model Ensemble
Climatic Anomalies
Corrected Climate Scenarios Data
2.1.2. Irrigation Requirements
Global Irrigation Water Requirements
Irrigation Water Requirements at the Source
2.1.3. Water Availability at the Source and Supply–Demand Balance
2.1.4. Climate Resilience Analysis
- Climate resilience of crop production systems
- Climate resilience of on-farm irrigation systems
- Climate resilience of the project rehabilitation alternatives
2.2. Methodology Aplication to the Maiorga Collective Irrigation System
2.2.1. Localization and Climate of the Studied Area
2.2.2. Brief Characterization of the Maiorga Collective Irrigation System
2.2.3. Data Sets and Sources
3. Results and Discussion
3.1. Climate Scenarios Data
3.2. Global Irrigation Requirements
3.3. Stream Flows
3.4. Climate Resilience Analysis
3.4.1. Climate Resilience of the Crop Production Systems
3.4.2. Resilience of On-Farm Irrigation Systems
3.4.3. Resilience of Project Rehabilitation Alternatives
Resilience of the Supply-Demand Balance
3.4.4. Discussion of the Rehabilitation Alternatives Viability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Climate Anomalies of Precipitation (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Climate Scenario | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
RCP4.5 2041–2070 | ||||||||||||
10th Percentile | 13.6 | 31.2 | −2.0 | −24.7 | −19.6 | −1.4 | −3.2 | −3.1 | −19.9 | 25.4 | −29.0 | −14.0 |
Ensemble Average | 60.0 | 46.7 | 20.9 | −4.4 | −12.1 | 1.4 | −1.2 | −0.6 | −6.4 | 12.7 | 18.5 | 20.1 |
90th Percentile | 108.9 | 58.1 | 46.3 | 13.9 | −0.6 | 5.5 | 2.1 | 2.1 | 5.5 | 51.1 | 69.8 | 55.6 |
RCP4.5 2071–2098 | ||||||||||||
10th Percentile | 15.6 | 44.6 | −18.6 | 24.1 | −21.8 | −5.5 | −5.0 | −0.5 | −17.2 | 24.4 | −12.9 | −13.2 |
Ensemble Average | 37.2 | 47.4 | 2.1 | −13.6 | 0.6 | −1.7 | −1.0 | 2.0 | 1.4 | −1.5 | 14.9 | 25.9 |
90th Percentile | 68.2 | 50.6 | 22.5 | −5.1 | 21.7 | 1.6 | 4.7 | 5.3 | 18.4 | 28.1 | 48.4 | 70.0 |
RCP8.5 2041–2070 | ||||||||||||
10th Percentile | −22.9 | −15.8 | −10.0 | −27.3 | −30.7 | −15.2 | −5.8 | −5.6 | −28.5 | −72.0 | −33.1 | −83.5 |
Ensemble Average | 2.5 | 17.0 | 7.0 | −20.7 | −21.9 | −9.3 | −2.0 | −3.6 | −15.6 | 26.3 | −3.5 | −19.1 |
90th Percentile | 32.5 | 70.9 | 22.7 | −1.1 | −9.1 | −3.2 | 0.7 | −1.6 | −4.7 | 6.8 | 34.0 | 25.9 |
RCP8.5 2071–2098 | ||||||||||||
10th Percentile | −78.6 | −18.0 | −22.6 | −38.7 | −33.9 | −19.6 | −4.7 | −10.4 | −28.6 | −76.8 | −45.6 | −75.6 |
Ensemble Average | −26.9 | 10.8 | 7.1 | −27.9 | −27.4 | −13.6 | −2.1 | −4.5 | −14.1 | −49.6 | −29.8 | −33.4 |
90th Percentile | 10.1 | 55.4 | 47.3 | −12.0 | 12.7 | −4.7 | 0.4 | 1.9 | −0.9 | −13.0 | −14.2 | 15.9 |
Climate Anomalies of Maximum Air Temperature (°C) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Climate Scenario | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
RCP4.5 2041–2070 | ||||||||||||
10th Percentile | 0.9 | 0.5 | 0.2 | 0.5 | 1.3 | 1.3 | 1.3 | 1.3 | 1.8 | 1.2 | 1.1 | 0.8 |
Ensemble Average | 1.1 | 0.7 | 0.4 | 1.0 | 1.7 | 1.7 | 1.7 | 1.8 | 2.1 | 1.6 | 1.3 | 1.2 |
90th Percentile | 1.4 | 0.9 | 0.5 | 1.7 | 2.2 | 2.2 | 2.3 | 2.2 | 2.4 | 2.0 | 1.5 | 1.7 |
RCP4.5 2071–2098 | ||||||||||||
10th Percentile | 1.3 | 0.6 | 0.6 | 1.5 | 0.2 | 1.7 | 1.9 | 1.6 | 1.8 | 1.9 | 1.3 | 1.2 |
Ensemble Average | 1.4 | 1.0 | 1.1 | 1.7 | 1.3 | 2.0 | 2.7 | 2.1 | 2.3 | 2.1 | 1.6 | 1.6 |
90th Percentile | 1.5 | 1.4 | 1.5 | 1.8 | 2.4 | 2.2 | 3.7 | 2.6 | 2.8 | 2.4 | 2.0 | 2.0 |
RCP8.5 2041–2070 | ||||||||||||
10th Percentile | 1.4 | 0.9 | 1.0 | 1.4 | 1.9 | 1.7 | 1.8 | 1.6 | 2.5 | 2.1 | 1.7 | 1.4 |
Ensemble Average | 1.8 | 1.4 | 1.4 | 1.9 | 2.3 | 2.4 | 2.2 | 2.3 | 2.9 | 2.9 | 2.3 | 1.9 |
90th Percentile | 2.2 | 2.0 | 1.7 | 2.2 | 3.1 | 2.9 | 2.6 | 3.2 | 3.9 | 4.2 | 3.2 | 2.4 |
RCP8.5 2071–2098 | ||||||||||||
10th Percentile | 2.2 | 1.7 | 2.0 | 2.1 | 2.7 | 2.7 | 3.1 | 2.7 | 3.2 | 3.6 | 2.9 | 2.5 |
Ensemble Average | 2.9 | 2.4 | 2.5 | 3.3 | 3.8 | 3.5 | 3.7 | 3.4 | 4.2 | 4.4 | 3.6 | 3.1 |
90th Percentile | 3.8 | 3.3 | 3.3 | 5.1 | 4.8 | 4.3 | 4.5 | 4.4 | 5.2 | 6.3 | 5.0 | 3.8 |
Climate Anomalies of Minimum Air Temperature (°C) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Climate Scenario | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
RCP4.5 2041–2070 | ||||||||||||
