Effects of Nitrogen Reduction at Different Growth Stages on Maize Water and Nitrogen Utilization under Shallow Buried Drip Fertigated Irrigation
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Location of the Field
2.2. Field Experiment
2.3. Data Calculation
2.3.1. Maize Above-Ground Biomass and Nitrogen Uptake
2.3.2. Maize Grain Yield
2.3.3. Maize Evapotranspiration Water Consumption and WUE
2.3.4. Nitrogen Utilization Index
3. Results
3.1. Effects of Nitrogen Reduction at Different Growth Stages under Shallow Buried Drip Fertigated Irrigation on Maize Yield
3.2. Effects of Nitrogen Reduction at Different Growth Stages under Shallow Buried Drip Fertigated Irrigation on Maize Nitrogen Uptake
3.3. Effects of Nitrogen Reduction at Different Stages under Shallow Buried Drip Fertigated Irrigation on Maize Evapotranspiration, Water Consumption and WUE
3.4. Effects of Nitrogen Reduction at Different Stages under Shallow Buried Drip Fertigated Irrigation on Maize NUE
3.4.1. Effect of Nitrogen Reduction at Different Stages under Shallow Buried Drip Fertigated Irrigation on Partial Productivity of Nitrogen Fertilizer
3.4.2. Effect of Staged Nitrogen Reduction under Shallow Buried Drip Fertigated Irrigation on Agronomic Efficiency of Nitrogen Fertilizer
3.4.3. Effects of Nitrogen Reduction at Different Stage under Shallow Buried Drip Fertigated Irrigation on Maize NUE
4. Discussion
- (1)
- The effect of nitrogen reduction on maize yield and nitrogen uptake
- (2)
- The effect of nitrogen reduction on nitrogen fertilizer utilization in spring maize
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, F.; Fang, Z.; Gao, Q.; Ye, Y.; Jia, L.; Yuan, L.; Mi, G.; Zhang, F. Evaluation of the yield and nitrogen use efficiency of the dominant Maize hybrids grown in North and Northeast China. Sci. China (Life Sci.) 2013, 56, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Grdens, A.I.; Hopmans, J.W.; Hanson, B.R.; Simunek, J. Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation. Agric. Water Manag. 2005, 74, 242. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, P.; Zheng, X.; He, X.; Zhang, J.; Li, W. Soil salinity changes of root zone and arable in cotton field with drip irrigation under mulch for different years. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2014, 30, 90–99. [Google Scholar]
- Lv, D.; Wang, Q.; Wang, W.; Shao, M. Factors affecting soil water movement and solute transport for film drip irrigation. Acta Pedol. Sin. 2002, 39, 794–801. [Google Scholar]
- Liu, H.; Chu, G.; Zhao, H.; Huang, Q.; Wang, F. Study on the variation and trend analysis of soil secondary salinization of cotton field under long-term drip irrigation condition in northern Xinjiang. Soil Fertil. Sci. China 2010, 4, 12–17. [Google Scholar]
- Zhu, Z.; Jin, J. Fertilizer use and food security in china. J. Plant Nutr. Fertil. 2013, 19, 259–273. [Google Scholar]
- Ju, X.; Gu, B. Indexes of Nitrogen Management. Acta Pedol. Sin. 2017, 54, 281–296. [Google Scholar]
- Zhang, F.; Wang, J.; Zhang, W.; Cui, Z.; Ma, W.; Chen, X.; Jiang, R. Nutrient use efficiencies of major cereal crops in china and measures for improvement. Acta Pedol. Sin. 2008, 61, 915–924. [Google Scholar]
- Ju, X.; Gu, B. Status-quo, problem and trend of nitrogen fertilization in China. J. Plant Nutr. Fertil. 2014, 20, 783–795. [Google Scholar]
- Hu, C.; Zhang, Y.; Qin, S.; Wang, Y.; Li, X.; Dong, W. Nitrogen processes and related environmental effects on agro-ecosystem in the North China Plain. Chin. J. Eco-Agric. 2018, 26, 1501–1514. [Google Scholar] [CrossRef]
- Liu, X.; Ju, X.; Zhang, F.; Pan, J.; Christie, P. Nitrogen dynamics and budgets in a winter wheat–maize cropping system in the North China Plain. Field Crops Res. 2003, 83, 111–124. [Google Scholar] [CrossRef]
