Prediction of Potassium Content in Rice Leaves Based on Spectral Features and Random Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Data Collection
2.2.1. Measurement of Spectral Data
2.2.2. Measurement of Agronomic Parameter
2.3. Data Processing
2.3.1. Transformation of the Spectral Reflectance
2.3.2. Vegetation Indices (VI)
2.3.3. Random Forest Feature Selection (RFFS)
2.4. Modeling and Evaluation of the LKC
3. Results
3.1. Dynamic Change in Spectral Reflectance
3.2. Relationship between the LKC and the Transformed Spectra
3.3. Screening of Variables
3.3.1. Single Band Variable (BV) Screening
3.3.2. Vegetation Index Variable (IV) Screening
3.3.3. Importance Assessment of Variables by RFFS
3.4. Prediction of Potassium Content
3.4.1. Potassium Content Prediction Based on BV
3.4.2. Potassium Content Prediction Based on IV
3.4.3. Prediction of Potassium Content Based on MV
3.5. Evaluation and Testing of the MV–RF Model
4. Discussion
4.1. Differences in Nitrogen and Potassium Sensitive Bands
4.2. Spectral Characteristic Bands of Potassium
4.3. VIs of Potassium Related
4.4. Comparison of Transformed Spectra
4.5. Variable Importance Evaluation with RFFS
4.6. Evaluations of Modeling Variables and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pettigrew, W.T. Potassium Influences on Yield and Quality Production for Maize, Wheat, Soybean and Cotton. Physiol. Plant. 2008, 133, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, I.; Uozumi, N. Potassium Channels in Plant Cells: Potassium Channels in Plants. FEBS J. 2011, 278, 4293–4303. [Google Scholar] [CrossRef]
- Nieves-Cordones, M.; Ródenas, R.; Lara, A.; Martínez, V.; Rubio, F. The Combination of K+ Deficiency with Other Environmental Stresses: What Is the Outcome? Physiol. Plant. 2019, 165, 264–276. [Google Scholar] [CrossRef]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of Potassium and Magnesium in Photosynthesis, Photosynthate Translocation and Photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant Drought Stress: Effects, Mechanisms and Management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, T.; Singh, S.; Tuteja, N.; Prasad, R.; Singh, J. Potassium: A Key Modulator for Cell Homeostasis. J. Biotechnol. 2020, 324, 198–210. [Google Scholar] [PubMed]
- Samborski, S.M.; Tremblay, N.; Fallon, E. Strategies to Make Use of Plant Sensors-Based Diagnostic Information for Nitrogen Recommendations. Agron. J. 2009, 101, 800–816. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The Critical Role of Potassium in Plant Stress Response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed]
- Berger, K.; Verrelst, J.; Féret, J.-B.; Wang, Z.; Wocher, M.; Strathmann, M.; Danner, M.; Mauser, W.; Hank, T. Crop Nitrogen Monitoring: Recent Progress and Principal Developments in the Context of Imaging Spectroscopy Missions. Remote Sens. Environ. 2020, 242, 111758. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Xu, X.; Blacker, C.; Gaulton, R.; Zhu, Q.; Yang, M.; Yang, G.; Zhang, J.; Yang, Y.; Yang, M.; et al. Estimation of Leaf Nitrogen Content in Rice Using Vegetation Indices and Feature Variable Optimization with Information Fusion of Multiple-Sensor Images from UAV. Remote Sens. 2023, 15, 854. [Google Scholar] [CrossRef]