10th Percentile | 1.2 | 1.1 | 0.6 | 0.9 | 1.2 | 1.5 | 1.2 | 1.2 | 1.5 | 1.3 | 1.3 | 0.9 |
Ensemble Average | 1.7 | 1.3 | 0.9 | 1.2 | 1.4 | 1.7 | 1.7 | 1.7 | 2 | 1.8 | 1.5 | 1.4 |
90th Percentile | 2.2 | 1.6 | 1.2 | 1.4 | 1.6 | 1.8 | 2.4 | 2.4 | 2.6 | 2.3 | 1.9 | 2 |
RCP4.5 2071–2098 | ||||||||||||
10th Percentile | 1.2 | 1.3 | 1.1 | 1.3 | 1.3 | 1.5 | 1.7 | 1.7 | 1.9 | 1.7 | 1.2 | 1.3 |
Ensemble Average | 1.7 | 1.7 | 1.4 | 1.5 | 1.5 | 1.8 | 2.3 | 2.2 | 2.4 | 2.2 | 1.9 | 1.7 |
90th Percentile | 2.2 | 2 | 1.7 | 1.7 | 1.7 | 2.2 | 3.3 | 2.9 | 3.2 | 2.8 | 2.5 | 2.3 |
RCP8.5 2041–2070 | ||||||||||||
10th Percentile | 1.4 | 1.2 | 1.1 | 1.3 | 1.4 | 1.6 | 1.5 | 1.6 | 2.1 | 1.7 | 1.5 | 1.1 |
Ensemble Average | 1.8 | 1.6 | 1.4 | 1.5 | 1.6 | 1.9 | 2 | 2 | 2.4 | 2.2 | 2 | 1.7 |
90th Percentile | 2.2 | 2 | 1.6 | 1.7 | 2 | 2.3 | 2.3 | 2.6 | 2.8 | 3 | 2.4 | 2 |
RCP8.5 2071–2098 | ||||||||||||
10th Percentile | 2.4 | 2.3 | 1.9 | 2 | 2.5 | 2.5 | 2.7 | 2.8 | 3.2 | 3 | 2.3 | 2.7 |
Ensemble Average | 2.8 | 2.8 | 2.4 | 2.6 | 2.9 | 3.1 | 3.4 | 3.4 | 3.9 | 3.6 | 3.1 | 3 |
90th Percentile | 3.1 | 3.5 | 2.9 | 3.2 | 3.3 | 3.5 | 4 | 4.1 | 4.7 | 4.6 | 4 | 3.3 |
Crop | Initial Stage | Mid Stage | Final Stage |
---|---|---|---|
Annual crops | |||
Winter potato | 0.4–0.6 | 1.05 | 0.4 |
Spring potato | 0.4–0.6 | 1.05 | 0.4 |
Autumn potato | 0.4–0.6 | 1.05 | 0.4 |
Winter cabbage | 0.4–0.7 | 1.1 | 0.9 |
Spring cabbage | 0.4–0.7 | 1.1 | 0.9 |
Autumn cabbage | 0.4–0.7 | 1.1 | 0.9 |
Permanent crops | |||
orchards | 0.4 | 0.9 | 0.4 |
Potato | Cabbage | |||||||
---|---|---|---|---|---|---|---|---|
Crop Development Stage | Orchards | Winter | Spring | Autumn | Winter | Spring | Autumn | |
Zr (m) | 0.8 | 0.5 | 0.5 | 0.5 | 0.5 | 0.6 | 0.6 | |
p (%) | 40 | 40 | 40 | 40 | 40 | 40 | 40 | |
Initial | Planting date | 01/jan | 15/feb | 01/jun | 15/sept | 15/may | 01/jun | 15/sept |
Beginning of crop development | DAP | 90 | 15 | 15 | 15 | 15 | 15 | 15 |
Beginning of flowering | DAP | 120 | 35 | 35 | 35 | 35 | 35 | 35 |
Beginning of fruit formation | DAP | 150 | 60 | 60 | 60 | 60 | 60 | 60 |
Beginning of late season | DAP | 185 | 80 | 80 | 80 | |||
Harvest or end of irrigation | DAP | 240 | 90 | 90 | 90 | |||
End of late season | DAP | 285 |
Area (%) | Irrigation System | Irrigation Efficiency | Fraction of Wetted Area | |
---|---|---|---|---|
Orchards | 85 | Drip | 0.9 | 0.6 |
Other crops * | 15 | Solid set sprinkler | 0.85 | 1 |
Conveyance Efficiency (%) | Distribution Efficiency (%) | |
---|---|---|
Open channel | 65 | 65 |
Pressurized | 95 | 90 |
References
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agr. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Vinci, G.; Maddaloni, L.; Mancini, L.; Prencipe, S.A.; Ruggeri, M.; Tiradritti, M. The Health of the Water Planet: Challenges and Opportunities in the Mediterranean Area: An Overview. Earth 2021, 2, 894–919. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Colombani, N. The issue of groundwater salinization in coastal areas of the Mediterranean region: A review. Water 2021, 13, 90. [Google Scholar] [CrossRef]
- Tsesmelis, D.E.; Karavitis, C.A.; Kalogeropoulos, K.; Zervas, E.; Vasilakou, C.G.; Skondras, N.A.; Kosmas, C. Evaluating the Degradation of Natural Resources in the Mediterranean Environment Using the Water and Land Resources Degradation Index, the Case of Crete Island. Atmosphere 2022, 13, 135. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Cherif, I.; Chemin, Y.; Silleos, G.N.; Stavrinos, E.; Zalidis, G.C. Integrated methodology for estimating water use in mediterranean agricultural areas. Remote Sens. 2009, 1, 445–465. [Google Scholar] [CrossRef] [Green Version]
- Pisinaras, V.; Paraskevas, C.; Panagopoulos, A. Investigating the effects of agricultural water management in a Mediterranean coastal aquifer under current and projected climate conditions. Water 2021, 13, 108. [Google Scholar] [CrossRef]
- Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef] [Green Version]
- Zittis, G.; Bruggeman, A.; Lelieveld, J. Revisiting future extreme precipitation trends in the Mediterranean. Weather Clim. Extrem. 2021, 34, 100380. [Google Scholar] [CrossRef]
