Assessing the Genetic Variability of Sweet Chestnut Varieties from the Tuscan Apennine Mountains (Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. DNA Extraction and Quantification
2.3. PCR Reaction and Genotyping
2.4. Data Analysis
2.4.1. Genetic Diversity Parameters for the SSR Loci
2.4.2. Population Structure Analysis
2.4.3. Genetic Distances and Analysis of Molecular Variance
3. Results
3.1. SSRs Descriptive Genetic Parameters
3.2. Population Structure Analysis
3.3. Nei’s Unbiased Genetic Diversity among the Five Varieties
3.4. Differentiation Among and Within Populations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-López, J.; Alía, R. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Chestnut (Castanea sativa); International Plant Genetic Resources Institute: Rome, Italy, 2003; p. 6. [Google Scholar]
- Conedera, M.; Tinner, W.; Krebs, P.; de Rigo, D.; Caudullo, G. Castanea sativa in Europe: Distribution, Habitat, Usage and Threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Durrant, T.H., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; pp. 78–79. [Google Scholar]
- Gobbin, D.; Hohl, L.; Conza, L.; Jermini, M.; Gessler, C.; Conedera, M. Microsatellite-Based Characterization of the Castanea sativa Cultivar Heritage of Southern Switzerland. Genome 2007, 50, 1089–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neri, L.; Dimitri, G.; Sacchetti, G. Chemical Composition and Antioxidant Activity of Cured Chestnuts from Three Sweet Chestnut (Castanea sativa Mill.) Ecotypes from Italy. J. Food Compos. Anal. 2010, 23, 23–29. [Google Scholar] [CrossRef]
- Alessandri, S.; Cabrer, A.M.R.; Martìn, M.A.; Mattioni, C.; Pereira-Lorenzo, S.; Dondini, L. Genetic Characterization of Italian and Spanish Wild and Domesticated Chestnut Trees. Sci. Hortic. 2022, 295, 110882. [Google Scholar] [CrossRef]
- Zohary, D.; Hopf, M.; Weiss, E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in Southwest Asia, Europe, and the Mediterranean Basin; Oxford University Press: Oxford, UK, 2012; ISBN 019162425X. [Google Scholar]
- Conedera, M.; Krebs, P.; Tinner, W.; Pradella, M.; Torriani, D. The Cultivation of Castanea sativa (Mill.) in Europe, from Its Origin to Its Diffusion on a Continental Scale. Veg. Hist. Archaeobot. 2004, 13, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Roces-Díaz, J.V.; Jiménez-Alfaro, B.; Chytrý, M.; Díaz-Varela, E.R.; Álvarez-Álvarez, P. Glacial Refugia and Mid-Holocene Expansion Delineate the Current Distribution of Castanea sativa in Europe. Palaeogeogr Palaeoclim. Palaeoecol 2018, 491, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Krebs, P.; Pezzatti, G.B.; Beffa, G.; Tinner, W.; Conedera, M. Revising the Sweet Chestnut (Castanea sativa Mill.) Refugia History of the Last Glacial Period with Extended Pollen and Macrofossil Evidence. Quat. Sci. Rev. 2019, 206, 111–128. [Google Scholar] [CrossRef]
- Catalano, M. To Safeguard and to Make the Most of the Rural Environment by Means of a “Sustainable Agro-Environmental Systems” Study. Ital. J. Agron. 2010, 5, 295–299. [Google Scholar] [CrossRef]
- Casasoli, M.; Mattioni, C.; Cherubini, M.; Villani, F. A Genetic Linkage Map of European Chestnut (Castanea sativa Mill.) Based on RAPD, ISSR and Isozyme Markers. Theor. Appl. Genet. 2001, 102, 1190–1199. [Google Scholar] [CrossRef]
- Piccioli, L. Monografia Del Castagno: Suoi Caratteri, Morfologici, Varietà, Coltivazione, Prodotti e Nemici… Studio Fatto per Incarico Dei Fabbricanti Italiani Di Estratto Di Castagno; Stab. tipo-litografico G. Spinelli & C.: Florence, Italy, 1922; p. 397. [Google Scholar]
- Bagnaresi, U.; Bassi, D.; Casini, E.; Conticini, L.; Magnani, G.P. Contributo Alla Individuazione Delle Cultivar Di Castagno Tosco-Emiliane. In Atti Del Convegno “Giorn. Del Castagno”; Caprese Michelangelo (Arezzo): Florence, Italy, 1977; pp. 165–234. [Google Scholar]
