Metals Contained in Various Formulations of Mineral Nitrogen Fertilizers Determined Using Portable X-ray Fluorescence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fertilizer Samples
2.2. Laboratory Measurement
2.3. Data Quality Control
2.4. Statistical Analyses and Calculation
3. Results
Metal Content in Commercial Fertilizers
4. Discussion
Metal Content in Commercial Fertilizers, and the Precision and Accuracy of the pXRF Technique
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wesseler, J.; Bonanno, A.; Drabik, D.; Materia, V.C.; Malaguti, L.; Meyer, M.; Venus, T.J. Overview of the Agricultural Inputs Sector in the EU; European Parliamentary Research Service: Brussels, Belgium, 2015; Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2015/563385/IPOL_STU(2015)563385_EN.pdf (accessed on 10 March 2023).
- Sainju, M.U.; Ghimire, U.R.; Pradhan, P.G. Nitrogen Fertilization I: Impact on Crop, Soil, and Environment. Nitrogen Fixation. In Nitrogen Fixation; Rigobelo, E.C., Pereira Serr, A., Eds.; IntechOpen: London, UK, 2019; Volume 8. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 2833. [Google Scholar] [CrossRef] [PubMed]
- FAO. World Food and Agriculture—Statistical Yearbook 2022; FAO: Rome, Italy, 2022; p. 8. [Google Scholar] [CrossRef]
- Lin, S.; Pi, Y.; Long, D.; Duan, J.; Zhu, X.; Wang, X.; He, J.; Zhu, Y. Impact of Organic and Chemical Nitrogen Fertilizers on the Crop Yield and Fertilizer Use Efficiency of Soybean—Maize Intercropping Systems. Agriculture 2022, 12, 1428. [Google Scholar] [CrossRef]
- Tian, D.; Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015, 10, 024019. [Google Scholar] [CrossRef]
- Liu, W.; Yuan, Y.; Koropeckyj-Cox, L. Effectiveness of Nutrient Management on Water Quality Improvement: A Synthesis on Nitrate-Nitrogen Loss from Subsurface Drainage. Trans. ASABE 2021, 64, 675–689. [Google Scholar] [CrossRef]
- Amlinger, F.; Pollack, M.; Favoino, E. Heavy Metals and Organic Compounds from Wastes Used as Organic Fertilizers; Final Report for the European Commission; Technical Office for Agriculture, EU: Brussels, Belgium, 2004. [Google Scholar]
- Modaihsh, A.; AI-Swailem, M.; Mahjoub, M. Heavy Metals Content of Commercial Inorganic Fertilizers Used in the Kingdom of Saudi Arabia. J. Agric. Mar. Sci. 2004, 9, 21–25. [Google Scholar] [CrossRef]
- McBride, M.B.; Spiers, G. Trace element content of selected fertilizers and dairy manures as determined by ICP-MS. Commun. Soil Sci. Plant Anal. 2001, 32, 139–156. [Google Scholar] [CrossRef]
- Chibueze, U.; Chinwendu, S.; Oriaku, O.; Ifeanyi, N.; Emenike, E. Short-term appraisal of heavy metal contents in commercial inorganic fertilizers blended and marketed in Nigeria. Eur. J. Phys. Agric. Sci. 2016, 4, 18–25. [Google Scholar]
- Wyszkowski, M.; Brodowska, M.S. Content of Trace Elements in Soil Fertilized with Potassium and Nitrogen. Agriculture 2020, 10, 398. [Google Scholar] [CrossRef]
- Naz, S.; Fazio, F.; Habib, S.S.; Nawaz, G.; Attaullah, S.; Ullah, M.; Hayat, A.; Ahmed, I. Incidence of Heavy Metals in the Application of Fertilizers to Crops (Wheat and Rice), a Fish (Common carp) Pond and a Human Health Risk Assessment. Sustainability 2022, 14, 13441. [Google Scholar] [CrossRef]
- Minnesota Department of Health. Heavy Metals in Fertilizers. Health Risk Assessment. Available online: health.state.mn.us/communities/environment/risk/studies/metals.html (accessed on 15 March 2023).