- García-Garizábal, I.; Causapé, J.; Abrahao, R.; Merchan, D. Impact of climate change on Mediterranean irrigation demand: Historical dynamics of climate and future projections. Water Resour. Manag. 2014, 28, 1449–1462. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Cannon, A.J.; Sobie, S.R.; Murdock, T.Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? J. Clim. 2015, 28, 6938–6959. [Google Scholar] [CrossRef]
- Vetter, T.; Reinhardt, J.; Flörke, M.; van Griensven, A.; Hattermann, F.; Huang, S.; Koch, H.; Pechlivanidis, I.G.; Plötner, S.; Seidou, O.; et al. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Clim. Chang. 2017, 141, 419–433. [Google Scholar] [CrossRef]
- Wilby, R.L.; Troni, J.; Biot, Y.; Tedd, L.; Hewitson, B.C.; Smith, D.M.; Sutton, R.T. A review of climate risk information for adaptation and development planning. Int. J. Clim. 2009, 29, 1193–1215. [Google Scholar] [CrossRef]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 741–866. [Google Scholar]
- Räty, O.; Räisänen, J.; Ylhäisi, J.S. Evaluation of delta change and bias correction methods for future daily precipitation: Intermodel cross-validation using ENSEMBLES simulations. Clim. Dyn. 2014, 42, 2287–2303. [Google Scholar] [CrossRef]
- Trzaska, S.; Schnarr, E. A Review of Downscaling Methods for Climate Change Projections; United States Agency for International Development: Washington, DC, USA; Tetra Tech ARD: Burlington, VT, USA, 2014; p. 42.
- Zhu, Y.; Luo, Y. Precipitation Calibration Based on the Frequency-Matching Method. Weather Forecast. 2015, 30, 1109–1124. [Google Scholar] [CrossRef]
- Le Page, M.; Fakir, Y.; Jarlan, L.; Boone, A.; Berjamy, B.; Khabba, S.; Zribi, M. Projection of irrigation water demand based on the simulation of synthetic crop coefficients and climate change. Hydrol. Earth Syst. Sci. 2021, 25, 637–651. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L.; Quiroga, S.; Moneo, M. A regional comparison of the effects of climate change on agricultural crops in Europe. Clim. Change 2012, 112, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Turral, H.; Burke, J.; Faurès, J.M. Climate Change, Water and Food Security; FAO Water Reports 36; FAO: Rome, Italy, 2011; p. 174. [Google Scholar]
- del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Molina-Montenegro, M.A. Climate change impacts and adaptation strategies of agriculture in Mediterranean-climate regions (MCRs). Sustainability 2019, 11, 2769. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elmabod, S.K.; Muñoz-Rojas, M.; Jordán, A.; Anaya-Romero, M.; Phillips, J.D.; Jones, L.; de la Rosa, D. Climate change impacts on agricultural suitability and yield. Geoderma 2020, 374, 114453. [Google Scholar] [CrossRef]
- Cammarano, D.; Ceccarelli, S.; Grando, S.; Romagosa, I.; Benbelkacem, A.; Akar, T.; Ronga, D. The impact of climate change on barley yield in the Mediterranean basin. Eur. J. Agron. 2019, 106, 1–11. [Google Scholar] [CrossRef]
- Noto, L.V.; Cipolla, G.; Francipane, A.; Pumo, D. Climate change in the Mediterranean basin (part I): Induced alterations on climate forcings and hydrological processes. Water Resour. Manag. 2022, 1–19. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Liu, T.; Zan, C.; Ling, Y.; Guo, C. Analysis of the Water Demand-Supply Gap and Scarcity Index in Lower Amu Darya River Basin, Central Asia. Int. J. Env. Res. Pub. He. 2022, 19, 743. [Google Scholar] [CrossRef]
- Senatore, A.; Mendicino, G.; Smiatek, G.; Kunstmann, H. Regional climate change projections and hydrological impact analysis for a Mediterranean basin in Southern Italy. J. Hydrol. 2011, 399, 70–92. [Google Scholar] [CrossRef]
- Nunes, J.P.; Seixas, J.; Keizer, J.J. Modeling the response of within-storm runoff and erosion dynamics to climate change in two Mediterranean watersheds: A multi-model, multi-scale approach to scenario design and analysis. Catena 2013, 102, 27–39. [Google Scholar] [CrossRef]
- Rocha, J.; Carvalho-Santos, C.; Diogo, P.; Beça, P.; Keizer, J.J.; Nunes, J.P. Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal). Sci. Total Environ. 2020, 736, 139477. [Google Scholar] [CrossRef] [PubMed]
- Rolim, J.; Teixeira, J.L.; Catalão, J.; Shahidian, S. The Impacts of climate change on irrigated agriculture in Southern Portugal. Irrig. Drain. 2017, 66, 3–18. [Google Scholar] [CrossRef]
- Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security—A review. Prog. Nat. Sci. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Serrano-Notivoli, R.; Martínez-Salvador, A.; García-Lorenzo, R.; Espín-Sánchez, D.; Conesa-García, C. Rainfall–runoff relationships at event scale in western Mediterranean ephemeral streams. Hydrol. Earth Syst. Sci. 2022, 26, 1243–1260. [Google Scholar] [CrossRef]
- Sondermann, M.N.; de Oliveira, R.P. Climate Adaptation Needs to Reduce Water Scarcity Vulnerability in the Tagus River Basin. Water 2022, 14, 2527. [Google Scholar] [CrossRef]
- Saadi, S.; Todorovic, M.; Tanasijevic, L.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agric. Water Manag. 2015, 147, 103–115. [Google Scholar] [CrossRef]
- Dai, C.; Qin, X.S.; Lu, W.T.; Huang, Y. Assessing adaptation measures on agricultural water productivity under climate change: A case study of Huai River Basin, China. Sci. Total Environ. 2020, 721, 137777. [Google Scholar] [CrossRef] [PubMed]
- Ward, F.A. Enhancing climate resilience of irrigated agriculture: A review. J. Environ. Manag. 2022, 302, 114032. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.M. Impacts of drought, food security policy and climate change on performance of irrigation schemes in Sub-saharan Africa: The case of Sudan. Agric. Water Manag. 2020, 232, 106064. [Google Scholar] [CrossRef]
- Azcuña Castro, F.; Mejía Vaca, D.E. Analysis of resilience in investment of an irrigation system based on the comparison of climate scenarios. Invistigación Desarro. 2021, 21, 47–62. [Google Scholar]
- Narita, D.; Sato, I.; Ogawada, D.; Matsumura, A. Evaluating the robustness of project performance under deep uncertainty of climate change: A case study of irrigation development in Kenya. Clim. Risk Manag. 2022, 36, 100426. [Google Scholar] [CrossRef]
- Walker, B. Resilience: What it is and is not. Ecol. Soc. 2020, 25, 11. [Google Scholar] [CrossRef]
- IPCC. Glossary of terms. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 555–564. [Google Scholar]
- Engle, N.L.; de Bremond, A.; Malone, E.L.; Moss, R.H. Towards a resilience indicator framework for making climate-change adaptation decisions. Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 1295–1312. [Google Scholar] [CrossRef]
- Linkov, I.; Fox-Lent, C.; Read, L.; Allen, C.R.; Arnott, J.C.; Bellini, E.; Coaffee, J.; Florin, M.V.; Hatfield, K.; Hyde, I.; et al. Tiered approach to resilience assessment. Risk Anal. 2018, 38, 1772–1780. [Google Scholar] [CrossRef] [Green Version]
- Lankford, B.; Pringle, C.; McCosh, J.; Shabalala, M.; Hess, T.; Knox, J.W. Irrigation area, efficiency and water storage mediate the drought resilience of irrigated agriculture in a semi-arid catchment. Sci. Total Environ. 2023, 859, 160263. [Google Scholar] [CrossRef]
- Sikka, A.K.; Alam, M.F.; Mandave, V. Agricultural water management practices to improve the climate resilience of irrigated agriculture in India. Irrig. Drain. 2022, 71, 7–26. [Google Scholar] [CrossRef]
- Ronco, P.; Zennaro, F.; Torresan, S.; Critto, A.; Santini, M.; Trabucco, A.; Zollo, A.L.; Galluccio, G.; Marcomini, A. A risk assessment framework for irrigated agriculture under climate change. Adv. Water Resour. 2017, 110, 562–578. [Google Scholar] [CrossRef]
- Orojloo, M.; Shahdany, S.M.H.; Roozbahani, A. Developing an integrated risk management framework for agricultural water conveyance and distribution systems within fuzzy decision making approaches. Sci. Total Environ. 2018, 627, 1363–1376. [Google Scholar] [CrossRef] [PubMed]
- Frija, A.; Oulmane, A.; Chebil, A.; Makhlouf, M. Socio-Economic Implications and Potential Structural Adaptations of the Tunisian Agricultural Sector to Climate Change. Agronomy 2021, 11, 2112. [Google Scholar] [CrossRef]
- Akoko, G.; Kato, T.; Tu, L.H. Evaluation of Irrigation Water Resources Availability and Climate Change Impacts—A Case Study of Mwea Irrigation Scheme, Kenya. Water 2020, 12, 2330. [Google Scholar] [CrossRef]
- Torrico, J.C.; Janssens, M.J. Rapid assessment methods of resilience for natural and agricultural systems. An. Da Acad. Bras. De Ciências 2010, 82, 1095–1105. [Google Scholar] [CrossRef] [Green Version]
- NASA. Panoply NetCDF, HDF and GRIB Data Viewer. Available online: https://www.giss.nasa.gov/tools/panoply/ (accessed on 22 February 2021).