- Pu, W.; Wu, Y.; Zhang, D.; Chen, M.; Liu, J.; Chen, X.; Yuan, J.; Kong, F. Effects of Nitrogen Reduction Combined with Nitrogen Fertilizer Synergist on Soil Available Nitrogen and Corn Yield. J. Soil Water Conserv. 2021, 35, 276–283. [Google Scholar] [CrossRef]
- Wu, C.; Chao, X.; Han, Y.; Zhang, Q.; Li, P.; Zhang, L. Mechanism of combination of nitrogen fertilizer reduction and straw returning in regulating dryland nitrification intensity and keeping stable crop yield in long run. J. Plant Nutr. Fertil. 2020, 26, 1782–1793. [Google Scholar]
- Li, R.; Li, Y.; Wang, B.; Wan, Y.; Li, J.; Ma, P.; Wen, S.; Qin, X.; Gao, Q. Pattern selection of water and nitrogen practices to reduce greenhouse gas emission and increase profit in a double rice system. Trans. Chin. Soc. Agric. Eng. 2020, 36, 105–113. [Google Scholar]
- Jiang, Q.; Lu, Z.; Zhao, H.; Guo, J.; Liu, W.; Ling, N.; Guo, S. Potential Analysis of Reducing Chemical Nitrogen Inputs While Increasing Efficiency by Organic-Inorganic Fertilization in Winter Rapeseed Producing Areas of the Middle and Lower Reaches of the Yangtze River. Sci. Agric. Sin. 2020, 53, 2907–2918. [Google Scholar]
- Liu, Y.; Li, Y.; Li, J. Effects of nitrogen management on the growth and yield of mulched and drip-irrigated maize in Northeast Black Soil Regions. J. Hydraul. Eng. 2014, 45, 529–536. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, S.; Yang, X.; Zhou, Y.; Yang, R.; Zhang, K.; He, D.; Yin, J. Effects of Nitrogen-Reducing and Suitable Soil Moisture on Nitrate Nitrogen Distribution in Soil, Nitrogen Absorption and Utilization of Winter Wheat. Sci. Agric. Sin. 2017, 50, 3885–3897. [Google Scholar]
- Dong, S.; Gao, F.; Guo, J.; Shen, Y.; Zhang, Y.; Zheng, R. Effects of water and nitrogen coupling on strawberry yield and quality under partial root-zone irrigation. Chin. J. Eco-Agric. 2018, 26, 657–667. [Google Scholar] [CrossRef]
- Qi, Y.; Shi, H.; Wang, C.; Zhao, J.; Wang, N. Effects of Water and Nitrogen on Maize Yield and Soil Residual Available Nitrogen Through Mulched Drip Irrigation. Soils 2016, 48, 278–285. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, F.; Chi, F.; Jiao, F.; Zhang, C.; Jiang, H.; Li, P.; Zhu, B. Effect of straw returning and nitrogen fertilizer regulation on nitrogen and rice yield in albic soil with different fertilities. Trans. Chin. Soc. Agric. Eng. 2019, 35, 105–111. [Google Scholar]
- Zhang, S.; Zhang, G.; Wang, D.; Liu, Q.; Wang, S. Effects of Straw Returning Coupled with Application of Nitrogen Fertilizer on Rice Yield and Dynamics of Nitrogen in Surface Water of Paddy Field. Acta Pedol. Sin. 2020, 57, 435–445. [Google Scholar]
- Geist, L.; Wolfer, R.; Thiem, R.; Thielicke, M.; Eichler-Löbermann, B.; Eulenstein, F.; Müller, M. Alternative starter fertilization strategies in maize (Zea mays L.) cultivation: Agronomic potential of microgranular fertilizer and plant growth-promoting microorganisms and their impact on the soil native microbial community. Agronomy 2023, 13, 2900. [Google Scholar] [CrossRef]
- Thielicke, M.; Ahlborn, J.; Eichler-Löbermann, B.; Eulenstein, F. On the negative impact of Mycorrhiza application on maize plants (Zea mays) amended with mineral and organic fertilizer. Microorganisms 2023, 11, 1663. [Google Scholar] [CrossRef] [PubMed]
- Thielicke, M.; Ahlborn, J.; Zivotic, L.; Saljnikov, E.; Eulenstein, F. Microgranular fertilizer and biostimulants as alternatives to diammonium phosphate fertilizer in maize production on marshland soils in northwest Germany. Zemljište I Biljka—Soil Plant 2022, 71, 53–66. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, F.; Li, Z.; Qiang, S. Effects of nitrogen application at different stages on growth, yield, and dry matter transportation of summer maize. Agric. Res. Arid Areas 2018, 36, 76–82. [Google Scholar]