- Curtis, L.R.; Smith, B.W. Heavy Metal in Fertilizers: Considerations for Setting Regulations in Oregon; Oregon Department of Agriculture: Salem, OR, USA, 2002; Available online: https://www.semanticscholar.org/paper/Heavy-Metal-in-Fertilizers%3A-Considerations-for-Oregon-Curtis/0cfa5efe3f8eb5dad0d9a394b40eb123f7b9c6ea (accessed on 12 March 2023).
- Ministry of Agriculture, Forestry and Water Management. Official Gazette 60/2007. Rulebook on Mineral Fertilizers; Ministry of Agriculture, Forestry and Water Management: Zagreb, Croatia, 2007; Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/full/2007_06_60_1897.html (accessed on 12 March 2023). (In Croatian)
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32019R1009 (accessed on 12 March 2023).
- El-Taher, A. Analytical methodology for the determination of concentration of pollutants and radioactive elements in phosphate fertilizer used in Saudi Arabia. Environ. Sci. Indian J. 2013, 8, 71–78. [Google Scholar]
- Gimeno-Garcia, E.; Andreu, V.; Boluda, R. Heavy metals incidence in the aplication of inorganic fertilizers and pesticides to rice farming soils. Environ. Pollut. 1996, 92, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Hossain, S.M.; Rahman, M.T.; Kabir, M. Analysis of Iron, Scandium, Samarium, and Zinc in Commercial Fertilizers and the Chemistry behind the Stability of These Metals in the Fertilizers. J. Agric. Chem. Environ. 2019, 8, 155–171. [Google Scholar] [CrossRef]
- Aswood, M.S. Determination of Heavy Metals in Fertilizer Samples by X-ray Fluorescence Techniques. J. Univ. Babylon Pure Appl. Sci. 2017, 25, 1778–1785. [Google Scholar]
- Azzi, V.; Kazpard, V.; Lartiges, B.; Kobeissi, A.; Kanso, A.; El Samrani, A.G. Trace Metals in Phosphate Fertilizers Used in Eastern Mediterranean Countries. CLEAN Soil Air Water 2017, 45. [Google Scholar] [CrossRef]
- Drake, B.L.; MacDonald, B.L.; Shannon, R.F., Jr. Introduction, Chapter 1. In Advances in Portable X-ray Fluorescence Spectrometry: Instrumentation, Application and Interpretation, 1st ed.; Drake, B.L., MacDonald, B.L., Eds.; Royal Society of Chemistry: London, UK, 2022; pp. 1–10. [Google Scholar]
- Brouwer, P. Theory of XRF: Getting Acquainted with the Principles; PANalytical B.V.: Almelo, The Netherlands, 2010; Available online: https://www.chem.purdue.edu/xray/docs/Theory%20of%20XRF.pdf (accessed on 13 March 2023).
- Takahashi, G. Sample preparation for X-rax fluorescence analysis. Tech. Artic. Rigaku J. 2015, 31, 26–30. [Google Scholar]
- Rydberg, J. Wavelength dispersive X-ray fluorescence spectroscopy as a fast, non-destructive and cost-effective analytical method for determining the geochemical composition of small loose-powder sediment samples. J. Paleolimnol. 2014, 52, 265–276. [Google Scholar] [CrossRef]
- Injuk, J.; Van Grieken, R.; Blank, A.; Eksperiandova, L.; Buhrke, V. Chapter Specimen Preparation. In Handbook of Practical X-ray Fluorescence Analysis, 1st ed.; Beckhoff, B., Kanngießer Habil, B., Langhoff, N., Wedell, R., Wolff, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 411–432. [Google Scholar]
- Marguí, E.; Queralt, I.; de Almeida, E. X-ray fluorescence spectrometry for environmental analysis: Basic principles, instrumentation, applications and recent trends. Chemosphere 2022, 303, 135006. [Google Scholar] [CrossRef]
- ISO 13196; Soil Quality—Screening Soils for Selected Elements by Energy-Dispersive X-ray Fluorescence Spectrometry Using a Handheld or Portable Instrument. Technical Committee ISO/TC 190. International Organization for Standardization: Geneva, Switzerland, 2015; pp. 1–12.