- Graham, L.P.; Andréasson, J.; Carlsson, B. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—A case study on the Lule River basin. Clim. Change 2007, 81, 293–307. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Teixeira, J.L.; Pereira, L.S. ISAREG, an irrigation scheduling model. ICID Bull. 1992, 41, 29–48. [Google Scholar]
- Stulina, G.; Cameira, M.R.; Pereira, L.S. Using RZWQM to search improved practices for irrigated maize in Fergana, Uzbekistan. Agric. Water Manag. 2005, 77, 263–281. [Google Scholar] [CrossRef]
- Darouich, H.; Cameira, M.R.; Gonçalves, J.M.; Paredes, P.; Pereira, L.S. Comparing sprinkler and surface irrigation for wheat using multi-criteria analysis: Water saving vs. economic returns. Water 2017, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liu, T.; Paredes, P.; Duan, L.; Wang, H.; Wang, T.; Pereira, L.S. Ecohydrology of groundwater-dependent grasslands of the semi-arid Horqin sandy land of Inner Mongolia focusing on evapotranspiration partition. Ecohydrology 2016, 9, 1052–1067. [Google Scholar] [CrossRef]
- Sousa, V.; Pereira, L.S. Regional analysis of irrigation water requirements using kriging: Application to potato crop (Solanum tuberosum L.) at Trás-os-Montes. Agric. Water Manag. 1999, 40, 221–233. [Google Scholar] [CrossRef]
- Chaterlán, Y.; León, M.; Duarte, C.; López, T.; Paredes, P.; Pereira, L.S. Determination of crop coefficients for horticultural crops in Cuba through field experiments and water balance simulation. Acta Hortic. 2011, 889, 475–482. [Google Scholar] [CrossRef]
- Alba, I.; Rodrigues, P.N.; Pereira, L.S. Irrigation scheduling simulation for citrus in Sicily to cope with water scarcity. In Tools for Drought Mitigation in Mediterranean Regions; Rossi, G., Cancelliere, A., Pereira, L.S., Oweis, T., Shatanawi, M., Zairi, A., Eds.; Water Science and Technology Library; Springer: Dordrecht, The Netherlands, 2003; Volume 44, pp. 223–242. [Google Scholar]
- Chaterlán, Y.; Hernández, G.; López, T.; Martínez, R.; Puig, O.; Paredes, P.; Pereira, L.S. Estimation of the papaya crop coefficients for improving irrigation water management in south of Havana. Acta Hortic. 2012, 928, 179–186. [Google Scholar] [CrossRef]
- Valverde, P.; Serralheiro, R.; de Carvalho, M.; Maia, R.I.; Oliveira, B.; Ramos, V. Climate change impacts on irrigated agriculture in the Guadiana River basin (Portugal). Agric. Water Manag. 2015, 152, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Branquinho, S.; Rolim, J.; Teixeira, J.L. Climate Change Adaptation Measures in the Irrigation of a Super-Intensive Olive Orchard in the South of Portugal. Agronomy 2021, 11, 1658. [Google Scholar] [CrossRef]
- Zaccaria, D.; Oueslati, I.; Neale, C.M.U.; Lamaddalena, N.; Vurro, M.; Pereira, L.S. Flexible delivery schedules to improve farm irrigation and reduce pressure on groundwater: A case study in southern Italy. Irrig. Sci. 2009, 28, 257–270. [Google Scholar] [CrossRef]
- Ferreira, A.; Rolim, J.; Paredes, P.; Cameira, M.R. Assessing Spatio-Temporal Dynamics of Deep Percolation Using Crop Evapotranspiration Derived from Earth Observations through Google Earth Engine. Water 2022, 14, 2324. [Google Scholar] [CrossRef]
- Victoria, F.B.; Viegas Filho, J.S.; Pereira, L.S.; Teixeira, J.L.; Lanna, A.E. Multi-scale modeling for water resources planning and management in rural basins. Agric. Water Manag. 2005, 77, 4–20. [Google Scholar] [CrossRef]
- SMHI Hypeweb. Europe Climate Change. Available online: https://hypeweb.smhi.se/ (accessed on 22 July 2021).
- Lindström, G.; Pers, C.; Rosberg, J.; Strömqvist, J. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales Go. Hydrol. Res. 2010, 41, 295–319. [Google Scholar] [CrossRef]
- Water, I. Development of the Methodological Framework of the European Resilience Management Guidance (ERMG). 2016, Horizon 2020 Programme. Available online: http://resilens.eu/wp-content/uploads/2017/10/D3.1-Development-of-the-methodological-framework-of-ERMG.pdf (accessed on 22 July 2021).
- Albino, J.C.; Peralta-Rivero, C.; Ticona, P.; Pelletier, E. Capacidad De Resiliencia De Sistemas Agroforestales, Ganadería Semi-Intensiva y Agricultura Bajo Riego: Beneficios Alcanzados Por La PEP Del CIPCA. Centro de Investigación y Promoción del Campesinado. 2017. Available online: https://cipca.org.bo/docs/publications/es/108_cuaderno-resilencia-vweb.pdf (accessed on 22 July 2021).
- Rai, R.; Joshi, S.; Roy, S.; Singh, O.; Samir, M.; Chandra, A. Implications of changing climate on productivity of temperate fruit crops with special reference to apple. J. Hortic. 2015, 2, 135–141. [Google Scholar]
- Fadón, E.; Herrera, S.; Guerrero, B.I.; Guerra, M.E.; Rodrigo, J. Chilling and heat requirements of temperate stone fruit trees (Prunus sp.). Agronomy 2020, 10, 409. [Google Scholar] [CrossRef] [Green Version]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water. Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1979; Volume 33, p. 257. [Google Scholar]
- Puig-Sirera, À.; Provenzano, G.; González-Altozano, P.; Intrigliolo, D.S.; Rallo, G. Irrigation water saving strategies in Citrus orchards: Analysis of the combined effects of timing and severity of soil water deficit. Agric. Water Manag. 2021, 248, 106773. [Google Scholar] [CrossRef]
- Gil, J.D.B.; Cohn, A.S.; Duncan, J.; Newton, P.; Vermeulen, S. The resilience of integrated agricultural systems to climate change. WIREs. Clim. Chang. 2017, 8, e461. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; Volume 29, p. 174. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- IPMA. Agricultural Meteorological Bulletin. Available online: https://www.ipma.pt/pt/publicacoes/boletins.jsp?cmbDep=agr&cmbTema=bag&cmbAno=2019&idDep=agr&idTema=bag&curAno=2019 (accessed on 9 July 2021).
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Nóia Júnior, R.D.S.; Fraisse, C.W.; Cerbaro, V.A.; Karrei, M.A.Z.; Guindin, N. Evaluation of the Hargreaves-Samani method for estimating reference evapotranspiration with ground and gridded weather data sources. Appl. Eng. Agric. 2019, 35, 823–835. [Google Scholar] [CrossRef]
- Matos, B. Contribution for the Study of Dormancy in Pear Trees, Rocha Variety (in Portuguese). Master’s Thesis, Instituto Superior de Agronomia-University of Lisbon, Lisbon, Portugal, 2019. [Google Scholar]
- IFAP. Tabelas De Preços De Referência A Aplicar No Âmbito Do Sistema De Seguros De Colheitas; Instituto de Financiamento da Agricultura e Pescas: Lisboa, Portugal, 2021. Available online: https://www.ifap.pt/documents/182/10564592/Tabela+_Preços_GPP_2021.pdf/e6ce9dba-bef1-dc60-36d0-f66ac99452f3 (accessed on 22 July 2021).
