Dynamic Maceration of Acerola (Malpighia emarginata DC.) Fruit Waste: An Optimization Study to Recover Anthocyanins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design
2.3. Dynamic Maceration
2.4. Analysis of Dependent Variables
2.4.1. Extraction Yield
2.4.2. Anthocyanins Content
2.5. Extraction Process Modelling and Statistical Analysis
3. Results and Discussion
3.1. Experimental Data for Extraction Process Optimization
3.2. Models’ Fitting and Statistical Verification
3.3. Effect of the Process Factors and Optimal Dynamic Maceration Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duchenne-Moutien, R.A.; Neetoo, H. Climate Change and Emerging Food Safety Issues: A Review. J. Food Prot. 2021, 84, 1884–1897. [Google Scholar] [CrossRef]
- Lau, K.Q.; Sabran, M.R.; Shafie, S.R. Utilization of Vegetable and Fruit By-Products as Functional Ingredient and Food. Front. Nutr. 2021, 8, 261. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Z.; Tang, Y. Enhancing Food Security and Environmental Sustainability: A Critical Review of Food Loss and Waste Management. Resour. Environ. Sustain. 2021, 4, 100023. [Google Scholar] [CrossRef]
- Saba, B.; Bharathidasan, A.K.; Ezeji, T.C.; Cornish, K. Characterization and Potential Valorization of Industrial Food Processing Wastes. Sci. Total Environ. 2023, 868, 161550. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; de Souza, T.S.P.; Holland, B.; Dunshea, F.; Barrow, C.; Suleria, H.A.R. Valorization of Food Waste to Produce Value-Added Products Based on Its Bioactive Compounds. Processes 2023, 11, 840. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Barba, F.J.; Dominguéz, R.; Gagaoua, M.; Lorenzo, J.M. Development of New Food and Pharmaceutical Products: Nutraceuticals and Food Additives. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2020; Volume 92, pp. 53–96. [Google Scholar]
- Echegaray, N.; Guzel, N.; Kumar, M.; Guzel, M.; Hassoun, A.; Lorenzo, J.M. Recent Advancements in Natural Colorants and Their Application as Coloring in Food and in Intelligent Food Packaging. Food Chem. 2023, 404, 134453. [Google Scholar] [CrossRef]
- Dey, S.; Nagababu, B.H. Applications of Food Color and Bio-Preservatives in the Food and Its Effect on the Human Health. Food Chem. Adv. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Tan, J.; Han, Y.; Han, B.; Qi, X.; Cai, X.; Ge, S.; Xue, H. Extraction and Purification of Anthocyanins: A Review. J. Agric. Food Res. 2022, 8, 100306. [Google Scholar] [CrossRef]
- Peñaloza, S.; Delesma, C.; Muñiz, J.; López-Ortiz, A. The Anthocyanin’s Role on the Food Metabolic Pathways, Color and Drying Processes: An Experimental and Theoretical Approach. Food Biosci. 2022, 47, 101700. [Google Scholar] [CrossRef]
- Chhoden, T.; Singh, A.; Aggarwal, P.; Sharma, S. Anthocyanins and Its Health Benefits. In Functionality and Application of Colored Cereals; Academic Press: Cambridge, MA, USA, 2023; pp. 161–184. [Google Scholar]
- Mazewski, C.; Liang, K.; Gonzalez de Mejia, E. Comparison of the Effect of Chemical Composition of Anthocyanin-Rich Plant Extracts on Colon Cancer Cell Proliferation and Their Potential Mechanism of Action Using in Vitro, in Silico, and Biochemical Assays. Food Chem. 2018, 242, 378–388. [Google Scholar] [CrossRef]