- US EPA. Method 6200; Field Portable X-ray Fluorescence Spectrometry for the Determination of Elemental Concentration in Soil and Sediment; United States Environmental Protection Agency: Washington, DC, USA, 2007; pp. 1–32. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-6200-field-portable-x-ray-fluorescence-spectrometry-determination (accessed on 20 March 2023).
- BIPEA. Proficiency Testing Program. In Official Reports for 2021, 2022 and 2023; BIPEA: Paris, France, 2023. [Google Scholar]
- National Institute of Standards and Technology, Department of Commerce. Certificate of Analysis; Standard Reference Material 2711a; Montana II Soil: Gaithersburg, MD, USA, 2018; pp. 1–7. [Google Scholar]
- WEPAL. Evaluating Programme for Analytical Laboratories International Soil-Analytical Exchange (ISE) Program; Annual Report for 2015; Wageningen University Environmental Sciences: Wageningeng, The Netherlands, 2015; pp. 1–391. [Google Scholar]
- Senesil, G.S.; Baldassarre, G.; Senesi, N.; Radina, B. Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 1999, 39, 343–377. [Google Scholar] [CrossRef]
- Reyes Pinto, K.; Meza-Contreras, V.; Alegre-Orihuela, J.C.; Reategui-Romero, W. Bioavailability and Solubility of Heavy Metals and Trace Elements during Composting of Cow Manure and Tree Litter. Appl. Environ. Soil Sci. 2020, 2020, 5680169. [Google Scholar] [CrossRef]
- Gong, X.; Huang, D.; Liu, Y.; Zeng, G.; Chen, S.; Wang, R.; Xu, P.; Cheng, M.; Zhang, C.; Xue, W. Biochar facilitated the phytoremediation of cadmium contaminated sediments: Metal behavior, plant toxicity, and microbial activity. Sci. Total Environ. 2019, 666, 1126–1133. [Google Scholar] [CrossRef]
- Bożym, M. Heavy metal content in compost and earthworms from home composters. Environ. Prot. Nat. Resour. 2017, 28, 1–4. [Google Scholar] [CrossRef]
- Mortvedt, J.J. Heavy metal contaminants in inorganic and organic fertilizers. Fertil. Res. 1995, 43, 55–61. [Google Scholar] [CrossRef]
- Durn, G.; Palinkaš, L.A.; Miko, S.; Bašić, F.; Grgić-Kapelj, S. Heavy Metals in Liming Materials from NW Croatia: Possible Effect of Liming on Permissible Contents of Heavy Metals in Arable Soil. Geol. Croat. 1993, 46, 145–155. [Google Scholar]
- Zschornack, G. Handbook of X-ray Data; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–969. Available online: http://www.geology.wisc.edu/~johnf/g777/Handbook%20of%20x-ray%20data.pdf (accessed on 10 March 2023).
- Frahm, E.; Doonan, R.C.P. The technological versus methodological revolution of portable XRF in archaeology. J. Archaeol. Sci. 2013, 40, 1425–1434. [Google Scholar] [CrossRef]
- López-Núñez, R. Portable X-ray Fluorescence Analysis of Organic Amendments: A Review. Appl. Sci. 2022, 12, 6944. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. In Situ Applications of X-ray Fluorescence Techniques; IAEA-TECDOC-1456; IAEA: Vienna, Austria, 2005; pp. 1–260. Available online: https://www.iaea.org/publications/7212/in-situ-applications-of-x-ray-fluorescence-techniques (accessed on 15 March 2023).
