Characteristics of N Transformation of Humic Acid Urea in Different Circle Layers of the Fertisphere: A Simulated Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Description
2.2. Experimental Design
2.3. Sample Collection and Determination
2.4. Statistical Analysis
3. Results
3.1. Soil Urea-N Content and Urea Residual Rate
3.2. Soil Nitrate Nitrogen Content and Ammonium Nitrogen Content
3.3. Soil Mineral Nitrogen Content and Nitrification Rate
3.4. Soil pH Value
3.5. Soil Urease Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giroto, A.S.; do Valle, S.F.; Guimarães, G.G.F.; Wuyts, N.; Ohrem, B.; Jablonowski, N.D.; Ribeiro, C.; Mattoso, L.H.C. Zinc Loading in Urea-Formaldehyde Nanocomposites Increases Nitrogen and Zinc Micronutrient Fertilization Efficiencies in Poor Sand Substrate. Sci. Total Environ. 2022, 841, 156688. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, M.; Liu, Z.; Zhao, C.; Lu, H.; Zheng, L.; Li, Y.C. Applying and Optimizing Water-Soluble, Slow-Release Nitrogen Fertilizers for Water-Saving Agriculture. ACS Omega 2020, 5, 11342–11351. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Pacholski, A.; Kage, H. Ammonia Volatilization after Application of Urea to Winter Wheat over 3 Years Affected by Novel Urease and Nitrification Inhibitors. Agric. Ecosyst. Environ. 2014, 197, 184–194. [Google Scholar] [CrossRef]
- Cai, S.; Zhao, X.; Pittelkow, C.M.; Fan, M.; Zhang, X.; Yan, X. Optimal Nitrogen Rate Strategy for Sustainable Rice Production in China. Nature 2023, 615, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing Nitrogen for Sustainable Development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Conant, R.T.; Berdanier, A.B.; Grace, P.R. Patterns and Trends in Nitrogen Use and Nitrogen Recovery Efficiency in World Agriculture. Glob. Biogeochem. Cycles 2013, 27, 558–566. [Google Scholar] [CrossRef]
- Puga, A.P.; Grutzmacher, P.; Cerri, C.E.P.; Ribeirinho, V.S.; Andrade, C.A.d. Biochar-Based Nitrogen Fertilizers: Greenhouse Gas Emissions, Use Efficiency, and Maize Yield in Tropical Soils. Sci. Total Environ. 2020, 704, 135375. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Hosny, A.; Saad-Allah, K. Reducing Nitrogen Leaching While Enhancing Growth, Yield Performance and Physiological Traits of Rice by the Application of Controlled-Release Urea Fertilizer. Paddy Water Environ. 2021, 19, 173–188. [Google Scholar] [CrossRef]
- Keshavarz Afshar, R.; Lin, R.; Mohammed, Y.A.; Chen, C. Agronomic Effects of Urease and Nitrification Inhibitors on Ammonia Volatilization and Nitrogen Utilization in a Dryland Farming System: Field and Laboratory Investigation. J. Clean. Prod. 2018, 172, 4130–4139. [Google Scholar] [CrossRef]
- Zhao, B.; Yuan, L. Innovation and industrial development of green efficiency fertilizers in China. J. Plant Nutr. Fertil. 2023, 29, 2143–2149. [Google Scholar]
- Gao, S.; Zhang, S.; Yuan, L.; Li, Y.; Wen, Y.; Xu, J.; Hu, S.; Zhao, B. Humic Acids Incorporated into Urea at Different Proportions Increased Winter Wheat Yield and Optimized Fertilizer-Nitrogen Fate. Agronomy 2022, 12, 1526. [Google Scholar] [CrossRef]
- Oktem, A.G.; Oktem, A. Effect of Humic Acid Application Methods on Yield and Some Yield Characteristics of Corn Plant (Zea mays L. indentata). J. Appl. Life Sci. Int. 2020, 23, 31–37. [Google Scholar] [CrossRef]
