A Bibliometric Analysis of Global Research on Climate Change and Agriculture from 1985 to 2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
3. Results and Discussion
3.1. Characteristics of Publications and Research Areas
3.2. Cooperation Networks of Climate Change and Agriculture Research
3.2.1. Country Co-Authorship
3.2.2. Institution Co-Authorship
3.2.3. Author Co-Authorship
3.3. Keywords Co-Occurrence Analysis
3.4. Limitations
4. Conclusions
- (1)
- The annual number of papers increased exponentially from 1985 to 2023 and showed a rapid growth trend after 2007, with 95.89% of the total number of papers being published during this period. Furthermore, climate change and agriculture research was characterized by interdisciplinarity and diversity in terms of research areas and journals;
- (2)
- The USA had the leading position in this field, with the highest number of papers and total citations, and cooperated closely with other countries. In addition to the USA, China and some European countries also have great influence in this field. Furthermore, the most influential institutions and authors were mainly distributed in these countries;
- (3)
- The most prominent keywords were “climate change”, “agriculture”, “impact”, “adaption”, and “management”. Although four distinct research topics have been identified over the decades, in recent years, the research focus has shifted toward climate change adaptation in agriculture.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Rawat, A.; Kumar, D.; Khati, B.S. A review on climate change impacts, models, and its consequences on different sectors: A systematic approach. J. Water Clim. Change 2024, 15, 104–126. [Google Scholar] [CrossRef]
- Malhi, Y.; Franklin, J.; Seddon, N.; Solan, M.; Turner, M.G.; Field, C.B.; Knowlton, N. Climate Change and Ecosystems: Threats, Opportunities and Solutions. Philos. Trans. R. Soc. B 2020, 375, 20190104. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Dietz, T.; Shwom, R.L.; Whitley, C.T. Climate Change and Society. Annu. Rev. Sociol. 2020, 46, 135–158. [Google Scholar] [CrossRef]
- Ray, D.; Gerber, J.; MacDonald, G.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Li, C.; Jia, J.; Wu, F.; Zuo, L.; Cui, X. County-level intensity of carbon emissions from crop farming in China during 2000–2019. Sci. Data 2024, 11, 457. [Google Scholar] [CrossRef]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Rivera-Ferre, M.G. From agriculture to food systems in the IPCC. Glob. Change Biol. 2020, 26, 2731–2733. [Google Scholar] [CrossRef]
- Yuan, X.; Li, S.; Chen, J.; Yu, H.; Yang, T.; Wang, C.; Huang, S.; Chen, H.; Ao, X. Impacts of Global Climate Change on Agricultural Production: A Comprehensive Review. Agronomy 2024, 14, 1360. [Google Scholar] [CrossRef]
- Azadi, H.; Moghaddam, S.M.; Burkart, S.; Mahmoudi, H.; Passel, S.V.; Kurban, A.; Lopez-Carr, D. Rethinking resilient agriculture: From Climate-Smart Agriculture to Vulnerable-Smart Agriculture. J. Clean. Prod. 2021, 319, 128602. [Google Scholar] [CrossRef]
- McLeman, R.; Mayo, D.; Strebeck, E.; Smit, B. Drought adaptation in rural eastern Oklahoma in the 1930s: Lessons for climate change adaptation research. Mitig. Adapt. Strateg. Glob. Change 2008, 13, 379–400. [Google Scholar] [CrossRef]
- Lee, C.C.; Zeng, M.; Luo, K. How does climate change affect food security? Evidence from China. Environ. Impact Assess. Rev. 2024, 104, 107324. [Google Scholar] [CrossRef]