- Bourke, A.; Ross, P.S. Portable X-ray fluorescence measurements on exploration drill-cores: Comparing performance on unprepared cores and powders for ‘whole-rock’ analysis. Geochem. Explor. Environ. Anal. 2016, 16, 147–157. [Google Scholar] [CrossRef]
- Ravansari, R.; Wilson, S.C.; Tighe, M. Portable X-ray fluorescence for environmental assessment of soils: Not just a point and shoot method. Environ. Int. 2020, 134, 105250. [Google Scholar] [CrossRef]
- Towett, E.K.; Draje, B.L.; Keith, S.D. Chapter 9, X-ray Fluorescence Applications in Agriculture. In Advances in Portable X-ray Fluorescence Spectrometry: Instrumentation, Application and Interpretation, 1st ed.; Drake, B.L., MacDonald, B.L., Eds.; Royal Society of Chemistry: London, UK, 2022; pp. 221–250. [Google Scholar]
- Lemière, B. A review of pXRF (field portable X-ray fluorescence) application for applied geochemistry. J. Geochem. Explor. 2018, 188, 350–363. [Google Scholar] [CrossRef]
Fertilizer | Nutrient Amount (%) | Mark |
---|---|---|
Ammonium nitrate—prilled | N (33.5) | AN_Prilled |
Ammonium nitrate | N (34.8) | AN |
Ammonium sulphate nitrate | N (26) + S (15) | ASN |
Limestone ammonium nitrate | N (28) | LAN_28N |
Limestone ammonium nitrate | N (27) | LAN_27N |
Complex fertilizer (nitrogen + phosphorus + potassium) | N (7) + P (14) + K (21) | NPK 7-14-21 |
Complex fertilizer (nitrogen + phosphorus + potassium) | N (7) + P (20) + K (30) | NPK 7-20-30 |
Complex fertilizer (nitrogen + phosphorus + potassium) | N (13) + P (10) + K (12) | NPK 13-10-12 |
Complex fertilizer (nitrogen + phosphorus + potassium) | N (15) + P (15) + K (15) | NPK 15-15-15 |
Complex fertilizer (nitrogen + phosphorus + potassium) | N (15) + P (15) + K (15) + S | NPK (S) 15-15-15 |
Complex fertilizer (nitrogen + phosphorus + potassium) | N (20) + P (10) + K (10) | NPK 20-10-10 |
Complex fertilizer (nitrogen + phosphorus) | N (20) + P (20) | NP 20-20 |
Urea | N (46) | Urea |
As | Cd | Co | Cr | Cu | Fe | Mn | Mo | Ni | Pb | Si | Sr | Th | U | Zr | Zn | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg/kg | |||||||||||||||||
LOD | 1 | 4 | 3 | 15 | 4 | 15 | 9 | 2 | 6 | 3 | 325 | 1 | 2 | 1 | 1 | 2 | 1 |
MF | NPK + S | DAP | CNF | NPK + SO3 | |
---|---|---|---|---|---|
ῡ ± u (mg/kg) | |||||
As | 1.80 ± 0.1 | 3.20 ± 0.2 | 6.6 ± 1.0 | 1.2 ± 0.1 | 0.4 ± 0.1 |