- Lv, P.; Zhang, J.; Liu, W.; Yang, J.; Dong, S.; Liu, P.; Li, D. Effects of nitrogen application stages on photosynthetic characteristics of summer maize in high yield conditions. Acta Ecol. Sin. 2013, 33, 576–585. [Google Scholar]
- Zhang, Z.; Dai, L.; Guo, J.; Li, B. Effect of Rate of Applied Fertilizer on Fertilizer Requirementof High-yield Summer-sown Corn. J. Maize Sci. 1995, 4, 56–61+67. [Google Scholar]
- Li, G.; Wang, L.; Li, L.; Lu, D.; Lu, W. Effects of Fertilizer Management Strategies on Maize Yield and Nitrogen Use Efficiencies under Different Densities. Agron. J. 2020, 112, 368–381. [Google Scholar] [CrossRef]
- Yan, P.; Zhang, Q.; Shuai, X.; Pan, J.; Zhang, W.; Shi, J.; Wang, M.; Chen, X.; Cui, Z. Interaction between plant density and nitrogen management strategy in improving maize grain yield and nitrogen use efficiency on the North China Plain. J. Agric. Sci. 2016, 154, 978–988. [Google Scholar] [CrossRef]
- Qi, W. Ministry of Agriculture: Key Work of Agricultural Non point Source Pollution Prevention and Control in 2017. China Agric. Inform. 2017, 6, 3–5. [Google Scholar]
- Qi, Y.; Shi, H.; Li, R.; Zhao, J.; Li, B.; Li, M. Effects of film mulching on maize growth and soil water, fertilizer and heat under fertigation of drip irrigation. Trans. Chin. Soc. Agric. Eng. 2019, 35, 99–110. [Google Scholar]
- Shen, L.; Shi, H.; Miao, S. Technical Specification for Shallow Buried Drip Irrigation of Corn in Open Field; Inner Mongolia Autonomous Region Quality and Technical Supervision Bureau: Hohhot, China, 2018. [Google Scholar]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2019. [Google Scholar]
- Zhang, W. A Tutorial on Soil, Water, and Plant Physicochemical Analysis; China Forestry Publishing House: Beijing, China, 2011. [Google Scholar]
- Xiao, F.; Li, D.; Wu, Z.; Xue, Y.; Cui, L.; Zhang, K.; Li, Y.; Zheng, Y. Application effect of high efficiency and stability urea added with biochemical inhibitors and humic acid in loess. Chin. J. Appl. Ecol. 2021, 32, 4419–4428. [Google Scholar] [CrossRef]
- Wang, W.; Meng, Q.; Gao, L.; Chen, Q.; Zheng, W.; Wng, C.; Sun, L.; Liu, Z.; Zhang, M. Effects of Combined Application of Alginic Acid and Controlled-release Urea on Yield of Wheat and Maize, and Soil Nutrient. J. Soil Water Conserv. 2021, 35, 280–288. [Google Scholar] [CrossRef]
- Lu, X.; Yu, D.; Xu, Z.; Huang, J.; Zhou, C.; Sun, B. Study on Comprehensive Quantitative Relationship of Soil Fertility Quality and Nitrogen Application Rate with Wheat Nitrogen Use Efficiency. Acta Pedol. Sin. 2019, 56, 487–494. [Google Scholar]
- Dong, Q.; Wu, D.; Dang, T.; Guo, S. Effects of different nitrogen reduction modes on yield of spring maize and nitrate-N residue in soils of the southern Loess Plateau. J. Plant Nutr. Fertil. 2017, 23, 856–863. [Google Scholar]
- Wang, Y.; Liu, R.; Wang, F.; Hong, Y.; Mao, X.; Ma, J. Effect of nitrogen reduction on nitrogen uptake and leaching of spring maize in the Yellow River irrigation area. J. Agric. Resour. Environ. 2023, 12, 1–13. [Google Scholar] [CrossRef]
- Liu, F.; Liu, B.; Liu, J.; Du, X.; Kong, F.; Yuan, J. Effect of water and nitrogen interaction on maize utilization efficiency of fertilizer, water and yield formation in the Middle Hilly Area of Sichuan Province. Agric. Res. Arid Areas 2021, 39, 200–206. [Google Scholar]
- Guo, Z.; Liu, P.; Luo, W.; Wang, R.; Li, J. Effects of water limiting and nitrogen reduction on nitrogen use and apparent balance of winter wheat in the Guanzhong Plain, Northwest China. Chin. J. Appl. Ecol. 2021, 32, 4359–4369. [Google Scholar] [CrossRef]