- DGADR. Sistema De Informação De Regadio—Statistics. Available online: https://sir.dgadr.gov.pt/stat (accessed on 22 July 2021).
- FENAREG. Projeto AGIR—Sistema de Avaliação da Eficiência do Uso da Água e da Energia em Aproveitamentos Hidroagrícolas. 2018. Available online: http://www.fenareg.pt/agir-grupooperacional-eficiencia-em-aproveitamentos-hidroagricolas-reune-para-preparacao-doquarto-semestre-do-projeto/ (accessed on 22 July 2021).
- EDIA. Anuário Agrícola de Alqueva; EDIA—Empresa de Desenvolvimento e Infra-estruturas do Alqueva, S.A.: Beja, Portugal, 2020; p. 204. [Google Scholar]
- SNIRH. Redes De Monitorização. Available online: https://snirh.apambiente.pt/ (accessed on 22 July 2021).
- Christensen, O.B.; Kjellström, E. Partitioning uncertainty components of mean climate and climate change in a large ensemble of European regional climate model projections. Clim. Dyn. 2020, 54, 4293–4308. [Google Scholar] [CrossRef]
- Lionello, P.; Giorgi, F.; Rohling, E.; Seager, R. Mediterranean climate: Past, present and future. In Oceanography of the Mediterranean Sea; Elsevier: Amsterdam, The Netherlands, 2023; pp. 41–91. [Google Scholar]
- Fonseca, A.; Fraga, H.; Santos, J.A. Exposure of Portuguese viticulture to weather extremes under climate change. Clim. Serv. 2023, 30, 100357. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Birkinshaw, S.; Kilsby, C.; Fowler, H.J.; Lewis, E. Dry Getting Drier—The Future of Transnational River Basins in Iberia. J. Hydrol. Reg. Stud. 2017, 12, 238–252. [Google Scholar] [CrossRef]
- Rodríguez, A.; Pérez-López, D.; Sánchez, E.; Centeno, A.; Gómara, I.; Dosio, A.; Ruiz-Ramos, M. Chilling accumulation in fruit trees in Spain under climate change. Nat. Hazard Earth Syst. Sci. 2019, 19, 1087–1103. [Google Scholar] [CrossRef] [Green Version]
- Darbyshire, R.; Webb, L.; Goodwin, I.; Barlow, E. Impact of future warming on winter chilling in Australia. Int. J. Biometeorol. 2013, 57, 355–366. [Google Scholar] [CrossRef]
- Fraga, H.; Pinto, J.G.; Santos, J.A. Climate change projections for chilling and heat forcing conditions in European vineyards and olive orchards: A multi-model assessment. Clim. Chang. 2019, 152, 179–193. [Google Scholar] [CrossRef]
- Luedeling, E.; Gebauer, J.; Buerkert, A. Climate change effects on winter chill for tree crops with chilling requirements on the Arabian Peninsula. Clim. Chang. 2009, 96, 219–237. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.S.; Teodoro, P.R.; Rodrigues, P.N.; Teixeira, J.L. Irrigation Scheduling Simulation: The Model Isareg. In Tools for Drought Mitigation in Mediterranean Regions; Rossi, G., Cancelliere, A., Pereira, L.S., Oweis, T., Shatanawi, M., Zairi, A., Eds.; Water Science and Technology Library; Springer: Dordrecht, The Netherlands, 2003; Volume 44. [Google Scholar]
- Langridge, P.; Braun, H.; Hulke, B.; Ober, E.; Prasanna, B.M. Breeding crops for climate resilience. Theor. Appl. Genet. 2021, 134, 1607–1611. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Dhyani, R.; Ranjan, M.; Madhav, S.; Sillanpää, M. Climate-resilient strategies for sustainable management of water resources and agriculture. Environ. Sci. Pollut. Res. 2021, 28, 41576–41595. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Niu, J.; Liu, Q.; Liao, D.; Du, T. A resilience-based approach for water resources management over a typical agricultural region in Northwest China under water-energy-food nexus. Ecol. Indic. 2022, 144, 109562. [Google Scholar] [CrossRef]
- Hossard, L.; Fadlaoui, A.; Ricote, E.; Belhouchette, H. Assessing the resilience of farming systems on the Saïs plain, Morocco. Reg. Environ. Change 2021, 21, 1–14. [Google Scholar] [CrossRef]
- Samimi, M.; Mirchi, A.; Townsend, N.; Gutzler, D.; Daggubati, S.; Ahn, S.; Hargrove, W. Climate change impacts on agricultural water availability in the Middle Rio Grande basin. J. Am. Water Resour. Assoc. 2022, 58, 164–184. [Google Scholar] [CrossRef]
General Circulation Models | Regional Climate Models | ||||
---|---|---|---|---|---|
RCP4.5 | RCP8.5 | ||||
Model | Institution | Model | Institution | Model | Institution |
CNRM-CM5 | Centre National de Recherches Météorologiques | - | - | HadREM3-GA7-05 REMO2015 | Hadley Centre Climate Service Center Germany |
EC-EARTH | European Centre of Medium Range Weather Forecast | RACMO22E HIRHAM5 | Koninklijk Nederland Meteorologisch InstituutDanish Meteorological Institute | COSMO-crCLIM HadREM3-GA7-05 | ETH Zurich Hadley Centre |