Cd | 0.96 ± 0.04 | 2.87 ± 0.09 | 0.11 ± 0.03 | 0.77 ± 0.02 | - |
Co | 0.91 ± 0.08 | - | - | - | - |
Cr | 12.7 ± 0.9 | 29.0 ± 0.9 | 5.7 ± 0.7 | 9.3 ± 0.7 | - |
Cu | 3.71 ± 0.29 | 9.35 ± 0.47 | 13.9 ± 0.64 | 6.3 ± 0.3 | 17.0 ± 0.65 |
Fe | 880 ± 18 | 1213 ± 22 | - | 2053 ± 37 | 6219 ± 297 |
Mn | 79.3 ± 2.39 | 70.2 ± 2.9 | 340 ± 8 | 65.0 ± 0.3 | 123.1 ± 3.9 |
Mo | 0.41 ± 0.09 | - | - | - | - |
Ni | 3.60 ± 0.3 | 8.80 ± 0.5 | 3.9 ± 0.3 | 3.6 ± 0.2 | 26.3 ± 2.8 |
Pb | 0.40 ± 0.1 | 0.50 ± 0.1 | 1.2 ± 0.3 | 2.1 ± 0.2 | 1.1 ± 0.2 |
Zn | 255.5 ± 4.8 | 71.6 ± 1.86 | 15.7 ± 1.05 | 465 ± 9.1 | 73.0 ± 2.04 |
As | Cr | Cu | Fe | Mn | Ni | Si | Sr | Th | U | Y | Zn | Zr | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MF | ῡo ± SD (mg/kg) | 2.00 ± 0.00 | <15 | <4 | 1133 ± 15.3 | 91.0 ± 9.0 | <6 | 2251 ± 77.2 | 141.8 ± 1.89 | 5.00 ± 0.00 | 9.75 ± 0.50 | 9.75 ± 0.96 | 290.2 ± 5.62 | 5.50 ± 0.58 |
RSD (%) | 0.00 | - | - | 1.35 | 9.6 | - | 3.43 | 1.34 | 0.00 | 5.13 | 9.82 | 1.94 | 10.5 | |
RPD (%) | 11.1 | - | - | 28.8 | 14.8 | - | - | - | - | - | - | 13.6 | - | |
NPK + S | ῡo ± SD (mg/kg) | 3.50 ± 0.58 | 17.0 ± 0.00 | 10.5 ± 2.38 | 1379 ± 12.7 | 84.0 ± 7.53 | <6 | 3561 ± 180 | 168.5 ± 1.29 | <2 | 16.5 ± 1.29 | 11.5 ± 1.91 | 83.7 ± 2.06 | 9.50 ± 1.00 |
RSD (%) | 16.5 | 0.00 | 22.7 | 0.92 | 8.96 | - | 5.06 | 0.77 | - | 4.87 | 16.6 | 2.46 | 10.5 | |
RPD (%) | 9.4 | −41.4 | 12.3 | 13.7 | 19.7 | - | - | - | - | - | - | 16.9 | - | |
DAP | ῡo ± SD (mg/kg) | 2.33 ± 0.58 | <15 | 13.0 ± 1.15 | 3938 ± 2.16 | 346.0 ± 14.3 | <6 | 2061 ± 18.9 | 218.0 ± 0.00 | 13.0 ± 1.00 | 4.00 ± 0.00 | 146.2 ± 0.96 | 16.5 ± 1.29 | 39.5 ± 0.58 |
RSD (%) | 24.7 | - | 8.88 | 0.05 | 4.15 | - | 0.92 | 0.00 | 7.69 | 0.00 | 0.00 | 7.82 | 1.46 | |
RPD (%) | −64.7 | - | −6.5 | - | 1.8 | - | - | - | - | - | - | 5.1 | - | |
CNF | ῡo ± SD (mg/kg) | 1.00 ± 0.00 | <15 | 8.00 ± 1.83 | 2376 ± 8.89 | 74.5 ± 9.11 | <6 | 8332 ± 125 | 307.0 ± 1.41 | 4.00 ± 0.00 | 7.75 ± 0.96 | 6.00 ± 0.82 | 513.5± 4.93 | 9.75 ± 0.96 |
RSD (%) | 0.00 | - | 22.8 | 0.37 | 12.2 | - | 1.50 | 0.46 | 0.00 | 12.3 | 13.6 | 0.96 | 9.82 | |
RPD (%) | −16.7 | - | 27.0 | 15.7 | 14.6 | - | - | - | - | - | - | 10.4 | - | |
NPK + SO3 | ῡo ± SD (mg/kg) | <1 | <15 | 19.8 ± 1.50 | 7661 ± 9.46 | 120.5 ± 14.2 | 27.5 ± 2.38 | 10,824 ± 318.7 | 133.7 ± 0.96 | <2 | 3.00 ± 0.00 | 4.00 ± 0.82 | 88.7 ± 3.20 | 26.0 ± 0.82 |