- Kong, B.; Wu, Q.; Li, Y.; Zhu, T.; Ming, Y.; Li, C.; Li, C.; Wang, F.; Jiao, S.; Shi, L.; et al. The Application of Humic Acid Urea Improves Nitrogen Use Efficiency and Crop Yield by Reducing the Nitrogen Loss Compared with Urea. Agriculture 2022, 12, 1996. [Google Scholar] [CrossRef]
- Song, X.; Guo, W.; Xu, L.; Shi, L. Beneficial Effect of Humic Acid Urea on Improving Physiological Characteristics and Yield of Maize (Zea mays L.). Acta Physiol. Plant. 2022, 44, 72. [Google Scholar] [CrossRef]
- Kaya, C.; Şenbayram, M.; Akram, N.A.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Sulfur-Enriched Leonardite and Humic Acid Soil Amendments Enhance Tolerance to Drought and Phosphorus Deficiency Stress in Maize (Zea mays L.). Sci. Rep. 2020, 10, 6432. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kou, M.; Tang, Z.; Zhang, A.; Li, H.; Wei, M. Responses of Root Physiological Characteristics and Yield of Sweet Potato to Humic Acid Urea Fertilizer. PLoS ONE 2017, 12, e0189715. [Google Scholar] [CrossRef]
- Saha, B.K.; Rose, M.T.; Wong, V.N.L.; Cavagnaro, T.R.; Patti, A.F. Nitrogen Dynamics in Soil Fertilized with Slow Release Brown Coal-Urea Fertilizers. Sci. Rep. 2018, 8, 14577. [Google Scholar] [CrossRef]
- Saha, B.K.; Rose, M.T.; Wong, V.N.L.; Cavagnaro, T.R.; Patti, A.F. A Slow Release Brown Coal-Urea Fertiliser Reduced Gaseous N Loss from Soil and Increased Silver Beet Yield and N Uptake. Sci. Total Environ. 2019, 649, 793–800. [Google Scholar] [CrossRef]
- Liu, M.L.; Wang, C.; Liu, X.; Lu, Y.; Wang, Y. Saline-Alkali Soil Applied with Vermicompost and Humic Acid Fertilizer Improved Macroaggregate Microstructure to Enhance Salt Leaching and Inhibit Nitrogen Losses. Appl. Soil Ecol. 2020, 156, 103705. [Google Scholar] [CrossRef]
- Rose, M.T.; Patti, A.F.; Little, K.R.; Brown, A.L.; Jackson, W.R.; Cavagnaro, T.R. A Meta-Analysis and Review of Plant-Growth Response to Humic Substances. Adv. Agron. 2014, 124, 37–89. [Google Scholar] [CrossRef]
- Jing, J.; Zhang, S.; Yuan, L.; Li, Y.; Zhang, Y.; Wen, Y.; Zhao, B. Humic Acid Complex Formation with Urea Alters Its Structure and Enhances Biomass Production in Hydroponic Maize. J. Sci. Food Agric. 2022, 102, 3636–3643. [Google Scholar] [CrossRef] [PubMed]
- Canellas, L.P.; Olivares, F.L. Production of Border Cells and Colonization of Maize Root Tips by Herbaspirillum seropedicae are Modulated by Humic Acid. Plant Soil 2017, 417, 403–413. [Google Scholar] [CrossRef]
- Ahmed, O.H.; Aminuddin, H.; Husni, M.H.A. Reducing Ammonia Loss from Urea and Improving Soil-Exchangeable Ammonium Retention through Mixing Triple Superphosphate, Humic Acid and Zeolite. Soil Use Manag. 2006, 22, 315–319. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, N.; Li, J.; Wang, Y.; Liu, Y.; Cao, M.; Yan, Q. Characterization of Humic Acids from Original Coal and Its Oxidization Production. Sci. Rep. 2021, 11, 15381. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhang, X.; Yuan, Y.; Lan, Y.; Cheng, K.; Yang, F. Synthesis of Artificial Humic Acid-Urea Complex Improves Nitrogen Utilization. J. Environ. Manag. 2023, 344, 118377. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Córdova-Kreylos, A.L.; Yang, J.; Yuan, H.; Scow, K.M. Humic Acids Buffer the Effects of Urea on Soil Ammonia Oxidizers and Potential Nitrification. Soil Biol. Biochem. 2009, 41, 1612–1621. [Google Scholar] [CrossRef]