CM5A-MR | Institut Pierre Simon Laplace | - | - | HIRHAM5 REMO2015 | Danish Meteorological Institute Climate Service Center Germany |
ESM-LR | Max Planck Institut für Meteorologie | SMHI-RCA4 CCLM4-8-17 | Rossby Centre Climate Limited- area Modelling-Community | SMHI-RCA4 HIRHAM5 | Rossby Centre Danish Meteorological Institute |
HadGEM2-ES | Hadley Centre | - | - | COSMO-crCLIM HadREM3-GA7-05 | ETH Zurich Hadley Centre |
NorESM1-M | EarthClim Project, Norwegian Climate Centre (NCC) | - | - | HadREM3-GA7-05 COSMO-crCLIM | Hadley Centre ETH Zurich |
Normalized Ky | Resilience Class | Soil Water Depletion Factor (p) | Resilience Class | |
---|---|---|---|---|
1.0–0.8 | Very low | 0.2–0.5 | Low | |
0.8–0.6 | Low | 0.5–0.6 | Average | |
0.6–0.4 | Average | >0.6 | High | |
0.4–0.2 | High | |||
0.2–0.0 | Very high |
AE (%) | Resilience Class | Swa | Resilience Class | |
---|---|---|---|---|
<65 | Low | >0.9 | Very low | |
65–80 | Average | 0.6–0.9 | Low | |
80–90 | High | 0.4–0.6 | Average | |
>90 | Very high | <0.4 | High |
Number and type of irrigation water sources | Resilience class |
One source; surface without flow regularization | Very low |
More than one source; surface without flow regularization | Low |
One groundwater or one surface source with flow regularization | Average |
Groundwater source and surface source with flow regularization | High |
Electrical conductivity of the water at the source | |
Ecw (dS m−1)/Use restrictions | Resilience class |
>3.0/Severe | Very low |
0.7–3.0/Moderate | Average |
<0.7/None | High |
Guarantee for irrigation water availability | |
Guarantee (%) | Resilience class |
<80 | Very low |
80–90 | Average |
>90 | High |
Failures in water availability | |
Severe failures | Resilience class |
with | Low |
without | High |
Data | Source |
---|---|
Crop | |
Crop coefficients and depletion factor (further corrected to local climatic conditions) | [52] |
Stress coefficients for orchards and potatoes | [45,73] |
Chilling requirements for orchards | [71,80] |
Sowing and harvest dates, crop stage length, rooting depths | Farmers inquires |
Yields and reference prices | Crop insurance data 2021 [81] |
Irrigation systems | |
On farm | [82] |
Irrigation water conveyance and distribution efficiencies | [83] |
Production costs | [84] |
Meteorological data | |
Historical temperature data series 1956–1985 | Alcobaça meteorological station (39°32′ N; 8°58′ W; 38 m a.s.l), |
Historical precipitation data series 1956–1985 | Cela meteorological station (39°′34 N; 9°04′ W; 2 m a.s.l.) from [85] |
Soils | Portuguese Soil Map (CSP) and Land Use Capacity (DGADR—Ministry of Agriculture) |
Water | |
Monthly flows of the Areia and Alcobaça rivers for the period 1956 to 1985 | [85] |
Irrigation water quality for the period 1989 to 2014 | [85] |
Rehabilitation Alternatives | Water Source (River) | Area to Irrigate (ha) | Transport and Distribution of Irrigation Water to Farmers’ Fields | |||
---|---|---|---|---|---|---|
Type | EC (%) [83] | ED (%) [83] | ||||
A (baseline) | Alcobaça | Maiorga | 101.0 | open channel | 65 | 65 |
Cela | 485.0 | pressurized | - | 90 | ||
Areia | Maiorga | 210.0 | open channel | 65 | 65 | |
V. Frades | 312.3 | open channel | 65 | 65 | ||
B | Alcobaça | Maiorga | 355.6 | pressurized | 95 | 90 |
Cela | 485 | pressurized | - | 90 | ||
Areia | V. Frades | 312.3 | open channel | 65 | 65 | |
C | Areia | Maiorga | 355.6 | pressurized | - | 90 |
V. Frades | 312.3 | open channel | 65 | 65 | ||
D | Alcobaça | Maiorga | 355.6 | pressurized | - | 90 |
Cela | 485 | pressurized | - | 90 | ||
Areia | V. Frades | 312.3 | open channel | 65 | 65 |
Period | GIR (mm) | ΔGIR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Annual | mm | % | |
1956–1985 | 0.4 | 1.4 | 11.2 | 38.5 | 74.4 | 59.8 | 26 | 3.6 | 215.3 | - | - |
RCP4.5 2041–2070 | 0.8 | 3 | 14.2 | 40.3 | 74.5 | 63.7 | 27.7 | 5 | 229.6 | 14.3 | 6.6 |
RCP8.5 2041–2070 | 0.4 | 2 | 21.6 | 54.8 | 81.7 | 66.5 | 35.8 | 4.8 | 267.9 | 52.6 | 24.4 |
RCP4.5 2071–2100 | 0.4 | 1.8 | 12.6 | 43.5 | 79.7 | 60.7 | 24.5 | 3.7 | 227.1 | 11.8 | 5.5 |
RCP8.5 2071–2100 | 0.4 | 3 | 27 | 62.8 | 85.5 | 67.8 | 36.3 | 8.3 | 292.1 | 76.8 | 35.7 |
Average Anomalies (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Scenario | Period | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual |
RCP4.5 | 2050 | −5 | 7 | 20 | −17 | −39 | −15 | −17 | −18 | −18 | −6 | −25 | −23 | −11 |
RCP4.5 | 2080 | 2 | 4 | 14 | −19 | −41 | −23 | −19 | −18 | −5 | −24 | −25 | −3 | −9 |
RCP8.5 | 2050 | 2 | −6 | 13 | −15 | −34 | −19 | −20 | −20 | −13 | −3 | −19 | −31 | −13 |