- Gowd, V.; Jia, Z.; Chen, W. Anthocyanins as Promising Molecules and Dietary Bioactive Components against Diabetes—A Review of Recent Advances. Trends Food Sci. Technol. 2017, 68, 1–13. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Giampieri, F.; Gasparrini, M.; Mazzoni, L.; Santos-Buelga, C.; González-Paramás, A.M.; Forbes-Hernández, T.Y.; Afrin, S.; Páez-Watson, T.; Quiles, J.L.; et al. The Protective Effect of Acerola (Malpighia emarginata) against Oxidative Damage in Human Dermal Fibroblasts through the Improvement of Antioxidant Enzyme Activity and Mitochondrial Functionality. Food Funct. 2017, 8, 3250–3258. [Google Scholar] [CrossRef] [PubMed]
- Hanamura, T.; Hagiwara, T.; Kawagishi, H. Structural and Functional Characterization of Polyphenols Isolated from Acerola (Malpighia emarginata DC.) Fruit. Biosci. Biotechnol. Biochem. 2005, 69, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Jiménez, F.-J.; Fernández-Ochoa, Á.; Cádiz-Gurrea, M.d.l.L.; Lozano-Sánchez, J.; Oliver-Simancas, R.; Alañón, M.E.; Castangia, I.; Segura-Carretero, A.; Arráez-Román, D. Application of Response Surface Methodologies to Optimize High-Added Value Products Developments: Cosmetic Formulations as an Example. Antioxidants 2022, 11, 1552. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Pinela, J.; Dias, M.I.; Pereira, C.; Petrović, J.; Soković, M.; Calhelha, R.C.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R.; Barros, L. Valorization of Rambutan (Nephelium lappaceum L.) Peel: Chemical Composition, Biological Activity, and Optimized Recovery of Anthocyanins. Food Res. Int. 2023, 165, 112574. [Google Scholar] [CrossRef]
- Tena, N.; Asuero, A.G. Up-To-Date Analysis of the Extraction Methods for Anthocyanins: Principles of the Techniques, Optimization, Technical Progress, and Industrial Application. Antioxidants 2022, 11, 286. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of Bioactive Compounds from Plant Materials Using Combination of Various Novel Methods: A Review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Benvenuti, S.; Brighenti, V.; Pellati, F. High-Performance Liquid Chromatography for the Analytical Characterization of Anthocyanins in Vaccinium myrtillus L. (Bilberry) Fruit and Food Products. Anal. Bioanal. Chem. 2018, 410, 3559–3571. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Araújo, P.; Duarte, M.F.; de Freitas, V.; Pintado, M.; Saraiva, J.A. High-Pressure Assisted Extraction of Bioactive Compounds from Industrial Fermented Fig by-Product. J. Food Sci. Technol. 2017, 54, 2519. [Google Scholar] [CrossRef]
- Rocha, R.; Pinela, J.; Abreu, R.M.V.; Añibarro-Ortega, M.; Pires, T.C.S.P.; Saldanha, A.L.; Alves, M.J.; Nogueira, A.; Ferreira, I.C.F.R.; Barros, L. Extraction of Anthocyanins from Red Raspberry for Natural Food Colorants Development: Processes Optimization and in Vitro Bioactivity. Processes 2020, 8, 1447. [Google Scholar] [CrossRef]
- Gonçalves, G.A.; Soares, A.A.; Correa, R.C.G.; Barros, L.; Haminiuk, C.W.I.; Peralta, R.M.; Ferreira, I.C.F.R.; Bracht, A. Merlot Grape Pomace Hydroalcoholic Extract Improves the Oxidative and Inflammatory States of Rats with Adjuvant-Induced Arthritis. J. Funct. Foods 2017, 33, 408–418. [Google Scholar] [CrossRef]
- Cerino, M.C. Chemical Characterization of Malpighia Emarginata dc. Bioresidues and Exploration of Their Colourant Potential; Instituto Politecnico de Braganca: Braganca, Portugal, 2021; Available online: https://www.proquest.com/openview/077c4582ad80fbc6538dc0f7013fddc2/1?pq-origsite=gscholar&cbl=2026366&diss=y (accessed on 5 June 2023).