- Gaugler, T.; Stoeckl, S.; Rathgeber, A.W. Global climate impacts of agriculture: A meta-regression analysis of food production. J. Clean. Prod. 2020, 276, 122575. [Google Scholar] [CrossRef]
- Mizik, T. Climate-Smart Agriculture on Small-Scale Farms: A Systematic Literature Review. Agronomy 2021, 11, 1096. [Google Scholar] [CrossRef]
- Parolini, G. Weather, climate, and agriculture: Historical contributions and perspectives from agricultural meteorology. Wiley Interdiscip. Rev. Clim. Change 2022, 13, e766. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Grigorieva, E.; Livenets, A.; Stelmakh, E. Adaptation of Agriculture to Climate Change: A Scoping Review. Climate 2023, 11, 202. [Google Scholar] [CrossRef]
- Crane-Droesch, A. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environ. Res. Lett. 2018, 13, 114003. [Google Scholar] [CrossRef]
- Totin, E.; Segnon, A.C.; Schut, M.; Affognon, H.; Zougmoré, R.B.; Rosenstock, T.; Thornton, P.K. Institutional Perspectives of Climate-Smart Agriculture: A Systematic Literature Review. Sustainability 2018, 10, 1990. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Wang, B. A bibliometric analysis of climate change adaptation based on massive research literature Data. J. Clean. Prod. 2018, 199, 1072–1082. [Google Scholar] [CrossRef]
- Chen, G.; Bai, J.; Bi, C.; Wang, Y.; Cui, B. Global greenhouse gas emissions from aquaculture: A bibliometric analysis. Agric. Ecosyst. Environ. 2023, 348, 108405. [Google Scholar] [CrossRef]
- Shiffrin, R.M.; Börner, K. Mapping knowledge domains. Proc. Natl. Acad. Sci. USA 2004, 101, 5183–5185. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Glänzel, W.; Zhang, L. Tracing the development of mapping knowledge domains. Scientometrics 2021, 126, 6201–6224. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Y.; Chen, X.; Liu, Y. Bibliometric Analysis of Global NDVI Research Trends from 1985 to 2021. Remote Sens. 2022, 14, 3967. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Chen, C. Citespace ii: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Borgatti, S.; Everett, M.; Freeman, L. UCINET 6 for Windows: Software for Social Network Analysis; Analytic Technology: Harvard, MA, USA, 2002. [Google Scholar]
- Persson, O.; Danell, R.; Schneider, J.W. How to use Bibexcel for various types of bibliometric analysis. In Celebrating Scholarly Communication Studies: A Festschrift for Olle Persson at his 60th Birthday; Umeå University Library: Umeå, Sweden, 2009; pp. 9–24. [Google Scholar]
- McAllister, J.T.; Lennertz, L.; Atencio Mojica, Z. Mapping a Discipline: A Guide to Using VOSviewer for Bibliometric and Visual Analysis. Sci. Technol. Libr. 2022, 41, 319–348. [Google Scholar] [CrossRef]
- Bukar, U.A.; Sayeed, M.S.; Razak, S.F.A.; Yogarayan, S.; Amodu, O.A.; Mahmood, R.A.R. A Method for Analyzing Text Using VOSviewer. MethodsX 2023, 11, 102339. [Google Scholar] [CrossRef]
- Sweileh, W.M. Bibliometric analysis of peer-reviewed literature on food security in the context of climate change from 1980 to 2019. Agric. Food Secur. 2020, 9, 11. [Google Scholar] [CrossRef]