RSD (%) | - | - | 7.59 | 0.12 | 11.8 | 8.66 | 2.94 | 0.72 | - | 0.00 | 20.4 | 3.61 | 3.14 | |
RPD (%) | - | - | 16.5 | 23.2 | −2.1 | 4.6 | - | - | - | - | - | 21.5 | - |
As | Cd | Co | Cr | Cu | Fe | Mn | Mo | Ni | Pb | Si | Sr | Th | U | Zn | Zr | Y | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SRM 2711a | ῡc ± U (mg/kg) | 107 ± 5 | 54.1 ± 0.5 | 9.89 ± 0.18 | 52.3 ± 2.9 | 140 ± 2 | 28,200 ± 0.04 | 675 ± 18 | - | 21.7 ± 0.7 | 1040 ± 0.001 | 314,000 ± 0.7 | 242 ± 10 | - | 3.0 ± 0.12 | 414 ± 11 | - | - |
ῡo ± SD (mg/kg) | 91.3 ± 1.5 | 57.0 ± 3.6 | 10.1 ± 13.5 | 76.5 ± 9.2 | 148.7 ± 3.7 | 28,331 ± 131 | 316 ± 20 | 2.3 ± 0.18 | 27.3 ± 3.1 | 1380 ± 9.3 | 259,398 ± 577 | 232 ± 2.6 | 12 ± 3.6 | 2.9 ± 0.17 | 427.7 ± 4.2 | 296.7 ± 2.5 | 37.7 ± 1.2 | |
RSD (%) | 1.64 | 6.32 | 133.6 | 12.0 | 2.49 | 0.46 | 63.3 | 7.83 | 11.4 | 0.67 | 0.22 | 1.12 | 30.0 | 5.86 | 0.89 | 0.84 | 3.18 | |
RPD (%) | −14.7 | 5.4 | 2.1 | 46.3 | 6.2 | 0.5 | −53.2 | - | 25.8 | 32.7 | −17.4 | −4.1 | - | −3.3 | 3.3 | - | - | |
ISE 989 | ῡA ± U (mg/kg) | 45.9 ± 3.56 | 8.75 ± 0.65 | 21.7 ± 1.40 | 274.9 ± 25.7 | 156.7 ± 8.3 | 39,930 ± 1790 | 1112 ± 77 | 1.827 ± 0.584 | 62.1 ± 3.71 | 301.7 ± 15.4 | 246,000 ± 7900 | 187.4 ± 13.0 | 10.73 ± 0.73 | 3.00 ± 0.40 | 1047 ± 74 | 243.1 ± 15.9 | 26.7 ± 3.11 |
ῡA ± SD (mg/kg) | 51.0 ± 0.58 | 8.7 ± 1.15 | 36.0 ± 0.71 | 288.3 ± 18.0 | 182.3 ± 3.21 | 40,555 ± 174 | 1044 ± 20.1 | 2.0 ± 0.46 | 62.8 ± 0.35 | 288.3 ± 2.08 | 179,096 ± 817 | 186.0 ± 0.40 | 11.0 ± 4.04 | 3.2 ± 0.29 | 1123 ± 6.24 | 223.7 ± 1.53 | 27.0 ± 2.08 | |
RSD (%) | 1.14 | 13.2 | 1.97 | 6.24 | 1.76 | 0.43 | 1.93 | 23.0 | 0.56 | 0.72 | 0.46 | 0.22 | 36.7 | 9.06 | 0.56 | 0.68 | 7.70 | |
RPD (%) | 11.1 | −0.57 | 65.9 | 4.87 | 16.3 | 1.57 | −6.12 | 9.47 | 2.61 | −4.44 | −27.2 | −0.75 | 2.52 | 6.67 | 7.26 | −7.98 | 1.12 |
As | Cd | Cr | Cu | Fe | Mn | Ni | Si | Sr | Th | U | Zn | Zr | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ῡ ± SD (mg/kg) | ||||||||||||||
AN_Prilled | <1 | 26.5 ± 2.5 | <15 | <4 | 57.1 ± 3.7 | 1527 ± 16.1 | <6 | 1247 ± 106 | 4.0 ± 0.0 | 14.3 ± 2.5 | <1 | 4.3 ± 0.5 | <1 | <1 |
AN | <1 | 25.0 ± 2.9 | <15 | <4 | 16.5 ± 1.0 | 5290 ± 490 | <6 | 1733 ± 34.1 | 2.0 ± 0.0 | 25.0 ± 1.4 | 2.0 ± 0.0 | 5.0 ± 0.0 | <1 | <1 |