- Bounous, G.; Beccaro, G.L.; Barrel, A.; Lovisolo, C. Inventory of Chestnut Research, Germplasm and References; FAO Ciheam Reu Technical Series; FAO: Rome, Italy, 2001; Volume 65, pp. 1–174. [Google Scholar]
- Martín, M.A.; Mattioni, C.; Cherubini, M.; Taurchini, D.; Villani, F. Genetic Characterisation of Traditional Chestnut Varieties in Italy Using Microsatellites (Simple Sequence Repeats) Markers. Ann. Appl. Biol. 2010, 157, 37–44. [Google Scholar] [CrossRef]
- Breviglieri, N. Indagini e Osservazioni Sulle Cultivar Di Castagno. Studio Monografico sul Castagno Nella Provincia di Lucca; Centro di Studio sul Castagno: Marradi, Italy, 1958; pp. 65–137. [Google Scholar]
- Mattioli, W.; Mancini, L.D.; Portoghesi, L.; Corona, P. Biodiversity Conservation and Forest Management: The Case of the Sweet Chestnut Coppice Stands in Central Italy. Plant Biosyst.—Int. J. Deal. All Asp. Plant Biol. 2016, 150, 592–600. [Google Scholar] [CrossRef]
- Martin, M.A.; Alvarez, J.B.; Mattioni, C.; Cherubini, M.; Villani, F.; Martin, L.M. Identification and Characterisation of Traditional Chestnut Varieties of Southern Spain Using Morphological and Simple Sequence Repeat (SSRs) Markers. Ann. Appl. Biol. 2009, 154, 389–398. [Google Scholar] [CrossRef]
- Beghè, D.; Ganino, T.; Dall’Asta, C.; Silvanini, A.; Cirlini, M.; Fabbri, A. Identification and Characterization of Ancient Italian Chestnut Using Nuclear Microsatellite Markers. Sci. Hortic. 2013, 164, 50–57. [Google Scholar] [CrossRef]
- Bellini, E.; Giordani, E.; Giannelli, G.; Picardi, E. Chestnut. In The Fruit Woody Species; Descriptor List: Tuscan, Italy, 2007; pp. 417–437. [Google Scholar]
- Ramos-Cabrer, A.M.; Pereira-Lorenzo, S. Genetic Relationship between Castanea sativa Mill. Trees from North-Western to South Spain Based on Morphological Traits and Isoenzymes. Genet. Resour. Crop. Evol. 2005, 52, 879–890. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; Ramos-Cabrer, A.M.; Díaz-Hernández, M.B.; Ciordia-Ara, M.; Ríos-Mesa, D. Chemical Composition of Chestnut Cultivars from Spain. Sci. Hortic. 2006, 107, 306–314. [Google Scholar] [CrossRef] [Green Version]
- Cirlini, M.; Dall’Asta, C.; Silvanini, A.; Begh, D.; Fabbri, A.; Galaverna, G.; Ganino, T. Volatile Fingerprinting of Chestnut Flours from Traditional Emilia Romagna (Italy) Cultivars. Food Chem. 2012, 134, 662–668. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Nour, V.; Botu, M. Physical and Compositional Characteristics of Chestnut Fruits. Rom. J. Hortic. 2020, 1, 51–58. [Google Scholar] [CrossRef]
- Poljak, I.; Vahčić, N.; Liber, Z.; Šatović, Z.; Idžojtić, M. Morphological and Chemical Variation of Wild Sweet Chestnut (Castanea sativa Mill.) Populations. Forests 2022, 13, 55. [Google Scholar] [CrossRef]
- Santos, M.J.; Pinto, T.; Vilela, A. Sweet Chestnut (Castanea sativa Mill.) Nutritional and Phenolic Composition Interactions with Chestnut Flavor Physiology. Foods 2022, 11, 4052. [Google Scholar] [CrossRef]
- Galderisi, U.; Cipollaro, M.; Di Bernardo, G.; De Masi, L.; Galano, G.; Cascino, A. Molecular Typing of Italian Sweet Chestnut Cultivars by Random Amplified Polymorphic DNA Analysis. J. Hortic. Sci. Biotechnol. 1998, 73, 259–263. [Google Scholar] [CrossRef]
- Goulao, L.; Valdiviesso, T.; Santana, C.; Oliveira, C.M. Comparison between Phenetic Characterisation Using RAPD and ISSR Markers and Phenotypic Data of Cultivated Chestnut (Castanea sativa Mill.). Genet. Resour. Crop Evol. 2001, 48, 329–338. [Google Scholar] [CrossRef]
- Abdelhamid, S.; Küpfer, P.; Conedera, M. Identification of Chestnut (C. sativa Mill.) Cultivars Using RAPD and AFLP Markers in Switzerland. Rev. Suisse De Vitic. Arboric. Et Hortic. 2004, 36, 349–354. [Google Scholar]
- Mattioni, C.; Cherubini, M.; Micheli, E.; Villani, F.; Bucci, G. Role of Domestication in Shaping Castanea sativa Genetic Variation in Europe. Tree Genet. Genomes 2008, 4, 563–574. [Google Scholar] [CrossRef]