- Lu, J.; Eitel, J.U.H.; Engels, M.; Zhu, J.; Ma, Y.; Liao, F.; Zheng, H.; Wang, X.; Yao, X.; Cheng, T.; et al. Improving Unmanned Aerial Vehicle (UAV) Remote Sensing of Rice Plant Potassium Accumulation by Fusing Spectral and Textural Information. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102592. [Google Scholar] [CrossRef]
- Peng, X.; Chen, D.; Zhou, Z.; Zhang, Z.; Xu, C.; Zha, Q.; Wang, F.; Hu, X. Prediction of the Nitrogen, Phosphorus and Potassium Contents in Grape Leaves at Different Growth Stages Based on UAV Multispectral Remote Sensing. Remote Sens. 2022, 14, 2659. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Sahoo, R.N.; Pandey, R.N.; Gupta, V.K.; Kumar, D. Using Hyperspectral Remote Sensing Techniques to Monitor Nitrogen, Phosphorus, Sulphur and Potassium in Wheat (Triticum aestivum L.). Precis. Agric. 2014, 15, 499–522. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Zhai, Y.; Cui, L.; Zhou, X.; Gao, Y.; Fei, T.; Gao, W. Estimation of Nitrogen, Phosphorus, and Potassium Contents in the Leaves of Different Plants Using Laboratory-Based Visible and near-Infrared Reflectance Spectroscopy: Comparison of Partial Least-Square Regression and Support Vector Machine Regression Methods. Int. J. Remote Sens. 2013, 34, 2502–2518. [Google Scholar]
- Wang, K.; Shen, Z.; Wang, R. Preliminary Study on Canopy and Leaf Reflectance Characteristics of Rice with Various Potassium Levels. Bull. Sci. Technol. 1997, 4, 8–11. [Google Scholar]
- Knipling, E.B. Physical and Physiological Basis for the Reflectance of Visible and Near-Infrared Radiation from Vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Grzebisz, W.; Gransee, A.; Szczepaniak, W.; Diatta, J. The Effects of Potassium Fertilization on Water-Use Efficiency in Crop Plants. J. Plant Nutr. Soil Sci. 2013, 176, 355–374. [Google Scholar] [CrossRef]
- Nieves-Cordones, M.; Alemán, F.; Martínez, V.; Rubio, F. K+ Uptake in Plant Roots. The Systems Involved, Their Regulation and Parallels in Other Organisms. J. Plant Physiol. 2014, 171, 688–695. [Google Scholar] [CrossRef]
- Pimstein, A.; Karnieli, A.; Bansal, S.K.; Bonfil, D.J. Exploring Remotely Sensed Technologies for Monitoring Wheat Potassium and Phosphorus Using Field Spectroscopy. Field Crop. Res. 2011, 121, 125–135. [Google Scholar] [CrossRef]
- Gómez-Casero, M.T.; López-Granados, F.; Peña-Barragán, J.M.; Jurado-Expósito, M.; García-Torres, L.; Fernández-Escobar, R. Assessing Nitrogen and Potassium Deficiencies in Olive Orchards through Discriminant Analysis of Hyperspectral Data. J. Am. Soc. Hortic. Sci. 2007, 132, 611–618. [Google Scholar] [CrossRef]
- Stein, B.R.; Thomas, V.A.; Lorentz, L.J.; Strahm, B.D. Predicting Macronutrient Concentrations from Loblolly Pine Leaf Reflectance across Local and Regional Scales. Gisci. Remote Sens. 2014, 51, 269–287. [Google Scholar] [CrossRef]
- Yang, T.; Lu, J.; Liao, F.; Qi, H.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Retrieving Potassium Levels in Wheat Blades Using Normalised Spectra. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102412. [Google Scholar] [CrossRef]