- Iberahim, N.; Sethupathi, S.; Goh, C.L.; Bashir, M.J.K.; Ahmad, W. Optimization of Activated Palm Oil Sludge Biochar Preparation for Sulphur Dioxide Adsorption. J. Environ. Manag. 2019, 248, 109302. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.R.; Pinela, J.; Barros, L.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Anthocyanin-Rich Extract of Jabuticaba Epicarp as a Natural Colorant: Optimization of Heat- and Ultrasound-Assisted Extractions and Application in a Bakery Product. Food Chem. 2020, 316, 126364. [Google Scholar] [CrossRef]
- Pinela, J.; Prieto, M.A.; Pereira, E.; Jabeur, I.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R. Optimization of Heat- and Ultrasound-Assisted Extraction of Anthocyanins from Hibiscus sabdariffa Calyces for Natural Food Colorants. Food Chem. 2019, 275, 309–321. [Google Scholar] [CrossRef]
- Rezende, Y.R.R.S.; Nogueira, J.P.; Narain, N. Comparison and Optimization of Conventional and Ultrasound Assisted Extraction for Bioactive Compounds and Antioxidant Activity from Agro-Industrial Acerola (Malpighia emarginata DC) Residue. LWT—Food Sci. Technol. 2017, 85, 158–169. [Google Scholar] [CrossRef]
- Silva, P.B.; Mendes, L.G.; Rehder, A.P.B.; Duarte, C.R.; Barrozo, M.A.S. Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Acerola Waste. J. Food Sci. Technol. 2020, 57, 4627–4636. [Google Scholar] [CrossRef]
Runs | Experimental Domain | Experimental Responses | |||||
---|---|---|---|---|---|---|---|
t (min) | T (°C) | E (%) | Yield (%, w/w) | COD (mg/g Extract) | POD (mg/g Extract) | TA (mg/g Extract) | |
1 | 20 (−1) | 34 (−1) | 20 (−1) | 54.53 | 1.413 | 1.115 | 2.528 |
2 | 72 (+1) | 34 (−1) | 20 (−1) | 53.57 | 1.110 | 0.963 | 2.073 |
3 | 20 (−1) | 76 (+1) | 20 (−1) | 55.44 | 0.946 | 0.882 | 1.828 |
4 | 72 (+1) | 76 (+1) | 20 (−1) | 53.30 | 0.723 | 0.740 | 1.341 |
5 | 20 (−1) | 34 (−1) | 80 (+1) | 48.03 | 0.320 | 0.408 | 0.728 |
6 | 72 (+1) | 34 (−1) | 80 (+1) | 58.88 | 0.727 | 0.721 | 1.448 |
7 | 20 (−1) | 76 (+1) | 80 (+1) | 52.81 | 0.666 | 0.720 | 1.385 |
8 | 72 (+1) | 76 (+1) | 80 (+1) | 63.21 | 1.220 | 1.100 | 2.180 |
9 | 2 (−1.68) | 55 (0) | 50 (0) | 50.09 | 0.956 | 0.765 | 1.721 |
10 | 90 (−1.68) | 55 (0) | 50 (0) | 58.69 | 1.010 | 0.966 | 1.976 |
11 | 46 (0) | 20 (−1.68) | 50 (0) | 50.85 | 0.946 | 0.880 | 1.826 |
12 | 46 (0) | 90 (−1.68) | 50 (0) | 52.45 | 0.741 | 0.751 | 1.492 |
13 | 46 (0) | 55 (0) | 0 (−1.68) | 58.19 | 0.857 | 1.030 | 1.887 |
14 | 46 (0) | 55 (0) | 100 (−1.68) | 58.19 | 0.396 | 0.681 | 1.077 |
15 | 46 (0) | 55 (0) | 50 (0) | 51.35 | 0.836 | 0.784 | 1.620 |
16 | 46 (0) | 55 (0) | 50 (0) | 52.11 | 0.924 | 0.839 | 1.764 |
17 | 46 (0) | 55 (0) | 50 (0) | 50.47 | 0.802 | 0.754 | 1.556 |
18 | 46 (0) | 55 (0) | 50 (0) | 53.74 | 0.903 | 0.851 | 1.754 |
19 | 46 (0) | 55 (0) | 50 (0) | 50.25 | 0.812 | 0.773 | 1.585 |
