Benefiting from Complexity: Exploring Enhanced Biological Control Effectiveness via the Simultaneous Use of Various Methods for Combating Pest Pressure in Agriculture
Abstract
:1. Introduction
2. Review Methodology
3. Catch/Trap/Companion Crops
4. Sticky Traps and Pheromones
5. Biofumigation
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Caldas, E.D.; Jardim, A.N.O. Exposure to toxic chemicals in the diet: Is the Brazilian population at risk. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 1–15. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D. (Ed.) Encyclopedia of Pest Management, 1st ed.; CRC Press: New York, NY, USA, 2002. [Google Scholar]
- Stenberg, J.A.; Sundh, I.; Becher, P.G.; Björkman, C.; Dubey, M.; Egan, P.A.; Friberg, H.; Gil, J.F.; Jensen, D.F.; Jonsson, M.; et al. Correction to: When is it biological control? A framework of definitions, mechanisms, and classifications. J. Pest Sci. 2021, 94, 665–676, Erratum in J. Pest Sci. 2021, 94, 677. [Google Scholar] [CrossRef]
- Stiling, P.; Cornelissen, T. What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biol. Control 2005, 34, 236–246. [Google Scholar] [CrossRef]
- Ratto, F.; Bruce, T.; Chipabika, G.; Mwamakamba, S.; Mkandawire, R.; Khan, Z.; Mkindi, A.; Pittchar, J.; Sallu, S.M.; Whitfield, S.; et al. Biological control interventions reduce pest abundance and crop damage while maintaining natural enemies in sub-Saharan Africa: A meta-analysis. Proc. R. Soc. B Biol. Sci. 2022, 289, 20221695. [Google Scholar] [CrossRef]
- Vasconcelos, S.; Jonsson, M.; Heleno, R.; Moreira, F.; Beja, P. A meta-analysis of biocontrol potential and herbivore pressure in olive crops: Does integrated pest management make a difference? Basic Appl. Ecol. 2022, 63, 115–124. [Google Scholar] [CrossRef]
- Seehausen, M.L.; Afonso, C.; Jactel, H.; Kenis, M. Classical biological control against insect pests in Europe, North Africa, and the Middle East: What influences its success? NeoBiota 2021, 65, 169–191. [Google Scholar] [CrossRef]
- Goldson, S.; Wratten, S.; Ferguson, C.; Gerard, P.; Barratt, B.; Hardwick, S.; McNeill, M.; Phillips, C.; Popay, A.; Tylianakis, J.; et al. If and when successful classical biological control fails. Biol. Control 2014, 72, 76–79. [Google Scholar] [CrossRef]
- Gosnell, H.; Grimm, K.; Goldstein, B.E. A half century of Holistic Management: What does the evidence reveal? Agric. Hum. Values 2020, 37, 849–867. [Google Scholar] [CrossRef]
- Couëdel, A.; Kirkegaard, J.; Alletto, L.; Justes, É. Crucifer-legume cover crop mixtures for biocontrol: Toward a new multi-service paradigm. Adv. Agron. 2019, 157, 55–139. [Google Scholar] [CrossRef]
- Spescha, A.; Zwyssig, M.; Hermida, M.H.; Moix, A.; Bruno, P.; Enkerli, J.; Campos-Herrera, R.; Grabenweger, G.; Maurhofer, M. When Competitors Join Forces: Consortia of Entomopathogenic Microorganisms Increase Killing Speed and Mortality in Leaf- and Root-Feeding Insect Hosts. Microb. Ecol. 2023, 86, 1947–1960. [Google Scholar] [CrossRef] [PubMed]
- Roy, H.E.; Pell, J.K. Interactions Between Entomopathogenic Fungi and Other Natural Enemies: Implications for Biological Control. Biocontrol Sci. Technol. 2010, 10, 737–752. [Google Scholar] [CrossRef]