- Pacumbaba, R.O.; Beyl, C.A. Changes in Hyperspectral Reflectance Signatures of Lettuce Leaves in Response to Macronutrient Deficiencies. Adv. Space Res. 2011, 48, 32–42. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Wen, P.-F.; He, J.; Ning, F.; Wang, R.; Zhang, Y.-H.; Li, J. Estimating Leaf Nitrogen Concentration Considering Unsynchronized Maize Growth Stages with Canopy Hyperspectral Technique. Ecol. Indic. 2019, 107, 105590. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Li, D.; Wang, C.; Jiang, H.; Zheng, Q.; Peng, Z. Estimation of Paddy Rice Nitrogen Content and Accumulation Both at Leaf and Plant Levels from UAV Hyperspectral Imagery. Remote Sens. 2021, 13, 2956. [Google Scholar] [CrossRef]
- Delegido, J.; Alonso, L.; González, G.; Moreno, J. Estimating Chlorophyll Content of Crops from Hyperspectral Data Using a Normalized Area over Reflectance Curve (NAOC). Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 165–174. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, H.; Li, X.; Wang, H.; Liu, S.; Zhang, L.; Sui, Y. Hyperspectral Inversion Model for SPAD of Rice Leaves Based on Optimized Spectral Index. Spectrosc. Spect. Anal. 2022, 42, 1092–1097. [Google Scholar]
- Rodrigues, F.A.; Blasch, G.; BlasDefournych, P.; Ortiz-Monasterio, J.I.; Schulthess, U.; Zarco-Tejada, P.J.; Taylor, J.A.; Gérard, B. Multi-Temporal and Spectral Analysis of High-Resolution Hyperspectral Airborne Imagery for Precision Agriculture: Assessment of Wheat Grain Yield and Grain Protein Content. Remote Sens. 2018, 10, 930. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, J.; Zhang, J.; Fan, Y.; Cheng, Y.; Wang, B.; Wu, X.; Tan, X.; Tan, T.; Li, S.; et al. Predicting Grain Yield and Protein Content Using Canopy Reflectance in Maize Grown under Different Water and Nitrogen Levels. Field Crop. Res. 2021, 260, 107988. [Google Scholar] [CrossRef]
- Wójcik-Gront, E.; Gozdowski, D.; Stępień, W. UAV-Derived Spectral Indices for the Evaluation of the Condition of Rye in Long-Term Field Experiments. Agriculture 2022, 12, 1671. [Google Scholar] [CrossRef]
- Andrade Junior, A.S.D.; Melo, F.D.B.; Bastos, E.A.; Cardoso, M.J. Evaluation of the Nutritional Status of Corn by Vegetation Indices via Aerial Ages. Ciênc. Rural 2021, 51, e20200692. [Google Scholar] [CrossRef]
- Chen, S.; Li, D.; Wang, Y.; Peng, Z.; Chen, W. Spectral Characterization and Prediction of Nutrient Content in Winter Leaves of Litchi during Flower Bud Differentiation in Southern China. Precis. Agric. 2011, 12, 682–698. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, M.; Xu, Z.; Yang, T.; Su, Y.; Zhou, T.; Wang, H.; Wang, Y.; Lin, Y. Estimation of Leaf Nutrition Status in Degraded Vegetation Based on Field Survey and Hyperspectral Data. Sci. Rep. 2020, 10, 4361. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Eitel, J.U.H.; Jennewein, J.S.; Zhu, J.; Zheng, H.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Combining Remote Sensing and Meteorological Data for Improved Rice Plant Potassium Content Estimation. Remote Sens. 2021, 13, 3502. [Google Scholar] [CrossRef]