20 | 46 (0) | 55 (0) | 50 (0) | 52.32 | 0.843 | 0.780 | 1.623 |
Regression Coefficients | Yield | COD | POD | TA | |
---|---|---|---|---|---|
Intercept | b0 | 51.7 ± 0.4 | 0.86 ± 0.02 | 0.83 ± 0.01 | 1.66 ± 0.03 |
Linear terms | b1 | 2.4 ± 0.3 | 0.05 ± 0.02 | 0.05 ± 0.01 | 0.07 ± 0.02 |
b2 | 0.9 ± 0.3 | ns | ns | ns | |
b3 | ns | −0.15 ± 0.02 | −0.10 ± 0.01 | −0.25 ± 0.02 | |
Quadratic terms | b11 | 0.96 ± 0.3 | 0.07 ± 0.02 | ns | 0.07 ± 0.02 |
b22 | ns | ns | ns | ns | |
b33 | 2.3 ± 0.3 | −0.07 ± 0.02 | ns | −0.05 ± 0.02 | |
Interactive terms | b12 | ns | ns | ns | ns |
b13 | 3.0 ± 0.4 | 0.19 ± 0.02 | 0.12 ± 0.02 | 0.31 ± 0.03 | |
b23 | 1.1 ± 0.4 | 0.21 ± 0.02 | 0.14 ± 0.02 | 0.35 ± 0.03 | |
Modeling Statistics | |||||
Model F-value | 34.67 | 43.45 | 36.43 | 66.38 | |
Lack of Fit | ns | ns | ns | ns | |
R2 | 0.9529 | 0.9620 | 0.9286 | 0.9748 | |
Adjusted R2 | 0.9254 | 0.9399 | 0.9031 | 0.9601 | |
Adequate precision | 22.60 | 28.20 | 26.58 | 36.81 | |
CV (%) | 1.92 | 7.11 | 6.07 | 4.67 |
Optimal Processing Conditions | Response Optimum | |||
---|---|---|---|---|
t (min) | T (°C) | E (%) | ||
Individual Conditions for Each Response Variable | ||||
Extraction yield | 73.9 | 62.7 | 85.8 | 63.9 ± 0.8% (w/w) |
Cyanidin-O-deoxyhexoside | 20.0 | 33.5 | 21.3 | 1.38 ± 0.04 mg/g extract |
Pelargonidin-O-deoxyhexoside | 36.3 | 42.9 | 0.0 | 1.19 ± 0.03 mg/g extract |
Total anthocyanins | 23.7 | 34.4 | 18.1 | 2.55 ± 0.06 mg/g extract |
Global Conditions Considering All Response Variables | ||||
Extraction yield | 24.8 | 40.5 | 11.8 | 57.1 ± 0.8% (w/w) |
Cyanidin-O-deoxyhexoside | 1.35 ± 0.05 mg/g extract | |||
Pelargonidin-O-deoxyhexoside | 1.16 ± 0.04 mg/g extract | |||
Total anthocyanins | 2.54 ± 0.06 mg/g extract |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerino, M.C.; Pinela, J.; Caleja, C.; Saux, C.; Pereira, E.; Barros, L. Dynamic Maceration of Acerola (Malpighia emarginata DC.) Fruit Waste: An Optimization Study to Recover Anthocyanins. Agronomy 2023, 13, 2202. https://doi.org/10.3390/agronomy13092202
Cerino MC, Pinela J, Caleja C, Saux C, Pereira E, Barros L. Dynamic Maceration of Acerola (Malpighia emarginata DC.) Fruit Waste: An Optimization Study to Recover Anthocyanins. Agronomy. 2023; 13(9):2202. https://doi.org/10.3390/agronomy13092202
Chicago/Turabian StyleCerino, María Carolina, José Pinela, Cristina Caleja, Clara Saux, Eliana Pereira, and Lillian Barros. 2023. "Dynamic Maceration of Acerola (Malpighia emarginata DC.) Fruit Waste: An Optimization Study to Recover Anthocyanins" Agronomy 13, no. 9: 2202. https://doi.org/10.3390/agronomy13092202
APA StyleCerino, M. C., Pinela, J., Caleja, C., Saux, C., Pereira, E., & Barros, L. (2023). Dynamic Maceration of Acerola (Malpighia emarginata DC.) Fruit Waste: An Optimization Study to Recover Anthocyanins. Agronomy, 13(9), 2202. https://doi.org/10.3390/agronomy13092202