- Alharbi, W.; Sandhu, S.K.; Areshi, M.; Alotaibi, A.; Alfaidi, M.; Al-Qadhi, G.; Morozov, A.Y. Revisiting implementation of multiple natural enemies in pest management. Sci. Rep. 2022, 12, 15023. [Google Scholar] [CrossRef] [PubMed]
- Kergunteuil, A.; Bakhtiari, M.; Formenti, L.; Xiao, Z.; Defossez, E.; Rasmann, S. Biological Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores. Insects 2016, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Adly, D.; Nouh, G.M. Impact of combine releases of the egg parasitoid, Trichogramma euproctidis (Girault) and the entomopathogenic nematode, Heterorhabditis bacteriophora to control Tuta absoluta (Meyrick) in tomato greenhouses in Egypt. Egypt. J. Biol. Pest Control 2019, 29, 1–6. [Google Scholar] [CrossRef]
- Vassilakos, T.; Athanassiou, C.; Kavallieratos, N.; Vayias, B. Influence of temperature on the insecticidal effect of Beauveria bassiana in combination with diatomaceous earth against Rhyzopertha dominica and Sitophilus oryzae on stored wheat. Biol. Control 2006, 38, 270–281. [Google Scholar] [CrossRef]
- Athanassiou, C.; Steenberg, T. Insecticidal effect of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreaes) in combination with three diatomaceous earth formulations against Sitophilus granarius (L.) (Coleoptera: Curculionidae). Biol. Control 2007, 40, 411–416. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Rumbos, C.I.; Sakka, M.K.; Vayias, B.J.; Stephou, V.K.; Nakas, C.T. Insecticidal effect of the combined application of spinosad, Beauveria bassiana and diatomaceous earth for the control of Tribolium confusum. Biocontrol Sci. Technol. 2016, 26, 809–819. [Google Scholar] [CrossRef]
- Perez-Alvarez, R.; Nault, B.A.; Poveda, K. Effectiveness of augmentative biological control depends on landscape context. Sci. Rep. 2019, 9, 8664. [Google Scholar] [CrossRef]
- Konan, K.A.J.; Monticelli, L.S.; Ouali-N’goran, S.-W.M.; Ramirez-Romero, R.; Martin, T.; Desneux, N. Combination of generalist predators, Nesidiocoris tenuis and Macrolophus pygmaeus, with a companion plant, Sesamum indicum: What benefit for biological control of Tuta absoluta? PLoS ONE 2021, 16, e0257925. [Google Scholar] [CrossRef]
- SRedlich, S.; Martin, E.A.; Steffan-Dewenter, I. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. 2018, 55, 2419–2428. [Google Scholar] [CrossRef]
- Paredes, D.; Cayuela, L.; Campos, M. Synergistic effects of ground cover and adjacent vegetation on natural enemies of olive insect pests. Agric. Ecosyst. Environ. 2013, 173, 72–80. [Google Scholar] [CrossRef]
- Zuma, M.; Njekete, C.; Konan, K.A.J.; Bearez, P.; Amiens-Desneux, E.; Desneux, N.; Lavoir, A.-V. Companion plants and alternative prey improve biological control by Orius laevigatus on strawberry. J. Pest Sci. 2023, 96, 711–721. [Google Scholar] [CrossRef]
- Legaspi, J.C.; Miller, N.W.; Kanga, L.H.; Haseeb, M.; Zanuncio, J.C. Attract and reward for syrphid flies using methyl salicylate and sweet alyssum in kale in north Florida. Subtrop. Agric. Environ. 2020, 71, 49–52. [Google Scholar]
- Simpson, M.; Gurr, G.M.; Simmons, A.T.; Wratten, S.D.; James, D.G.; Leeson, G.; Nicol, H.I.; Orre-Gordon, G.U.S. Attract and reward: Combining chemical ecology and habitat manipulation to enhance biological control in field crops. J. Appl. Ecol. 2011, 48, 580–590. [Google Scholar] [CrossRef]