- Martin, M.A.; Mattioni, C.; Cherubini, M.; Taurchini, D.; Villani, F. Genetic Diversity in European Chestnut Populations by Means of Genomic and Genic Microsatellite Markers. Tree Genet. Genomes 2010, 6, 735–744. [Google Scholar] [CrossRef]
- del Mar Naval, M.; Zuriaga, E.; Pecchioli, S.; Llácer, G.; Giordani, E.; Badenes, M.L. Analysis of Genetic Diversity among Persimmon Cultivars Using Microsatellite Markers. Tree Genet. Genomes 2010, 6, 677–687. [Google Scholar] [CrossRef] [Green Version]
- Erfani, J.; Ebadi, A.; Abdollahi, H.; Fatahi, R. Genetic Diversity of Some Pear Cultivars and Genotypes Using Simple Sequence Repeat (SSR) Markers. Plant Mol. Biol. Rep. 2012, 30, 1065–1072. [Google Scholar] [CrossRef]
- Gürcan, K.; Önal, N.; Yilmaz, K.U.; Ullah, S.; Erdoğan, A.; Zengin, Y. Evaluation of Turkish Apricot Germplasm Using SSR Markers: Genetic Diversity Assessment and Search for Plum Pox Virus Resistance Alleles. Sci. Hortic. 2015, 193, 155–164. [Google Scholar] [CrossRef]
- Çalişkan, O.; Bayazit, S.; Öktem, M.; Ergül, A. Evaluation of the Genetic Diversity of Pomegranate Accessions from Turkey Using New Microsatellite Markers. Turk. J. Agric. For. 2017, 41, 142–153. [Google Scholar] [CrossRef]
- Pérez, V.; Larrañaga, N.; Abdallah, D.; Wünsch, A.; Hormaza, J.I. Genetic Diversity of Local Peach (Prunus persica) Accessions from La Palma Island (Canary Islands, Spain). Agronomy 2020, 10, 457. [Google Scholar] [CrossRef] [Green Version]
- López, M.; Gori, M.; Bini, L.; Ordoñez, E.; Durán, E.; Gutierrez, O.; Masoni, A.; Giordani, E.; Biricolti, S.; Palchetti, E. Genetic Purity of Cacao Criollo from Honduras Is Revealed by SSR Molecular Markers. Agronomy 2021, 11, 225. [Google Scholar] [CrossRef]
- Zuriaga, E.; Pintová, J.; Bartual, J.; Badenes, M.L. Characterization of the Spanish Pomegranate Germplasm Collection Maintained at the Agricultural Experiment Station of Elche to Identify Promising Breeding Materials. Plants 2022, 11, 1257. [Google Scholar] [CrossRef] [PubMed]
- Beccaro, G.L.; Torello-Marinoni, D.; Binelli, G.; Donno, D.; Boccacci, P.; Botta, R.; Cerutti, A.K.; Conedera, M. Insights in the Chestnut Genetic Diversity in Canton Ticino (Southern Switzerland). Silvae Genet. 2012, 61, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Quintana, J.; Contreras, A.; Merino, I.; Vinuesa, A.; Orozco, G.; Ovalle, F.; Gomez, L. Genetic Characterization of Chestnut (Castanea sativa Mill.) Orchards and Traditional Nut Varieties in El Bierzo, a Glacial Refuge and Major Cultivation Site in Northwestern Spain. Tree Genet. Genomes 2015, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Janfaza, S.; Yousefzadeh, H.; Hosseini Nasr, S.M.; Botta, R.; Asadi Abkenar, A.; Torello Marinoni, D. Genetic Diversity of Castanea sativa an Endangered Species in the Hyrcanian Forest. Silva Fenn. 2017, 51, 15. [Google Scholar] [CrossRef] [Green Version]
- El Chami, M.A.; Tourvas, N.; Kazakis, G.; Kalaitzis, P.; Aravanopoulos, F.A. Genetic Characterisation of Chestnut Cultivars in Crete. Forests 2021, 12, 1659. [Google Scholar] [CrossRef]
- Tumpa, K.; Šatović, Z.; Liber, Z.; Vidaković, A.; Idžojtić, M.; Ježić, M.; Ćurković-Perica, M.; Poljak, I. Gene Flow between Wild Trees and Cultivated Varieties Shapes the Genetic Structure of Sweet Chestnut (Castanea sativa Mill.) Populations. Sci. Rep. 2022, 12, 15007. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; Ramos-Cabrer, A.M.; Barreneche, T.; Mattioni, C.; Villani, F.; Díaz-Hernández, M.B.; Martín, L.M.; Martín, Á. Database of European Chestnut Cultivars and Definition of a Core Collection Using Simple Sequence Repeats. Tree Genet. Genomes 2017, 13, 114. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; Ramos-Cabrer, A.M.; Barreneche, T.; Mattioni, C.; Villani, F.; Díaz-Hernández, B.; Martín, L.M.; Robles-Loma, A.; Cáceres, Y.; Martín, A. Instant Domestication Process of European Chestnut Cultivars. Ann. Appl. Biol. 2019, 174, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Bouffartigue, C.; Debille, S.; Fabreguettes, O.; Cabrer, A.R.; Pereira-Lorenzo, S.; Flutre, T.; Harvengt, L. Two Main Genetic Clusters with High Admixture between Forest and Cultivated Chestnut (Castanea sativa Mill.) in France. Ann. Sci. 2020, 77, 74. [Google Scholar] [CrossRef]