RCP8.5 | 2080 | −9 | −27 | −17 | −39 | −53 | −35 | −34 | −29 | −35 | −43 | −43 | −31 | −30 |
Statistics | Chilling Hours |
---|---|
Percentile 10 | 638 |
Average | 804 |
Percentile 90 | 963 |
Crop/Variety | Chilling Units |
---|---|
Apple (Royal Gala and Fuji) | 600–800 |
Pear (Rocha) | 550 |
Crops | Ky | Normalized Ky | Soil Water Depletion Factor (p) | |
---|---|---|---|---|
Orchards (apple and pear) | 1 | 0.91 | 0.5 | |
Cabbage | 0.95 | 0.86 | 0.45 | |
Potato | 1.1 | 1 | 0.35 |
Crop | ECe Threshold (dS m−1) | b (%/dS m−1) | FAO 56 Classification |
---|---|---|---|
Cabbage | 1.0–1.8 | 9.8–14.0 | Moderately sensitive |
Potato | 1.7 | 12.0 | Moderately sensitive |
Apple | - | - | Sensitive |
Pear | - | - | Sensitive |
Crop | Costs | Gross Revenue (€ ha−1) | |
---|---|---|---|
Installation (€ ha−1) | Operational (€ ha−1) | ||
Cabbage | - | 6000 | 6400 |
Potato | - | 5220 | 4500 |
Apple | 12,000–18,000 | 9860 | 19,530–32,550 |
Pear | 17,000–19,000 | 10,846 | 16,420–20,525 |
On-Farm Irrigation System | AE | Swa |
---|---|---|
Sprinkler | 0.85 | 1.0 |
Drip | 0.90 | 0.6 |
Supply Guaranty (%) | Number of Years with Failures | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | ||||||||
Project | 1966 1985 | 2041 2070 | 2071 2100 | 2041 2070 | 2071 2100 | 1966 1985 | 2041 2070 | 2071 2100 | 2041 2070 | 2071 2100 | |
alternative | |||||||||||
A | 100 | 100 | 100 | 100 | 97 | 0 | 0 | 0 | 0 | 1 | |
55 | 45 | 32 | 32 | 13 | 14 | 17 | 21 | 21 | 27 | ||
B | 97 | 94 | 84 | 87 | 68 | 1 | 2 | 5 | 4 | 10 | |
C | 58 | 52 | 35 | 39 | 23 | 13 | 15 | 20 | 19 | 24 | |
D | 100 | 100 | 97 | 100 | 90 | 0 | 0 | 1 | 0 | 3 | |
74 | 71 | 61 | 61 | 48 | 8 | 9 | 12 | 12 | 16 |
Number and Type of Irrigation Water Source | |
---|---|
Alternative A | One surface source without regularization |
Alternative B | Two surface sources without regularization |
Alternative C | One source without regularization |
Alternative D | One source without regularization |
Water Source | Ecw (dS m−1) |
---|---|
River Areia | 0.48 |
River Alcobaça | 0.77 |
Project Rehabilitation | Water Source (River) | Area to Irrigate | Efficiency (%) | |
---|---|---|---|---|
Alternatives | Conveyance | Distribution | ||
A (baseline) | Alcobaça | Maiorga Cela | 65 | 65 |
- | 90 | |||
Areia | Maiorga V. Frades | 65 65 | 65 65 | |
B | Alcobaça | Maiorga Cela | 95 | 90 |
- | 90 | |||
C | Areia | V. Frades | 65 | 65 |
Areia | Maiorga | - | 90 | |
D | V. Frades | 65 | 65 | |
Alcobaça | Maiorga Cela | - - | 90 90 | |
Areia | V. Frades | 65 | 65 |
Supply Guarantee for the MIS (%) | Global Supply Guarantee (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | ||||||||
Project alternative | 1966 1985 | 2041 2070 | 2071 2100 | 2041 2070 | 2071 2100 | 1966 1985 | 2041 2070 | 2071 2100 | 2041 2070 | 2071 2100 | |
A | 100 | 45 | 32 | 32 | 13 | 55 | 45 | 32 | 32 | 13 | |
B | 95 | 94 | 84 | 87 | 68 | 97 | 94 | 84 | 87 | 68 | |
C | 58 | 52 | 52 | 39 | 23 | 58 | 52 | 52 | 39 | 23 | |
D | 100 | 100 | 100 | 97 | 90 | 74 | 71 | 71 | 61 | 48 |
Severe Failures for MIS (No.) | Global Severe Failures (No.) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | ||||||||
Project alternative | 1966 1985 | 2041 2070 | 2071 2100 | 2041 2070 | 2071 2100 | 1966 1985 | 2041 2070 | 2071 2100 | 2041 2070 | 2071 2100 | |
A | 14 | 21 | 23 | 27 | 60 | 14 | 21 | 23 | 27 | 60 | |
B | 0 | 0 | 2 | 2 | 10 | 0 | 0 | 2 | 2 | 10 | |
C | 13 | 17 | 22 | 24 | 53 | 13 | 17 | 22 | 24 | 53 | |
D | 0 | 0 | 0 | 0 | 1 | 3 | 6 | 9 | 9 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteves, R.; Calejo, M.J.; Rolim, J.; Teixeira, J.L.; Cameira, M.R. Framework for Assessing Collective Irrigation Systems Resilience to Climate Change—The Maiorga Case Study. Agronomy 2023, 13, 661. https://doi.org/10.3390/agronomy13030661
Esteves R, Calejo MJ, Rolim J, Teixeira JL, Cameira MR. Framework for Assessing Collective Irrigation Systems Resilience to Climate Change—The Maiorga Case Study. Agronomy. 2023; 13(3):661. https://doi.org/10.3390/agronomy13030661
Chicago/Turabian StyleEsteves, Rita, Maria João Calejo, João Rolim, José Luís Teixeira, and Maria Rosário Cameira. 2023. "Framework for Assessing Collective Irrigation Systems Resilience to Climate Change—The Maiorga Case Study" Agronomy 13, no. 3: 661. https://doi.org/10.3390/agronomy13030661
APA StyleEsteves, R., Calejo, M. J., Rolim, J., Teixeira, J. L., & Cameira, M. R. (2023). Framework for Assessing Collective Irrigation Systems Resilience to Climate Change—The Maiorga Case Study. Agronomy, 13(3), 661. https://doi.org/10.3390/agronomy13030661