ASN | <1 | 20.5 ± 4.3 | <15 | <4 | 73.8 ± 3.3 | 224.7 ± 1.0 | <6 | <325 | <1 | 3.0 ± 0.0 | 2.0 ± 0.0 | 5.8 ± 0.9 | <1 | <1 |
LAN_28N | <1 | 19.0 ± 4.8 | <15 | <4 | 298.8 ± 2.6 | 20.3 ± 4.93 | <6 | 1362 ± 91.7 | 21.0 ± 0.0 | 3.0 ± 0.0 | 2.0 ± 0.0 | 1.4 ± 0.5 | <1 | <1 |
LAN_27N | <1 | 17.5 ± 1.0 | <15 | <4 | 340 ± 6.5 | 22.7 ± 3.8 | <6 | 1156 ± 170 | 21.3 ± 0.9 | 3.0 ± 0.0 | 2.0 ± 0.0 | 5.7 ± 1.3 | <1 | <1 |
NPK 7-14-21 | 5.7 ± 0.9 | 12.5 ± 3.0 | 107.7 ± 7.9 | 20.0 ± 3.5 | 1314 ± 25.5 | 113.0 ± 0.0 | 22.3 ± 3.1 | 1959 ± 158 | 216 ± 2.7 | 5.0 ± 0.0 | 65.7 ± 2.5 | 143.0 ± 2.8 | 14.8 ± 1.5 | 35.2 ± 1.7 |
NPK 7-20-30 | 8.0 ± 2.1 | 13.0 ± 0.0 | 118.5 ± 15.3 | 26.3 ± 4.6 | 1442 ± 18.9 | 148.5 ± 0.6 | 27.8 ± 4.1 | 3694 ± 260 | 40.3 ± 0.5 | 13.3 ± 1.0 | 82.8 ± 1.7 | 166.0 ± 5.2 | 15.3 ± 1.0 | 16.5 ± 1.3 |
NPK 13-10-12 | 3.0 ± 1.0 | 14.0 ± 6.7 | 95.3 ± 7.2 | 7.8 ± 4.1 | 1069 ± 18.9 | 142.3 ± 0.5 | 6.2 ± 0.5 | 3749 ± 247 | 469.8 ± 1.3 | 8.0 ± 3.5 | 28.2 ± 1.3 | 69.5 ± 3.5 | 15.0 ± 1.8 | 54.5 ± 0.6 |
NPK 15-15-15 | 4.7 ± 0.5 | 11.5 ± 3.0 | 110.5 ± 16.5 | 14.3 ± 1.7 | 1352 ± 17.2 | 155.2 ± 1.0 | 17.0 ± 1.2 | 4581 ± 250 | 276.3 ± 0.9 | 8.8 ± 2.6 | 38.0 ± 1.8 | 104.7 ± 1.9 | 11.5 ± 0.6 | 75.7 ± 1.3 |
NPK (S) 15-15-15 | 6.5 ± 0.6 | 11.5 ± 3.0 | 104.8 ± 19.4 | 21.7 ± 3.1 | 1325 ± 20.9 | 152 ± 0.8 | 17.3 ± 1.7 | 2998 ± 229 | 262.5 ± 3.1 | 5.0 ± 0.0 | 48.3 ± 1.7 | 143.8 ± 0.9 | 11.3 ± 1.2 | 35.5 ± 1.3 |
NPK 20-10-10 | 3.7 ± 0.5 | 19.0 ± 2.9 | 29.8 ± 16.1 | 12.5 ± 3.1 | 789 ± 8.1 | 195 ± 1.0 | 10.0 ± 3.9 | 2349 ± 172 | 141.0 ± 0.5 | 4.0 ± 0.0 | 41.0 ± 0.8 | 80.7 ± 1.9 | 9.7 ± 1.3 | 22.8 ± 0.5 |
NP 20-20 | 2.8 ± 1.3 | 22.3 ± 1.5 | 70.5 ± 8.6 | <4 | 2209 ± 19.7 | 114 ± 97 | <6 | 1736 ± 105 | 409.3 ± 1.7 | 10.3 ± 1.15 | 29.0 ± 1.4 | 84.0 ± 2.6 | 12 ± 0.8 | 128 ± 1.0 |
Urea | 2.0 ± 0.0 | 31.3 ± 2.5 | <15 | <4 | <15 | 4707 ± 295 | <6 | 1830 ± 51 | <1 | 35.3 ± 1.3 | 6.0 ± 0.0 | 3.5 ± 0.6 | <1 | <1 |
As | Cd | Cr | Cu | Fe | Mn | Ni | Si | Sr | Th | U | Zn | Zr | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RSD (%) | ||||||||||||||
AN_Prilled | - | 9.49 | - | - | 6.56 | 1.05 | - | 8.49 | 0.00 | 17.5 | - | 11.7 | - | - |
AN | - | 11.8 | - | - | 6.06 | 9.26 | - | 1.96 | 0.00 | 5.65 | 70.7 | 0.00 | - | - |
ASN | - | 21.5 | - | - | 4.48 | 0.22 | - | - | - | 0.00 | 0.00 | 16.6 | - | - |
LAN_28N | - | 25.0 | - | - | 0.88 | 24.3 | - | 6.73 | 0.00 | 0.00 | 0.00 | 11.7 | - | - |