- Castellana, S.; Martin, M.Á.; Solla, A.; Alcaide, F.; Villani, F.; Cherubini, M.; Neale, D.; Mattioni, C. Signatures of Local Adaptation to Climate in Natural Populations of Sweet Chestnut (Castanea sativa Mill.) from Southern Europe. Ann. Sci. 2021, 78, 27. [Google Scholar] [CrossRef]
- Bracalini, M.; Croci, F.; Turchi, A.; Giordani, E.; Tiberi, R.; Panzavolta, T. The Asian Chestnut Gall Wasp in Italy: Surveys on Its Native and Exotic Parasitoids as Well as on Chestnut Cultivar Susceptibility. Asian J. Adv. Agric. Res. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Alessandri, S.; Krznar, M.; Ajolfi, D.; Cabrer, A.M.R.; Pereira-Lorenzo, S.; Dondini, L. Genetic Diversity of Castanea sativa Mill. Accessions from the Tuscan-Emilian Apennines and Emilia Romagna Region (Italy). Agronomy 2020, 10, 1319. [Google Scholar] [CrossRef]
- Cavallini, M.; Lombardo, G.; Binelli, G.; Cantini, C. Assessing the Genetic Identity of Tuscan Sweet Chestnut (Castanea sativa Mill.). Forests 2022, 13, 0967. [Google Scholar] [CrossRef]
- Bini, C. Castagna, Eccellenza Toscana: Protocollo Regione-Anci per Valorizzare Settore. Toscana Notizie, 2021. Available online: https://www.toscana-notizie.it/-/castagna-eccellenza-toscana-protocollo-regione-anci-per-valorizzare-settore (accessed on 16 May 2023).
- Fideghelli, C. Aspetti Pomologici e Qualitativi Dei Materiali Di Propagazione; I Georgofili; Polistampa: Florence, Italy, 2016; Volume 2, pp. 55–61. [Google Scholar]
- Di Gioia, F. Recupero Delle Varietà Di Castagno Autoctone Della Garfagnana, Collana Secondo Natura. In Edizioni Andromeda; Beniamini s.r.l.: Rome, Italy, 2018; pp. 1–172. [Google Scholar]
- Panzavolta, T.; Croci, F.; Bracalini, M.; Melika, G.; Benedettelli, S.; Tellini Florenzano, G.; Tiberi, R. Population Dynamics of Native Parasitoids Associated with the Asian Chestnut Gall Wasp (Dryocosmus kuriphilus) in Italy. Psyche 2018, 2018, 8078049. [Google Scholar] [CrossRef] [Green Version]
- Bellini, E.; Giordani, E.; Morelli, D.; Ferri, A.; Paradisi, G.; Fattorini, M.; Autino, A.; Cresti, M. Le Varietà Locali Di Castagno Della Garfagnana Nel Repertorio Regionale Toscano (L.R. 64/04), I Castagni Della Garfagnana, Studi per La Tracciabilità Di Filiera e La Caratterizzazione Qualitativa Della Farina Di Neccio Della Garfagnana DOP; ARSIA (Agenzia Regionale per Lo Sviluppo e l’Innovazione Nel Settore Agricolo-Forestale): Florence, Italy, 2009; pp. 1–160. [Google Scholar]
- Bianchi, L.; Maltoni, A.; Mariotti, B.; Paci, M. La Selvicoltura Dei Castagneti Da Frutto Abbandonati Della Toscana DISTAF—Dipartimento Di Scienze e Tecnologie Ambientali Forestali Università Degli Studi Di Firenze; ARSIA (Agenzia Regionale per Lo Sviluppo e l’Innovazione Nel Settore Agricolo-Forestale): Florence, Italy, 2009; pp. 1–140. [Google Scholar]
- Lo Piccolo, E.; Landi, M.; Ceccanti, C.; Mininni, A.N.; Marchetti, L.; Massai, R.; Guidi, L.; Remorini, D. Nutritional and Nutraceutical Properties of Raw and Traditionally Obtained Flour from Chestnut Fruit Grown in Tuscany. Eur. Food Res. Technol. 2020, 246, 1867–1876. [Google Scholar] [CrossRef]
- Antonaroli, R.; Bellini, E. Pastinese, Regione Emilia-Romagna – Agricoltura, 2014. Available online: https://agricoltura.regione.emilia-romagna.it/produzioni-agroalimentari/temi/agrobiodiversita/schede-specie-vegetali/castagno/pastinese (accessed on 16 May 2023).