- Li, F.; Wang, H.; Zhang, Q. Progress on Migration and Transformation of Nitrogen Fertilizer in Soil and the Biological Effects. Fujian J. Agric. Sci. 2013, 28, 1170–1174. [Google Scholar] [CrossRef]
- Jiang, C.; Lu, D.; Zu, C.; Zhou, J.; Wang, H.; Wang, S. Effects of Different Fertilization Methods and Nitrogen Fertilizers on Nitrogen Diffusion and Migration in Lime Concretion Black Soil. Soils 2018, 50, 248–255. [Google Scholar] [CrossRef]
- Zhang, L.; Song, H.; Chen, X.; Lu, D.; Wang, H. Primary Study on Nutrient Migration Under Hole Fertilization in Soils. Soils 2020, 52, 1145–1151. [Google Scholar] [CrossRef]
- Hua, Q.; You, X.; Zhang, Y.; Hao, Z.; Luo, Y. Effect of Nitrogen Reduction on Migration of Nutrients in Fertisphere of Fluvo-aquic Soil. Soils 2023, 55, 79–84. [Google Scholar] [CrossRef]
- Merl, T.; Sedlacek, C.J.; Pjevac, P.; Fuchslueger, L.; Sandén, T.; Spiegel, H.; Koren, K.; Giguere, A.T. Visualizing Small-Scale Subsurface NH3 and pH Dynamics Surrounding Nitrogen Fertilizer Granules and Impacts on Nitrification Activity. Soil Biol. Biochem. 2023, 189, 109273. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, X.; Lu, D.; Wang, H. Long-Acting Mechanisms of Concentrated Urea Application—High Urea Concentrations Are Biological Inhibitors. Appl. Soil Ecol. 2023, 182, 104723. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Zhao, J.; Chen, Y.; Wang, H.; Ma, J.; Zou, P.; Bao, L. Restricted Nitrous Oxide Emissions by Ammonia Oxidizers in Two Agricultural Soils Following Excessive Urea Fertilization. J. Soils Sediments 2020, 20, 1502–1512. [Google Scholar] [CrossRef]
- Wang, X.; Song, D.; Liang, G.; Zhang, Q.; Ai, C.; Zhou, W. Maize Biochar Addition Rate Influences Soil Enzyme Activity and Microbial Community Composition in a Fluvo-Aquic Soil. Appl. Soil Ecol. 2015, 96, 265–272. [Google Scholar] [CrossRef]
- Pfab, H.; Palmer, I.; Buegger, F.; Fiedler, S.; Müller, T.; Ruser, R. Influence of a Nitrification Inhibitor and of Placed N-Fertilization on N2O Fluxes from a Vegetable Cropped Loamy Soil. Agric. Ecosyst. Environ. 2012, 150, 91–101. [Google Scholar] [CrossRef]
- Deppe, M.; Well, R.; Kücke, M.; Fuß, R.; Giesemann, A.; Flessa, H. Impact of CULTAN Fertilization with Ammonium Sulfate on Field Emissions of Nitrous Oxide. Agric. Ecosyst. Environ. 2016, 219, 138–151. [Google Scholar] [CrossRef]
- Neithercut, W.D.; el Nujumi, A.M.; McColl, K.E. Measurement of Urea and Ammonium Concentrations in Gastric Juice. J. Clin. Pathol. 1993, 46, 462–464. [Google Scholar] [CrossRef]
- Tao, J.; Liu, X. The Effect of Soil Salt Content and Ionic Composition on Nitrification in a Fluvisol of the Yellow River Delta. Soil Tillage Res. 2024, 235, 105907. [Google Scholar] [CrossRef]
- Shen, Y.; Lin, H.; Gao, W.; Li, M. The Effects of Humic Acid Urea and Polyaspartic Acid Urea on Reducing Nitrogen Loss Compared with Urea. J. Sci. Food Agric. 2020, 100, 4425–4432. [Google Scholar] [CrossRef]