- Mutisya, S.; Saidi, M.; Opiyo, A.; Ngouajio, M.; Martin, T. Synergistic Effects of Agronet Covers and Companion Cropping on Reducing Whitefly Infestation and Improving Yield of Open Field-Grown Tomatoes. Agronomy 2016, 6, 42. [Google Scholar] [CrossRef]
- Cusumano, A.; Harvey, J.A.; Bourne, M.E.; Poelman, E.H.; de Boer, J.G. Exploiting chemical ecology to manage hyperparasitoids in biological control of arthropod pests. Pest Manag. Sci. 2020, 76, 432–443. [Google Scholar] [CrossRef]
- Moreau, T.L.; Isman, M.B. Combining reduced-risk products, trap crops and yellow sticky traps for greenhouse whitefly (Trialeurodes vaporariorum) management on sweet peppers (Capsicum annum). Crop. Prot. 2012, 34, 42–46. [Google Scholar] [CrossRef]
- Rahman, M.; Ahamed, T.; Khan, A.R.; Nuruzzaman; Islam, R.; Sarkar, A.; Dutta, N.K. Combined use of sticky traps and biopesticides as a sustainable tool to manage Aleurocanthus rugosa (Hemiptera: Aleyrodidae) infesting betel vine. Crop. Prot. 2023, 172, 106299. [Google Scholar] [CrossRef]
- Otieno, J.A. Integration of Soil-Applied Azadirachtin with Predators, Entomopathogens and Optical/Chemical Traps for the Management of Western Flower Thrips, Frankliniella Occidentalis Pergande (Thysanoptera: Thripidae); Gottfried Wilhelm Leibniz University: Hannover, Germany, 2016. [Google Scholar]
- Anita, B.; Selvaraj, N.; Vijayakumar, R. Associative effect of biofumigation and biocontrol agents in management of root knot nematode Meloidogyne hapla in Gerbera. J. Appl. Hortic. 2011, 13, 154–156. [Google Scholar] [CrossRef]
- Henderson, D.R.; Riga, E.; Ramirez, R.A.; Wilson, J.; Snyder, W.E. Mustard biofumigation disrupts biological control by Steinernema spp. nematodes in the soil. Biol. Control 2008, 48, 316–322. [Google Scholar] [CrossRef]
- Rojht, H.; KaČ, M.; Trdan, S. Nontarget Effect of Entomopathogenic Nematodes on Larvae of Twospotted Lady Beetle (Coleoptera: Coccinellidae) and Green Lacewing (Neuroptera: Chrysopidae) Under Laboratory Conditions. J. Econ. Entomol. 2009, 102, 1440–1443. [Google Scholar] [CrossRef] [PubMed]
- James, R.R.; Shaffer, B.T.; Croft, B.; Lighthart, B. Field Evaluation of Beauveria bassiana: Its Persistence and Effects on the Pea Aphid and a Non-target Coccinellid in Alfalfa. Biocontrol Sci. Technol. 1995, 5, 425–438. [Google Scholar] [CrossRef]
- O’donoghue, T.; Minasny, B.; McBratney, A. Regenerative Agriculture and Its Potential to Improve Farmscape Function. Sustainability 2022, 14, 5815. [Google Scholar] [CrossRef]
- Trifan, D.; Toaders, G.; Enea, C.I.; Ghiorghe, A.I.; Lungu, E.; Toader, E.V.; Ilie, L. Economic Model of Regenerative Agriculture and Factors of Agri-Food System Change, in Agrarian Economy and Rural Development-Realities and Perspectives for Romania. 2021. pp. 99–104. Available online: https://www.econstor.eu/bitstream/10419/263027/1/ICEADR-2021-p099.pdf (accessed on 11 December 2023).
- European Commission, Farm to Fork Strategy, Food Inf. Compos. Food Waste. 2020. p. 23. Available online: https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 1 April 2022).