- Xiao, F.; Liu, Q.; Qin, Y.; Huang, D.; Liao, Y. Agricultural drought research knowledge graph reasoning by using VOSviewer. Heliyon 2024, 10, e27696. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Hu, K.; Lysenko, V.; Khan, K.Y.; Wang, Y.K.; Jiang, Y.N.; Guo, Y. A scientometric analysis of agricultural pollution by using bibliometric software VoSViewer and Histcite (TM). Environ. Sci. Pollut. Res. 2022, 29, 37882–37893. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Wang, H.; Rahman, A.; Memon, W.H.; Qian, L. A bibliometric analysis of sustainable agriculture: Based on the Web of Science (WOS) platform. Environ. Sci. Pollut. Res. 2022, 29, 38928–38949. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Tang, H.; Dong, Y.; Liu, K.; Jiang, P.; Liu, Y. Knowledge Mapping of Research on Land Use Change and Food Security: A Visual Analysis Using CiteSpace and VOSviewer. Int. J. Environ. Res. Public Health 2021, 18, 13065. [Google Scholar] [CrossRef]
- Baraj, B.; Mishra, M.; Sudarsan, D.; da Silva, R.M.; Santos, C.A.G. Climate change and resilience, adaptation, and sustainability of agriculture in India: A bibliometric review. Heliyon 2024, 10, e29586. [Google Scholar] [CrossRef]
- van Leeuwen, T. The application of bibliometric analyses in the evaluation of social science research. Who benefits from it, and why it is still feasible. Scientometrics 2006, 66, 133–154. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Li, N.; Chou, S. Knowledge mapping on the sun-induced chlorophyll fluorescence technology research: A scientometric and visualization analysis. Environ. Sci. Pollut. Res. 2024, 31, 9150–9166. [Google Scholar] [CrossRef]
- Yuan, B.Z.; Sun, J. Research trend of rice and greenhouse gases based on Web of Science: A bibliometric analysis. All. Earth 2023, 35, 16–30. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Averyt, K.; Marquis, M. (Eds.) Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Fussel, H.M. An updated assessment of the risks from climate change based on research published since the IPCC Fourth Assessment Report. Clim. Change 2009, 97, 469–482. [Google Scholar] [CrossRef]
- Ravishankara, A.R.; Randall, D.A.; Hurrell, J.W. Complex and yet predictable: The message of the 2021 Nobel Prize in Physics. Proc. Natl. Acad. Sci. USA 2022, 119, e2120669119. [Google Scholar] [CrossRef]
- Hertel, T.W.; de Lima, C.Z. Climate impacts on agriculture: Searching for keys under the streetlight. Food Policy 2020, 95, 101954. [Google Scholar] [CrossRef]
- Shahzad, A.; Ullah, S.; Dar, A.A.; Sardar, M.F.; Mehmood, T.; Tufail, M.A.; Shakoor, A.; Haris, M. Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environ. Sci. Pollut. Res. 2021, 7, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Wu, W.; Yang, P.; Li, Z.; Xiong, W.; Tang, H. Proposing an interdisciplinary and cross-scale framework for global change and food security researches. Agric. Ecosyst. Environ. 2012, 156, 57–71. [Google Scholar] [CrossRef]
- El Bilali, H.; Strassner, C.; Ben Hassen, T. Sustainable Agri-Food Systems: Environment, Economy, Society, and Policy. Sustainability 2021, 13, 6260. [Google Scholar] [CrossRef]
- Yang, Q.; Du, T.; Li, N.; Liang, J.; Javed, T.; Wang, H.; Guo, J.; Liu, Y. Bibliometric Analysis on the Impact of Climate Change on Crop Pest and Disease. Agronomy 2023, 13, 920. [Google Scholar] [CrossRef]
- Sawirdin, S.; Tian, A.; Shi, L.; Fu, W.; Cheng, S.; Halik, Ü.; Liang, J. A Bibliometric Analysis of the Research Progress and Trends during 2002–2022 on the Carbon Stocks in Terrestrial Ecosystems. Forests 2023, 14, 2051. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43. [Google Scholar] [CrossRef]