- Korsakov, K.; Stepanov, A.; Pozdnyakov, L.; Yakimenko, O. Humate-Coated Urea as a Tool to Decrease Nitrogen Losses in Soil. Agronomy 2023, 13, 1958. [Google Scholar] [CrossRef]
- Bollmann, A.; Laanbroek, H.J. Continuous Culture Enrichments of Ammonia-Oxidizing Bacteria at Low Ammonium Concentrations. FEMS Microbiol. Ecol. 2001, 37, 211–221. [Google Scholar] [CrossRef]
- Saha, B.K.; Rose, M.T.; Wong, V.; Cavagnaro, T.R.; Patti, A.F. Hybrid Brown Coal-Urea Fertiliser Reduces Nitrogen Loss Compared to Urea Alone. Sci. Total Environ. 2017, 601–602, 1496–1504. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, M.; Li, Z.; Zhang, C.; Wan, C.; Zhang, Y.; Lee, D.-J. Inhibition of Urease Activity by Humic Acid Extracted from Sludge Fermentation Liquid. Bioresour. Technol. 2019, 290, 121767. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tan, W.; Koopal, L.K.; Wang, M.; Liu, F.; Norde, W. Influence of Soil Humic and Fulvic Acid on the Activity and Stability of Lysozyme and Urease. Environ. Sci. Technol. 2013, 47, 5050–5056. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Miao, Z.; Gao, M.; Wan, K. Structural Analysis of Lignite-Derived Humic Acid and Its Microscopic Interactions with Heavy Metal Ions in Aqueous Solution. Sci. Total Environ. 2023, 897, 165385. [Google Scholar] [CrossRef]
- Ampong, K.; Thilakaranthna, M.S.; Gorim, L.Y. Understanding the Role of Humic Acids on Crop Performance and Soil Health. Front. Agron. 2022, 4, 848621. [Google Scholar] [CrossRef]
- Ali, J.; Li, Y.; Wang, X.; Zhao, J.; Xi, N.; Zhang, Z.; Xia, X. Climate-Zone-Dependent Effect Mechanism of Humic Acid and Fulvic Acid Extracted from River Sediments on Aggregation Behavior of Graphene Oxide. Sci. Total Environ. 2020, 721, 137682. [Google Scholar] [CrossRef]
- Deppe, M.; Well, R.; Giesemann, A.; Spott, O.; Flessa, H. Soil N2O Fluxes and Related Processes in Laboratory Incubations Simulating Ammonium Fertilizer Depots. Soil Biol. Biochem. 2017, 104, 68–80. [Google Scholar] [CrossRef]
Nitrogen Input Levels (g kg−1) | U | HAU |
---|---|---|
20 | 0.06 ± 0.00 b | 0.16 ± 0.02 a |
10 | 0.05 ± 0.00 a | 0.03 ± 0.00 b |
2 | 0.05 ± 0.00 b | 1.49 ± 0.29 a |
1 | 22.94 ± 0.99 a | 20.59 ± 1.45 a |
0.2 | 7.20 ± 0.85 a | 7.86 ± 0.81 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Xu, M.; Yuan, L.; Zhang, S.; Li, Y.; Zhao, B. Characteristics of N Transformation of Humic Acid Urea in Different Circle Layers of the Fertisphere: A Simulated Experiment. Agronomy 2024, 14, 223. https://doi.org/10.3390/agronomy14010223
Liu M, Xu M, Yuan L, Zhang S, Li Y, Zhao B. Characteristics of N Transformation of Humic Acid Urea in Different Circle Layers of the Fertisphere: A Simulated Experiment. Agronomy. 2024; 14(1):223. https://doi.org/10.3390/agronomy14010223
Chicago/Turabian StyleLiu, Min, Meng Xu, Liang Yuan, Shuiqin Zhang, Yanting Li, and Bingqiang Zhao. 2024. "Characteristics of N Transformation of Humic Acid Urea in Different Circle Layers of the Fertisphere: A Simulated Experiment" Agronomy 14, no. 1: 223. https://doi.org/10.3390/agronomy14010223
APA StyleLiu, M., Xu, M., Yuan, L., Zhang, S., Li, Y., & Zhao, B. (2024). Characteristics of N Transformation of Humic Acid Urea in Different Circle Layers of the Fertisphere: A Simulated Experiment. Agronomy, 14(1), 223. https://doi.org/10.3390/agronomy14010223