- Antonaroli, R.; Bellini, E. Scheda Tecnica per l’iscrizione al Repertorio, Rossola RER V077, Regione Emilia-Romagna L.R. N. 1/2008, 2022. Available online: https://agricoltura.regione.emilia-romagna.it/produzioni-agroalimentari/temi/agrobiodiversita/schede-specie-vegetali/castagno/rossola (accessed on 16 May 2023).
- Bellini, E.; Giordani, E.; Marinelli, C.; Migliorini, M.; Funghini, L. Marrone Del Mugello PGI: Nutritional and Organoleptic Quality of European Chestnut (Castanea sativa Mill.). In Proceedings of the IV International Chestnut Symposium, Beijing, China, 25–28 September 2008; Volume 844, pp. 61–68. [Google Scholar]
- Giannini, M.; Del Biondo, A. La Castanicoltura Toscana: Aspetti Tecnici e Produttivi; L’Informatore Agrario: Verona, Italy, 2010. [Google Scholar]
- Stival, O. Il Castagno Da Frutto. In Rubrica Verde; Sebino Bresciano: Brescia, Italy, 2007. [Google Scholar]
- Marinoni, D.; Akkak, A.; Bounous, G.; Edwards, K.J.; Botta, R. Development and Characterization of Microsatellite Markers in Castanea sativa (Mill.). Mol. Breed. 2003, 11, 127–136. [Google Scholar] [CrossRef]
- Kampfer, S.; Lexer, C.; Glössl, J.; Steinkellner, H. Characterization of (GA)(n) Microsatellite Loci from Quercus robur. Hereditas 1998, 129, 183–186. [Google Scholar] [CrossRef]
- Steinkellner, H.; Fluch, S.; Turetschek, E.; Lexer, C.; Streiff, R.; Kremer, A.; Burg, K.; Glössl, J. Identification and Characterization of (GA/CT) n-Microsatellite Loci from Quercus petraea. Plant Mol. Biol. 1997, 33, 1093–1096. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.J. Isolation of Plant DNA from Fresh Tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Peakall, R.O.D.; Smouse, P.E. GENALEX 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar]
- Liu, K.; Muse, S. V PowerMarker: An Integrated Analysis Environment for Genetic Marker Analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the Number of Clusters of Individuals Using the Software STRUCTURE: A Simulation Study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: A Website and Program for Visualizing STRUCTURE Output and Implementing the Evanno Method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Francis, R.M. Pophelper: An R Package and Web App to Analyse and Visualize Population Structure. Mol. Ecol. Resour. 2017, 17, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Bruvo, R.; Michiels, N.K.; D’souza, T.G.; Schulenburg, H. A Simple Method for the Calculation of Microsatellite Genotype Distances Irrespective of Ploidy Level. Mol. Ecol. 2004, 13, 2101–2106. [Google Scholar] [CrossRef]
- Jombart, T. Adegenet: A R Package for the Multivariate Analysis of Genetic Markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [Green Version]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R Package for Genetic Analysis of Populations with Clonal, Partially Clonal, and/or Sexual Reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Oksanen, J. Vegan: Ecological Diversity. R Proj. 2013, 368, 1–11. [Google Scholar]
- Chessel, D.; Dufour, A.B.; Thioulouse, J. The Ade4 Package-I-One-Table Methods. R News 2004, 4, 5–10. [Google Scholar]