- Lu, J.; Yang, T.; Su, X.; Qi, H.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Monitoring Leaf Potassium Content Using Hyperspectral Vegetation Indices in Rice Leaves. Precis. Agric. 2020, 21, 324–348. [Google Scholar] [CrossRef]
- Ibrahim, K.S.M.H.; Huang, Y.F.; Ahmed, A.N.; Koo, C.H.; El-Shafie, A. A Review of the Hybrid Artificial Intelligence and Optimization Modelling of Hydrological Streamflow Forecasting. Alex. Eng. J. 2022, 61, 279–303. [Google Scholar] [CrossRef]
- Bahari, N.A.A.B.S.; Ahmed, A.N.; Chong, K.L.; Lai, V.; Huang, Y.F.; Koo, C.H.; Ng, J.L.; El-Shafie, A. Predicting Sea Level Rise Using Artificial Intelligence: A Review. Arch. Comput. Methods Eng. 2023, 30, 4045–4062. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Xiong, S.; Zhang, Z.; Wei, Q.; Zhang, W.; Feng, W.; Ma, X. Hyperspectral Assessment of Leaf Nitrogen Accumulation for Winter Wheat Using Different Regression Modeling. Precis. Agric. 2021, 22, 1634–1658. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and Regression by Random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Wang, Z. Research on Feature Selection Methods Based on Random Forest. Teh. Vjesn. 2023, 30, 623–633. [Google Scholar]
- Majumdar, P.; Bhattacharya, D.; Mitra, S.; Solgi, R.; Oliva, D.; Bhusan, B. Demand Prediction of Rice Growth Stage-Wise Irrigation Water Requirement and Fertilizer Using Bayesian Genetic Algorithm and Random Forest for Yield Enhancement. Paddy Water Environ. 2023, 21, 275–293. [Google Scholar] [CrossRef]
- Li, X.; Sha, J.; Wang, Z.-L. Application of Feature Selection and Regression Models for Chlorophyll-a Prediction in a Shallow Lake. Environ. Sci. Pollut. Res. 2018, 25, 19488–19498. [Google Scholar] [CrossRef]
- Jiang, J.; Johansen, K.; Stanschewski, C.S.; Wellman, G.; Mousa, M.A.A.; Fiene, G.M.; Asiry, K.A.; Tester, M.; McCabe, M.F. Phenotyping a Diversity Panel of Quinoa Using UAV-Retrieved Leaf Area Index, SPAD-Based Chlorophyll and a Random Forest Approach. Precis. Agric. 2022, 23, 961–983. [Google Scholar] [CrossRef]
- Pranga, J.; Borra-Serrano, I.; Aper, J.; De Swaef, T.; Ghesquiere, A.; Quataert, P.; Roldán-Ruiz, I.; Janssens, I.A.; Ruysschaert, G.; Lootens, P. Improving Accuracy of Herbage Yield Predictions in Perennial Ryegrass with UAV-Based Structural and Spectral Data Fusion and Machine Learning. Remote Sens. 2021, 13, 3459. [Google Scholar] [CrossRef]
- Viljanen, N.; Honkavaara, E.; Näsi, R.; Hakala, T.; Niemeläinen, O.; Kaivosoja, J. A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone. Agriculture 2018, 8, 70. [Google Scholar] [CrossRef]
- Karunaratne, S.; Thomson, A.; Morse-McNabb, E.; Wijesingha, J.; Stayches, D.; Copland, A.; Jacobs, J. The Fusion of Spectral and Structural Datasets Derived from an Airborne Multispectral Sensor for Estimation of Pasture Dry Matter Yield at Paddock Scale with Time. Remote Sens. 2020, 12, 2017. [Google Scholar] [CrossRef]