- Van Dalen, H.P.; Henkens, K. Signals in science—On the importance of signaling in gaining attention in science. Scientometrics 2005, 64, 209–233. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.; Cammarano, D.; Kimball, B.; Ottman, M.; Wall, G.; White, J.W. Rising temperatures reduce global wheat production. Nat. Clim. Change 2015, 5, 143. [Google Scholar] [CrossRef]
- Lobell, D.B.; Field, C.B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2007, 2, 014002. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef]
- Leng, S.; Gao, X.; Pei, T.; Zhang, G.; Chen, L.; Chen, X.; He, C.; He, D.; Li, X.; Lin, C.; et al. The Geographical Sciences During 1986–2015; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Ogisi, O.D.; Begho, T. Adoption of climate-smart agricultural practices in sub-Saharan Africa: A review of the progress, barriers, gender differences and recommendations. Farming Syst. 2023, 1, 100019. [Google Scholar] [CrossRef]
- Jiang, B.; Deng, X.; Chen, H.; Cui, L.; Tang, W. Research trends and hotspots in climate adaptation of the agricultural system: A bibliometric analysis. Front. Sustain. Food Syst. 2023, 7, 1158904. [Google Scholar] [CrossRef]
- Aleixandre-Benavent, R.; Aleixandre-Tudó, J.; Castelló-Cogollos, L.; Aleixandre, J. Trends in scientific research on climate change in agriculture and forestry subject areas (2005–2014). J. Clean. Prod. 2017, 147, 406–418. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Belmonte-Ureña, L.J.; López-Serrano, M.J. Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis. Water 2018, 10, 377. [Google Scholar] [CrossRef]
- Yuan, B.; Sun, J. Trend and status of Food Science and Technology category based on the Essential Science Indicators during 2011–2021. Food Sci. Technol. 2022, 42, e91321. [Google Scholar] [CrossRef]
- Lin, W.; De, K.; Wei, X.; Wang, W.; Zhang, L.; Xiang, X.; Li, F. Visual analysis of alpine meadow research trends and hotspots based on VOS viewer. Front. Environ. Sci. 2023, 11, 1095299. [Google Scholar] [CrossRef]
- Nsabiyeze, A.; Ma, R.; Li, J.; Luo, H.; Zhao, Q.; Tomka, J.; Zhang, M. Tackling climate change in agriculture: A global evaluation of the effectiveness of carbon emission reduction policies. J. Clean. Prod. 2024, 468, 142973. [Google Scholar] [CrossRef]
- Oenema, O.; Velthof, G.; Kuikman, P. Technical and policy aspects of strategies to decrease greenhouse gas emissions from agriculture. Nutr. Cycl. Agroecosyst. 2001, 60, 301–315. [Google Scholar] [CrossRef]
- Liu, M.; Chen, X.; Jiao, Y. Sustainable Agriculture: Theories, Methods, Practices and Policies. Agriculture 2024, 14, 473. [Google Scholar] [CrossRef]
- Ochoa-Noriega, C.A.; Aznar-Sánchez, J.A.; Velasco-Muñoz, J.F.; Álvarez-Bejar, A. The Use of Water in Agriculture in Mexico and Its Sustainable Management: A Bibliometric Review. Agronomy 2020, 10, 1957. [Google Scholar] [CrossRef]
- Shi, S.; Yin, J. Global research on carbon footprint: A scientometric review. Environ. Impact Assess. Rev. 2021, 89, 106571. [Google Scholar] [CrossRef]
No. | Journal | No. of Papers | Ratio (%) | No. of Citations | Quartile in Category |
---|---|---|---|---|---|
1 | Sustainability | 912 | 3.53 | 14,061 | Q2 |
2 | Science of the Total Environment | 589 | 2.28 | 21,451 | Q1 |
3 | Climatic Change | 445 | 1.72 | 25,507 | Q1 |
4 | Environmental Research Letters | 378 | 1.46 | 17,724 | Q1 |
5 | Water | 337 | 1.30 | 5349 | Q2 |