- Siberchicot, A.; Julien-Laferrière, A.; Dufour, A.-B.; Thioulouse, J.; Dray, S. Adegraphics: An S4 Lattice-Based Package for the Representation of Multivariate Data. R J. 2017, 9, 198–212. [Google Scholar] [CrossRef]
- Sisco, P.H.; Kubisiak, T.L.; Casasoli, M.; Barreneche, T.; Kremer, A.; Clark, C.; Sederoff, R.R.; Hebard, F.V.; Villani, F. An Improved Genetic Map for Castanea mollissima/Castanea dentata and Its Relationship to the Genetic Map of Castanea sativa. In Proceedings of the III International Chestnut Congress 693; Abreu, C.G., Rosa, E., Monteiro, A.A., Eds.; Acta Horticulturae: Leuven, Belgium, 2005; pp. 491–495. [Google Scholar]
- Akkak, A.; Boccacci, P.; Torello Marinoni, D. Cross-Species Amplification of Microsatellite Markers in Castanea Spp. and Other Related Species. In Proceedings of the I European Congress on Chestnut-Castanea 866; Acta Horticulturae: Leuven, Belgium, 2009; pp. 195–201. [Google Scholar]
- Medina-Mora, C.; Fulbright, D.W.; Jarosz, A.M. SSR Genotyping of Progeny from a Chestnut Orchard in Michigan. In Proceedings of the V International Chestnut Symposium 1019, Shepherdstown, WV, USA, 4–8 September 2012; pp. 173–178. [Google Scholar]
- Urrestarazu, J.; Royo, J.B.; Santesteban, L.G.; Miranda, C. Evaluating the Influence of the Microsatellite Marker Set on the Genetic Structure Inferred in Pyrus communis L. PLoS ONE 2015, 10, e0138417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torello Marinoni, D.; Akkak, A.; Beltramo, C.; Guaraldo, P.; Boccacci, P.; Bounous, G.; Ferrara, A.M.; Ebone, A.; Viotto, E.; Botta, R. Genetic and Morphological Characterization of Chestnut (Castanea sativa Mill.) Germplasm in Piedmont (North-Western Italy). Tree Genet. Genomes 2013, 9, 1017–1030. [Google Scholar] [CrossRef]
- Petit, R.J.; El Mousadik, A.; Pons, O. Identifying Populations for Conservation on the Basis of Genetic Markers. Conserv. Biol. 1998, 12, 844–855. [Google Scholar] [CrossRef]
- Allendorf, F.W.; Luikart, G.H.; Aitken, S.N. Conservation and the Genetics of Populations, 2nd ed.; Blackwell Publishing: Malden, MA, USA, 2012; p. 624. [Google Scholar]
- Mattioni, C.; Martin, M.A.; Chiocchini, F.; Cherubini, M.; Gaudet, M.; Pollegioni, P.; Velichkov, I.; Jarman, R.; Chambers, F.M.; Paule, L.; et al. Landscape Genetics Structure of European Sweet Chestnut (Castanea sativa Mill): Indications for Conservation Priorities. Tree Genet. Genomes 2017, 13, 39. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms. Am. J. Hum. Genet. 1980, 32, 314. [Google Scholar]
- Pereira-Lorenzo, S.; Costa, R.M.L.; Ramos-Cabrer, A.M.; Ribeiro, C.A.M.; da Silva, M.F.S.; Manzano, G.; Barreneche, T. Variation in Grafted European Chestnut and Hybrids by Microsatellites Reveals Two Main Origins in the Iberian Peninsula. Tree Genet. Genomes 2010, 6, 701–715. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; Costa, R.M.L.; Ramos-Cabrer, A.M.; Ciordia-Ara, M.; Ribeiro, C.A.M.; Borges, O.; Barreneche, T.; Donini, P. Chestnut Cultivar Diversification Process in the Iberian Peninsula, Canary Islands, and Azores. Genome 2011, 54, 301–315. [Google Scholar] [CrossRef]