- Johansen, K.; Morton, M.J.L.; Malbeteau, Y.; Aragon, B.; Al-Mashharawi, S.; Ziliani, M.G.; Angel, Y.; Fiene, G.; Negrão, S.; Mousa, M.A.A.; et al. Predicting Biomass and Yield in a Tomato Phenotyping Experiment Using UAV Imagery and Random Forest. Front. Artif. Intell. 2020, 3, 28. [Google Scholar] [CrossRef] [PubMed]
- Azadnia, R.; Rajabipour, A.; Jamshidi, B.; Omid, M. New Approach for Rapid Estimation of Leaf Nitrogen, Phosphorus, and Potassium Contents in Apple-Trees Using Vis/NIR Spectroscopy Based on Wavelength Selection Coupled with Machine Learning. Comput. Electron. Agric. 2023, 207, 107746. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K.; Prins, H.H.T. Predicting in Situ Pasture Quality in the Kruger National Park, South Africa, Using Continuum-Removed Absorption Features. Remote Sens. Environ. 2004, 89, 393–408. [Google Scholar] [CrossRef]
- Ferwerda, J.G.; Skidmore, A.K. Can Nutrient Status of Four Woody Plant Species Be Predicted Using Field Spectrometry? ISPRS J. Photogramm. Remote Sens. 2007, 62, 406–414. [Google Scholar] [CrossRef]
- Wu, C. Normalized Spectral Mixture Analysis for Monitoring Urban Composition Using ETM+ Imagery. Remote Sens. Environ. 2004, 93, 480–492. [Google Scholar] [CrossRef]
- Verger, A.; Vigneau, N.; Chéron, C.; Gilliot, J.-M.; Comar, A.; Baret, F. Green Area Index from an Unmanned Aerial System over Wheat and Rapeseed Crops. Remote Sens. Environ. 2014, 152, 654–664. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, P.; Qiu, H.; Li, X.; Hou, G. A Method to Evaluate Spectral Analysis by Spectroscopy. Sensors 2022, 22, 5638. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, K.; Mackay, A.D.; Tuohy, M.P.; Betteridge, K.; Sanches, I.D.; Inoue, Y. Potential for Spectral Indices to Remotely Sense Phosphorus and Potassium Content of Legume-Based Pasture as a Means of Assessing Soil Phosphorus and Potassium Fertility Status. Int. J. Remote Sens. 2011, 32, 103–124. [Google Scholar] [CrossRef]
- Albayrak, S. Use of Reflectance Measurements for the Detection of N, P, K, ADF and NDF Contents in Sainfoin Pasture. Sensors 2008, 8, 7275–7286. [Google Scholar] [CrossRef] [PubMed]
- Qi, H. Monitoring Wheat Potassium Status Based on Hyperspectral Technology. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2017. [Google Scholar]
- Kokaly, R. Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression. Remote Sens. Environ. 1999, 67, 267–287. [Google Scholar] [CrossRef]
- Zhang, J. Potential of Continuum Removed Reflectance Spectral Features Estimating Nitrogen Nutrition in Rice Canopy Level. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Reykjavik, Iceland, 14–16 June 2010; pp. 1–4. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Osman, A.I.A.; Ahmed, A.N.; Huang, Y.F.; Kumar, P.; Birima, A.H.; Sherif, M.; Sefelnasr, A.; Ebraheemand, A.A.; El-Shafie, A. Past, Present and Perspective Methodology for Groundwater Modeling-Based Machine Learning Approaches. Arch. Comput. Methods Eng. 2022, 29, 3843–3859. [Google Scholar] [CrossRef]
- Zhang, F.; Niu, J.; Zhang, W.; Chen, X.; Li, C.; Yuan, L.; Xie, J. Potassium Nutrition of Crops under Varied Regimes of Nitrogen Supply. Plant Soil 2010, 335, 21–34. [Google Scholar] [CrossRef]