- Zhang, M.; Qu, J.; Zhang, P.; Li, C.; Zhao, X.; Niu, J.; Huang, L.; Chen, J.; Yu, T.; Liu, J.; et al. Effect of Nitrogen Fertilizer Reduction on Yield and Dry Matter Accumulation in Different Planting Densities of Summer Maize. J. Maize Sci. 2021, 29, 145–150. [Google Scholar] [CrossRef]
- Sui, Y.; Gao, J.; Wang, Y.; Xiao, W.; Liu, J.; Shi, L.; Zhao, H.; Yang, Z. Biochar and Nitrogen FertilizerEffects on Soil Nutrient and Root Distribution in Dryland Maize. Ecol. Environ. Sci. 2021, 30, 2026–2032. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, H.; Xiao, H.; Xie, T.; Qin, S.; Hu, G. Effects of nitrogen reduction combined with organic materials on crop yield, photosynthetic characteristics, and product quality of corn-cabbage rotation system. Chin. J. Appl. Ecol. 2021, 32, 4391–4400. [Google Scholar] [CrossRef]
- Li, X.; Ma, J.; Sun, X.; Shi, X.; Guo, X.; Lei, T. Effects of water saving and nitrogen reduction on tomato growth and utilization rate of water and nitrogen in greenhouse. J. Drain. Irrig. Mach. Eng. 2021, 39, 1056–1061. [Google Scholar]
Burial Depth of Soil Layer (cm) | Bulk Density (g·cm−3) | Soil Particle Size Distribution (%) | Soil Texture | pH | ||
---|---|---|---|---|---|---|
>0.05 mm | 0.002~0.05 mm | <0.002 mm | ||||
0~20 | 1.44 | 41.89 | 56.78 | 1.33 | Loam soil | 8.1 |
20~40 | 1.43 | 13.45 | 85.66 | 0.90 | Silt | 7.9 |
40~60 | 1.45 | 52.50 | 47.28 | 0.23 | Sandy loam soil | 8.1 |
60~80 | 1.47 | 63.40 | 36.59 | 0.01 | Sandy loam soil | 8.2 |
80~100 | 1.48 | 48.26 | 51.47 | 0.28 | Loam soil | 7.8 |
Treatment Identifier | Total Nutrients (kg·hm−2) | N Amount (kg·hm−2) | |||||
---|---|---|---|---|---|---|---|
Base Fertilizer with Added N | Base Fertilizer P2O5 | Base Fertilizer K2O | Seedling | Jointing | Tasseling | Grouting | |
N0 | 0 | 135 | 120 | 0 | 0 | 0 | 0 |
Nopt | 240 | 135 | 120 | 48 | 72 | 84 | 36 |
Nde-I | 180 | 135 | 120 | 24 | 36 | 84 | 36 |
Nde-II | 180 | 135 | 120 | 48 | 72 | 42 | 18 |
Year | Treatment | Grain N Uptake (kg·hm−2) | Stem and Leaf N Uptake (kg·hm−2) | Total N Uptake (kg·hm−2) | HI (%) |
---|---|---|---|---|---|
2018 | N0 | 100.70 ± 2.63 d | 81.67 ± 4.31 c | 182.38 ± 4.12 d | 55.23 ± 1.68 b |
Nde-I | 171.21 ± 3.84 b | 106.37 ± 1.36 b | 277.58 ± 3.62 b | 61.67 ± 0.69 a | |
Nde-II | 152.52 ± 5.69 c | 118.57 ± 2.41 a | 271.09 ± 3.40 c | 56.25 ± 1.42 b | |
Nopt | 179.59 ± 6.05 a | 117.15 ± 5.44 a | 296.74 ± 3.24 a | 60.52 ± 1.85 a | |
2019 | N0 | 98.75 ± 3.42 d | 72.50 ± 3.72 d | 171.24 ± 4.14 d | 57.67 ± 1.71 b |
Nde-I | 180.05 ± 3.86 b | 93.48 ± 2.34 c | 273.54 ± 3.01 b | 65.82 ± 0.95 a | |
Nde-II | 155.31 ± 6.04 c | 107.80 ± 4.53 a | 263.11 ± 4.86 c | 59.02 ± 1.74 b | |
Nopt | 188.29 ± 6.92 a | 103.50 ± 5.37 b | 291.78 ± 9.85 a | 64.53 ± 1.25 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Qi, Y.; Yin, C.; Liu, X. Effects of Nitrogen Reduction at Different Growth Stages on Maize Water and Nitrogen Utilization under Shallow Buried Drip Fertigated Irrigation. Agronomy 2024, 14, 63. https://doi.org/10.3390/agronomy14010063
Zhao J, Qi Y, Yin C, Liu X. Effects of Nitrogen Reduction at Different Growth Stages on Maize Water and Nitrogen Utilization under Shallow Buried Drip Fertigated Irrigation. Agronomy. 2024; 14(1):63. https://doi.org/10.3390/agronomy14010063
Chicago/Turabian StyleZhao, Ju, Yinglong Qi, Chunyan Yin, and Xiaoyu Liu. 2024. "Effects of Nitrogen Reduction at Different Growth Stages on Maize Water and Nitrogen Utilization under Shallow Buried Drip Fertigated Irrigation" Agronomy 14, no. 1: 63. https://doi.org/10.3390/agronomy14010063
APA StyleZhao, J., Qi, Y., Yin, C., & Liu, X. (2024). Effects of Nitrogen Reduction at Different Growth Stages on Maize Water and Nitrogen Utilization under Shallow Buried Drip Fertigated Irrigation. Agronomy, 14(1), 63. https://doi.org/10.3390/agronomy14010063