- Cavani, L.; Manici, L.M.; Caputo, F.; Peruzzi, E.; Ciavatta, C. Ecological restoration of a copper polluted vineyard: Long-term impact of farmland abandonment on soil bio-chemical properties and microbial communities. J. Environ. Manag. 2016, 182, 37–47. [Google Scholar] [CrossRef]
- Zakari, S.; Jiang, X.; Zhu, X.; Liu, W.; Allakonon, M.G.B.; Singh, A.K.; Chen, C.; Zou, X.; Akponikpè, P.I.; Dossa, G.G.; et al. Influence of sulfur amendments on heavy metals phytoextraction from agricultural contaminated soils: A meta-analysis. Environ. Pollut. 2021, 288, 117820. [Google Scholar] [CrossRef] [PubMed]
- Fenster, T.L.; LaCanne, C.E.; Pecenka, J.R.; Schmid, R.B.; Bredeson, M.M.; Busenitz, K.M.; Michels, A.M.; Welch, K.D.; Lundgren, J.G. Defining and validating regenerative farm systems using a composite of ranked agricultural practices. F1000Research 2021, 10, 115. [Google Scholar] [CrossRef]
- Anuar, M.S.K.; Hashim, A.M.; Ho, C.L.; Wong, M.-Y.; Sundram, S.; Saidi, N.B.; Yusof, M.T. Synergism: Biocontrol agents and biostimulants in reducing abiotic and biotic stresses in crop. World J. Microbiol. Biotechnol. 2023, 39, 123. [Google Scholar] [CrossRef]
- Brundtland, H. World Commission on Environment and Development: Our Common Future. 1987. Available online: http://ir.harambeeuniversity.edu.et/bitstream/handle/123456789/604/Our%20Common%20Future%20World%20Commission%20on%20Environment%20andDevelopement.pdf?sequence=1&isAllowed=y (accessed on 30 November 2023).
- Stinner, D.H.; Stinner, B.R.; Martsolf, E. Biodiversity as an organizing principle in agroecosystem management: Case studies of holistic resource management practitioners in the USA. Agric. Ecosyst. Environ. 1997, 62, 199–213. [Google Scholar] [CrossRef]
- Morin, L.; Forrester, R.I.; Batchelor, K.; Holtkamp, R.; Hosking, J.R.; Lefoe, G.; Virtue, J.G.; Scott, J.K. Decline of the invasive plant Asparagus asparagoides within the first seven years after release of biological control agents in Australia. Biol. Control 2022, 165, 104795. [Google Scholar] [CrossRef]
- Deguine, J.P.; Aubertot, J.N.; Bellon, S.; Côte, F.; Lauri, P.E.; Lescourret, F.; Ratnadass, A.; Scopel, E.; Andrieu, N.; Bàrberi, P.; et al. Agroecological crop protection for sustainable agriculture. Adv. Agron. 2023, 178, 1–59. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curk, M.; Trdan, S. Benefiting from Complexity: Exploring Enhanced Biological Control Effectiveness via the Simultaneous Use of Various Methods for Combating Pest Pressure in Agriculture. Agronomy 2024, 14, 199. https://doi.org/10.3390/agronomy14010199
Curk M, Trdan S. Benefiting from Complexity: Exploring Enhanced Biological Control Effectiveness via the Simultaneous Use of Various Methods for Combating Pest Pressure in Agriculture. Agronomy. 2024; 14(1):199. https://doi.org/10.3390/agronomy14010199
Chicago/Turabian StyleCurk, Miha, and Stanislav Trdan. 2024. "Benefiting from Complexity: Exploring Enhanced Biological Control Effectiveness via the Simultaneous Use of Various Methods for Combating Pest Pressure in Agriculture" Agronomy 14, no. 1: 199. https://doi.org/10.3390/agronomy14010199