- Wright, S. The Interpretation of Population Structure by F-Statistics with Special Regard to Systems of Mating. Evolution 1965, 395–420. [Google Scholar] [CrossRef]
- Mellano, M.G.; Beccaro, G.L.; Donno, D.; Marinoni, D.T.; Boccacci, P.; Canterino, S.; Cerutti, A.K.; Bounous, G. Castanea spp. Biodiversity Conservation: Collection and Characterization of the Genetic Diversity of an Endangered Species. Genet. Resour. Crop. Evol. 2012, 59, 1727–1741. [Google Scholar] [CrossRef]
- Hocquigny, S.; Pelsy, F.; Dumas, V.; Kindt, S.; Heloir, M.C.; Merdinoglu, D. Diversification within Grapevine Cultivars Goes through Chimeric States. Genome 2004, 47, 579–589. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Primer Sequence (5′ → 3′) | Repeat Motif | Annealing Temperature (°C) | Product Size | Reference |
---|---|---|---|---|---|
CsCAT1 | F: GAGAATGCCCACTTTTGCA R: GCTCCCTTATGGTCTCG | (TG)5TA(TG)24 | 50° | 190–224 | [63] |
CsCAT14 | F: CGAGGTTGTTGTTCATCATTAC R: GATCTCAAGTCAAAAGGTGTC | (CA)22 | 58° | 133–161 | [63] |
CsCAT15 | F: TTCTGCGACCTCGAAACCGA R: GCTAGGGTTTTCATTTCTAG | (TC)12 | 50° | 125–135 | [63] |
CsCAT16 | F: CTCCTTGACTTTGAAGTTGC R: CTGATCGAGAGTAATAAAG | (TC)20 | 50° | 130–147 | [63] |
CsCAT17 | F: TTGGCTATACTTGTTCTGCAAG R: GCCCCATGTTTTCTTCCATGG | (CA)19A(CA)2AA(CA)3 | 58° | 138–160 | [63] |
CsCAT2 | F: GTAACTTGAAGCAGTGTGAAC R: CGCATCATAGTGAGTGACAG | (GA)16 | 55° | 200–233 | [63] |
CsCAT3 | F: CACTATTTTATCATGGACGG R: CGAATTGAGAGTTCATACTC | (AG)20 | 50° | 208–258 | [63] |
CsCAT34 | F: TGAGCAAGGATGGATGATGAG R: GGTGGTCATCATGACTGCATC | (GT)23 | 50° | 168–188 | [63] |
CsCAT41 | F: AAGTCAGCAACACCATATGC R: CCCACTGTTCATGAGTTTCT | (AG)20 | 50° | 200–235 | [63] |
CsCAT5 | F: CATTTTCTCATTGTGGCTGC R: CACTTGCACATCCAATTAGG | (GA)20 | 55° | 221–245 | [63] |
CsCAT6 | F: AGTGCTCGTGGTCAGTGAG R: CAACTCTGCATGATAAC | (AC)24AT(AC)4 | 50° | 158–194 | [63] |
CsCAT7 | F: GAACATGATGATTGGCCTC R: CCAAACATGACATATGTCCC | (TG)8CG(TG)4 | 50° | 190–226 | [63] |
CsCAT8 | F: CTGCAAGACAAGAATTACAC R: GAATAACCTGCAGAAGGC | (GT)7(GA)20 | 50° | 188–212 | [63] |
QpZAG110 | F: GGAGGCTTCCTTCAACCTACT R: GATCTCTTGTGTGCTGTATTT | (AG)15 | 53° | 210–230 | [65] |
QpZAG119 | F: GATCAACAAGCCCAAGGCAC R: GGCATGTGTATTGAAAGCTGTA | (GA)24 | 55° | 210–223 | [65] |
QpZAG16 | F: CTTCACTGGCTTTTCCTCCT R: TGAAGCCCTTGTCAACATGC | (AG)21 | 55° | 158–162 | [65] |
QpZAG36 | F: GATCAAAATTTGGAATATTAAGAGAG R: ACTGTGGTGGTGAGTCTAACATGTAG | (AG)19 | 57° | 211–223 | [65] |
QrZAG121 | F: GGCATGTGTATTGAAAGCTGTA R: GTACCCAAGATGTAAAATCACCC | (GA)23 | 55° | 215–223 | [64] |
QrZAG15 | F: CGATTTGATAATGACACTATGG R: CATCGACTCATTGTTAAGCAC | (GA)15 | 55° | 118–132 | [64] |
QrZAG20 | F: CCATTAAAAGAAGCAGTATTTTGT R: GCAACACTCAGCCTATATCTAGAA | (TC)18 | 55° | 159–179 | [64] |
QrZAG75 | F: ACCGCCTATCTCAACCAGAG R: GTCCGAGAATCATCATTAAAGG | (GA)57 | 55° | 112–166 | [64] |
Locus | Na | Ne | Fa | Ho | He | F | PIC |
---|---|---|---|---|---|---|---|
CsCAT1 | 4.000 | 2.485 | 0.527 | 0.400 | 0.598 | 0.331 | 0.526 |
CsCAT14 | 5.000 | 4.608 | 0.291 | 0.727 | 0.783 | 0.071 | 0.748 |
CsCAT15 | 2.000 | 1.994 | 0.527 | 0.400 | 0.499 | 0.198 | 0.374 |
CsCAT16 | 5.000 | 1.955 | 0.691 | 0.527 | 0.488 | −0.080 | 0.455 |
CsCAT17 | 5.000 | 3.491 | 0.391 | 0.564 | 0.714 | 0.210 | 0.665 |