- Besford, R.T.; Maw, G.A. Effect of Potassium Nutrition on Tomato Plant Growth and Fruit Development. Plant Soil 1975, 42, 395–412. [Google Scholar] [CrossRef]
- Mengel, K.; Arneke, W.-W. Effect of Potassium on the Water Potential, the Pressure Potential, the Osmotic Potential and Cell Elongation in Leaves of Phaseolus Vulgaris. Physiol. Plant. 1982, 54, 402–408. [Google Scholar] [CrossRef]
- Kanai, S.; Moghaieb, R.E.; El-Shemy, H.A.; Panigrahi, R.; Mohapatra, P.K.; Ito, J.; Nguyen, N.T.; Saneoka, H.; Fujita, K. Potassium Deficiency Affects Water Status and Photosynthetic Rate of the Vegetative Sink in Green House Tomato Prior to Its Effects on Source Activity. Plant Sci. 2011, 180, 368–374. [Google Scholar] [CrossRef] [PubMed]
Experiment | Time | Cultivars | Experimental Conditions | N Treatment (kg·ha−1) | K Treatment (kg·ha−1) | Transplanting Date | Sampling Date |
---|---|---|---|---|---|---|---|
Exp.1 | 2021 | Jijing 88 | Plot experiment | 60, 120, 180 | 50, 100, 150 | 30 May | 7/4, 7/16, 8/2 |
Exp.2 | 2022 | Jijing 88 | Pot experiment | 100, 150, 200 | 50, 100, 150 | 2 June | 7/8, 7/22, 8/5 |
Exp.3 | 2022 | Jiudao 546 | Pot experiment | 100, 150, 200 | 50, 100, 150 | 2 June | 7/22 |
Database | Number of Samples | Max | Min | Med | Mean | Sd | Cv (%) |
---|---|---|---|---|---|---|---|
Training data | |||||||
Exp.1 | 174 | 2.48 | 0.54 | 1.68 | 1.64 | 0.31 | 18.9% |
Exp.2 | 102 | 3.51 | 0.97 | 1.79 | 1.79 | 0.41 | 22.9% |
All data | 276 | 3.51 | 0.54 | 1.73 | 1.69 | 0.36 | 21.3% |
Testing data | |||||||
Exp.3 | 46 | 2.31 | 0.61 | 1.42 | 1.51 | 0.43 | 28.5% |
No. | Formula | Plant Type | References |
---|---|---|---|
VI.1 | (R870 − R1450)/(R870 + R1450) | Wheat (PKC and PKA) | [20] |
VI.2 | (R1645 − R1715)/(R1645 + R1715) | Wheat (PKC and PKA) | [20] |
VI.3 | FDR1686 | Litchi (LKC) | [34] |
VI.4 | log(1/FDR1337) | Litchi (LKC) | [34] |
VI.5 | (R1705 − R1385)/(R1705 + R1385) | Rice (LKC) | [37] |
VI.6 | R1705 − R1385 | Rice (LKC) | [37] |
VI.7 | R1385/R1705 | Rice (LKC) | [37] |
VI.8 | (R1705 − R700)/(R1385 + R700) | Rice (LKC) | [37] |
VI.9 | (R1705 − R1385)/(R1705 + R1385 − 2 × R704) | Rice (LKC) | [37] |
VI.10 | (FDR1430 − FDR1295)/(FDR1430 + FDR1295) | Rice (LKC) | [37] |
VI.11 | FDR1430/FDR1295 | Rice (LKC) | [37] |
VI.12 | (R523 − R583)/(R523 + R583) | Pasture (LKC) | [56] |
VI.13 | (R780 − R680)/(R780 + R680) | Olive orchards (LKC) | [21] |
VI.14 | FDR760/FDR630 | Sainfoin pasture (PKC) | [57] |
VI.15 | R780/R650 | Sainfoin pasture (PKC) | [57] |
VI.16 | (R2275 − R1875)/(R2275 + R1875) | Wheat (LKC) | [58] |
VI.17 | FDR1865/FDR2250 | Wheat (LKC) | [58] |
VI.18 | (R2275 − R1875)/(R2275 + R1875 − 2R762) | Wheat (LKC) | [58] |
VI.19 | (R2280 − R780)/(R1875 − R780) | Wheat (LKC) | [58] |
VI.20 | (R935 − R770)/(R935 + R770) | Wheat (PKC) | [58] |
VI.21 | FDR1715 − FDR690 | Wheat (PKC) | [58] |
VI.22 | (R935 − R770)/(R935 + R770 − R1395) | Wheat (PKC) | [58] |
VI.23 | (NR2275 − NR445)/(NR1875 − NR445) | Wheat (LKC) | [23] |
VI.24 | (NR2275 − NR1875)/(NR2275 + NR1875 − 2NR445) | Wheat (LKC) | [23] |
VI.25 | (1/NR1400 − 1/NR2300) × NR2000 | Wheat (LKC) | [23] |