LAN_27N | - | 5.71 | - | - | 1.90 | 16.6 | - | 17.7 | 4.50 | 0.00 | 0.00 | 21.9 | - | - |
NPK 7-14-21 | 16.7 | 24.0 | 7.40 | 17.3 | 1.94 | 0.00 | 13.7 | 8.10 | 1.23 | 0.00 | 3.82 | 1.97 | 10.2 | 4.84 |
NPK 7-20-30 | 27.0 | 0.00 | 12.9 | 17.4 | 1.30 | 0.39 | 14.8 | 7.03 | 1.24 | 7.22 | 2.06 | 3.11 | 6.27 | 7.82 |
NPK 13-10-12 | 33.3 | 47.7 | 7.54 | 53.1 | 1.77 | 0.35 | 8.00 | 6.58 | 0.26 | 43.3 | 4.45 | 5.05 | 12.2 | 1.05 |
NPK 15-15-15 | 10.5 | 26.1 | 14.9 | 11.9 | 1.27 | 0.62 | 6.79 | 5.47 | 0.34 | 30.1 | 4.80 | 1.80 | 5.02 | 1.66 |
NPK (S) 15-15-15 | 8.88 | 26.0 | 18.5 | 14.2 | 1.57 | 0.53 | 9.90 | 7.65 | 1.18 | 0.00 | 3.53 | 0.66 | 11.2 | 3.63 |
NPK 20-10-10 | 13.3 | 15.5 | 54.2 | 24.9 | 1.03 | 0.51 | 39.2 | 7.33 | 0.35 | 0.00 | 1.99 | 2.34 | 12.9 | 2.19 |
NP 20-20 | 45.7 | 6.74 | 12.2 | - | 0.89 | 85.0 | - | 6.05 | 0.41 | 11.2 | 4.87 | 3.07 | 6.80 | 0.74 |
Urea | 0.00 | 8.00 | - | - | - | 6.27 | - | 2.78 | - | 3.56 | 0.00 | 16.5 | - | - |
Range | 0.00–45.7 | 0.00–47.7 | 7.40–54.2 | 11.9–53.1 | 0.88–6.56 | 0.00–85.0 | 6.79–39.2 | 1.96–17.7 | 0.00–4.50 | 0.00–43.3 | 0.00–70.7 | 0.00–21.9 | 5.02–12.2 | 0.74–7.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perčin, A.; Zgorelec, Ž.; Karažija, T.; Kisić, I.; Župan, N.; Šestak, I. Metals Contained in Various Formulations of Mineral Nitrogen Fertilizers Determined Using Portable X-ray Fluorescence. Agronomy 2023, 13, 2282. https://doi.org/10.3390/agronomy13092282
Perčin A, Zgorelec Ž, Karažija T, Kisić I, Župan N, Šestak I. Metals Contained in Various Formulations of Mineral Nitrogen Fertilizers Determined Using Portable X-ray Fluorescence. Agronomy. 2023; 13(9):2282. https://doi.org/10.3390/agronomy13092282
Chicago/Turabian StylePerčin, Aleksandra, Željka Zgorelec, Tomislav Karažija, Ivica Kisić, Nikolina Župan, and Ivana Šestak. 2023. "Metals Contained in Various Formulations of Mineral Nitrogen Fertilizers Determined Using Portable X-ray Fluorescence" Agronomy 13, no. 9: 2282. https://doi.org/10.3390/agronomy13092282
APA StylePerčin, A., Zgorelec, Ž., Karažija, T., Kisić, I., Župan, N., & Šestak, I. (2023). Metals Contained in Various Formulations of Mineral Nitrogen Fertilizers Determined Using Portable X-ray Fluorescence. Agronomy, 13(9), 2282. https://doi.org/10.3390/agronomy13092282