CsCAT2 | 6.000 | 2.373 | 0.600 | 0.218 | 0.579 | 0.623 | 0.533 |
CsCAT3 | 9.000 | 4.495 | 0.327 | 0.231 | 0.778 | 0.703 | 0.746 |
CsCAT34 | 4.000 | 3.691 | 0.315 | 0.407 | 0.729 | 0.441 | 0.678 |
CsCAT41 | 5.000 | 2.365 | 0.600 | 0.255 | 0.577 | 0.559 | 0.530 |
CsCAT5 | 8.000 | 3.810 | 0.418 | 0.655 | 0.738 | 0.113 | 0.703 |
CsCAT6 | 4.000 | 3.784 | 0.318 | 0.418 | 0.736 | 0.432 | 0.687 |
CsCAT7 | 5.000 | 3.723 | 0.373 | 0.800 | 0.731 | −0.094 | 0.687 |
CsCAT8 | 5.000 | 3.769 | 0.345 | 0.800 | 0.735 | −0.089 | 0.690 |
QpZAG110 | 4.000 | 2.469 | 0.582 | 0.655 | 0.595 | −0.100 | 0.548 |
QpZAG119 | 5.000 | 3.359 | 0.445 | 0.418 | 0.702 | 0.405 | 0.657 |
QpZAG16 | 3.000 | 2.243 | 0.604 | 0.566 | 0.554 | −0.022 | 0.492 |
QpZAG36 | 3.000 | 2.046 | 0.655 | 0.564 | 0.511 | −0.102 | 0.458 |
QrZAG121 | 5.000 | 1.855 | 0.717 | 0.396 | 0.461 | 0.140 | 0.435 |
QrZAG15 | 3.000 | 2.458 | 0.555 | 0.564 | 0.593 | 0.050 | 0.527 |
QrZAG20 | 5.000 | 3.203 | 0.427 | 0.418 | 0.688 | 0.392 | 0.634 |
QrZAG75 | 3.000 | 2.098 | 0.623 | 0.000 | 0.523 | 1.000 | 0.453 |
Mean | 4.667 | 2.965 | 0.492 | 0.475 | 0.634 | 0.247 | 0.582 |
Carpinese | Pastinese | Nerattino | Rossola | Marrone | |
---|---|---|---|---|---|
Carpinese | * | 0.488 | 0.624 | 0.589 | 1.239 |
Pastinese | 0.614 | * | 0.280 | 0.316 | 0.977 |
Nerattino | 0.536 | 0.756 | * | 0.485 | 1.078 |
Rossola | 0.555 | 0.729 | 0.616 | * | 1.062 |
Marrone | 0.290 | 0.377 | 0.340 | 0.346 | * |
Source | df | SS | MS | Est. Var. | % | FST | Nm |
---|---|---|---|---|---|---|---|
Among Pops | 4 | 223.526 | 55.881 | 2.463 | 33% | ||
Within Pops | 105 | 515.729 | 4.912 | 4.912 | 67% | ||
Total | 109 | 739.255 | 7.375 | 100% | 0.334 *** | 0.498 |
Carpinese | Pastinese | Nerattino | Rossola | Marrone | |
---|---|---|---|---|---|
Carpinese | 0.000 | 0.283 | 0.418 | 0.393 | 0.534 |
Pastinese | 0.632 | 0.000 | 0.198 | 0.184 | 0.364 |
Nerattino | 0.348 | 1.012 | 0.000 | 0.350 | 0.509 |
Rossola | 0.386 | 1.111 | 0.463 | 0.000 | 0.476 |
Marrone | 0.218 | 0.436 | 0.242 | 0.275 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bini, L.; Gori, M.; Nin, S.; Natale, R.; Meacci, E.; Giordani, E.; Biricolti, S. Assessing the Genetic Variability of Sweet Chestnut Varieties from the Tuscan Apennine Mountains (Italy). Agronomy 2023, 13, 1947. https://doi.org/10.3390/agronomy13071947
Bini L, Gori M, Nin S, Natale R, Meacci E, Giordani E, Biricolti S. Assessing the Genetic Variability of Sweet Chestnut Varieties from the Tuscan Apennine Mountains (Italy). Agronomy. 2023; 13(7):1947. https://doi.org/10.3390/agronomy13071947
Chicago/Turabian StyleBini, Lorenzo, Massimo Gori, Stefania Nin, Roberto Natale, Elisabetta Meacci, Edgardo Giordani, and Stefano Biricolti. 2023. "Assessing the Genetic Variability of Sweet Chestnut Varieties from the Tuscan Apennine Mountains (Italy)" Agronomy 13, no. 7: 1947. https://doi.org/10.3390/agronomy13071947
APA StyleBini, L., Gori, M., Nin, S., Natale, R., Meacci, E., Giordani, E., & Biricolti, S. (2023). Assessing the Genetic Variability of Sweet Chestnut Varieties from the Tuscan Apennine Mountains (Italy). Agronomy, 13(7), 1947. https://doi.org/10.3390/agronomy13071947