VI.26 | (NR2285 − NR1880)/(NR2285 + NR1880) | Wheat (LKC) | [23] |
VI.27 | (NR2300 − NR2350)/(NR1850 − NR2350) | Wheat (LKC) | [23] |
VI.28 | (NR1850 − NR2300)/(NR1850 + NR2300 − 2NR2350) | Wheat (LKC) | [23] |
VI.29 | Maximum absorption depth of absorption peak of CRR | Rice | [59] |
VI.30 | Absorption peak area of CRR | Rice | [60] |
VI.31 | Symmetry of CRR | Rice | [60] |
VI.32 | Area normalized maximum absorption depth of CRR | Rice | [40] |
VI.33 | The normalized band depth ratio | Pasture (PKC) | [51] |
VI.34 | The normalized band depth index | Pasture (PKC) | [51] |
Reflectance | Characteristic Bands | Number of Characteristic Bands | Variable Compression Rate (%) | R2 | RMSE |
---|---|---|---|---|---|
R | 1378~1521, 1850~1897, 1996~2055 nm | 252 | 11.45 | 0.64475 | 0.17255 |
FDR | 1170~1177, 1412~1433, 1640~1659, 1762~1784, 1804~1840, 1884~1898, 1902~1922, 1934~2003, 2182~2222, 2238~2249, 2412, 2414, 2418, 2419, 2421, 2423~2430, 2432~2443, 2445~2448, 2450~2452, 2454, 2458~2461, 2463, 2470, 2471 nm | 309 | 14.04 | 0.62314 | 0.17481 |
CRR | 1382~1497, 1865~1888, 2205~2216 nm | 152 | 6.91 | 0.58752 | 0.18562 |
NR | 1381~1480, 1865~1893 nm | 129 | 5.86 | 0.67974 | 0.16979 |
PCs | VIs | R2 | RMSE |
---|---|---|---|
PC1 | VI.1, VI.6, VI.4, VI.5, VI.18, VI.17, VI.25, VI.15, VI.22, VI.9, VI.23, VI.3, VI.10, VI.16, VI.34, VI.33, VI.24, VI.30, VI.32, VI.11 | 0.7237 | 0.18265 |
PC2 | VI.27, VI.26, VI.28, VI.24, VI.21, VI.19, VI.2, VI.1, VI.34, VI.33, VI.3, VI.23, VI.22, VI.10, VI.13, VI.9, VI.15, VI.20, VI.25, VI.16 | 0.71854 | 0.18967 |
PC3 | VI.27, VI.29, VI.12, VI.32, VI.30, VI.14, VI.31, VI.1, VI.33, VI.34, VI.28, VI.19, VI.21, VI.25, VI.11, VI.3, VI.15, VI.9, VI.22, VI.20 | 0.70674 | 0.19237 |
PC4 | VI.27, VI.11, VI.2, VI.16, VI.19, VI.21, VI.14, VI.1, VI.33, VI.3, VI.34, VI.31, VI.12, VI.28, VI.30, VI.13, VI.10, VI.23, VI.20, VI.9 | 0.72114 | 0.18562 |
PC5 | VI.27, VI.19, VI.21, VI.31, VI.20, VI.11, VI.10, VI.9, VI.28, VI.24, VI.26, VI.16, VI.7, VI.2, VI.29, VI.23, VI.1, VI.8, VI.14, VI.13 | 0.72113 | 0.18365 |
PC6 | VI.27, VI.8, VI.20, VI.11, VI.14, VI.19, VI.21, VI.2, VI.16, VI.10, VI.9, VI.28, VI.29, VI.33, VI.12, VI.13, VI.34, VI.32, VI.30, VI.26 | 0.70712 | 0.19122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Yu, H.; Li, X.; Zhang, L.; Sui, Y. Prediction of Potassium Content in Rice Leaves Based on Spectral Features and Random Forests. Agronomy 2023, 13, 2337. https://doi.org/10.3390/agronomy13092337
Yu Y, Yu H, Li X, Zhang L, Sui Y. Prediction of Potassium Content in Rice Leaves Based on Spectral Features and Random Forests. Agronomy. 2023; 13(9):2337. https://doi.org/10.3390/agronomy13092337
Chicago/Turabian StyleYu, Yue, Haiye Yu, Xiaokai Li, Lei Zhang, and Yuanyuan Sui. 2023. "Prediction of Potassium Content in Rice Leaves Based on Spectral Features and Random Forests" Agronomy 13, no. 9: 2337. https://doi.org/10.3390/agronomy13092337
APA StyleYu, Y., Yu, H., Li, X., Zhang, L., & Sui, Y. (2023). Prediction of Potassium Content in Rice Leaves Based on Spectral Features and Random Forests. Agronomy, 13(9), 2337. https://doi.org/10.3390/agronomy13092337