6 | Journal of Cleaner Production | 328 | 1.27 | 11,941 | Q1 |
7 | Agronomy-Basel | 316 | 1.22 | 3878 | Q1 |
8 | Agriculture Ecosystems and Environment | 301 | 1.16 | 22,037 | Q1 |
9 | Agricultural Systems | 286 | 1.11 | 9974 | Q1 |
10 | Regional Environmental Change | 246 | 0.95 | 7408 | Q1 |
No. | Document | Title | Source | No. of Citations |
---|---|---|---|---|
1 | [51] | Food security: The challenge of feeding 9 billion people | Science | 6990 |
2 | [52] | Global food demand and the sustainable intensification of agriculture | Proceedings of the National Academy of Sciences of the United States of America (PNAS) | 4518 |
3 | [53] | The impacts of climate change on water resources and agriculture in China | Nature | 2455 |
4 | [55] | Soil carbon sequestration to mitigate climate change | Geoderma | 2201 |
5 | [56] | Nonlinear temperature effects indicate severe damages to US crop yields under climate change | PNAS | 1880 |
6 | [57] | Greenhouse gas mitigation in agriculture | Philosophical Transactions of the Royal Society B | 1550 |
7 | [58] | Natural climate solutions | PNAS | 1516 |
8 | [59] | Rising temperatures reduce global wheat production | Nature Climate Change | 1371 |
9 | [60] | Global scale climate–crop yield relationships and the impacts of recent warming | Environmental Research Letters | 1358 |
10 | [61] | Adapting agriculture to climate change | PNAS | 1268 |
No. | Country | No. of Papers | No. of Citations | Total Link Strength |
---|---|---|---|---|
1 | USA | 6819 | 363,109 | 7172 |
2 | P. R. China | 3722 | 124,376 | 3860 |
3 | England | 2450 | 152,233 | 4929 |
4 | Germany | 2207 | 116,180 | 4485 |
5 | India | 2017 | 60,024 | 1934 |
6 | Australia | 2000 | 101,704 | 3284 |
7 | Italy | 1469 | 69,516 | 2575 |
8 | Canada | 1363 | 65,962 | 1943 |
9 | Spain | 1244 | 46,324 | 2128 |
10 | France | 1212 | 70,259 | 2684 |
No. | Institution | No. of Papers | No. of Citations | Total Link Strength | Country |
---|---|---|---|---|---|
1 | Chinese Academy of Sciences | 1121 | 42,066 | 624 | China |
2 | Wageningen University | 505 | 30,558 | 481 | Netherlands |
3 | University of California, Davis | 261 | 15,371 | 276 | USA |
4 | Beijing Normal University | 254 | 8971 | 190 | China |
5 | China Agricultural University | 254 | 9266 | 250 | China |
6 | University of Oxford | 254 | 22,073 | 269 | England |
7 | Michigan State University | 231 | 12,617 | 235 | USA |
8 | University of Queensland | 231 | 10,971 | 211 | Australia |
9 | University of Leeds | 229 | 14,247 | 176 | England |
10 | University of Florida | 222 | 14,381 | 298 | USA |
No. | Author | No. of Papers | No. of Citations | Total Link Strength | Affiliations |
---|---|---|---|---|---|
1 | Smith, Pete | 77 | 10,920 | 46 | University of Aberdeen |
2 | Lal, Rattan | 63 | 5537 | 20 | The Ohio State University |
3 | Havlik, Petr | 52 | 5932 | 206 | International Institute for Applied Systems Analysis |
4 | Müller, Christoph | 51 | 5805 | 92 | Potsdam Institute for Climate Impact Research (PIK) |
5 | Jat, M. L. | 45 | 2860 | 17 | International Maize and Wheat Improvement Center |
6 | Popp, Alexander | 43 | 4245 | 140 | PIK |
7 | Lobell, David B. | 42 | 7960 | 4 | Stanford University |
8 | Tao, Fulu | 41 | 2680 | 21 | Chinese Academy of Sciences |
9 | Lotze-Campen, Hermann | 40 | 4571 | 125 | PIK |
10 | Dougill, Andrew J. | 37 | 1849 | 45 | University of Leeds |
No. | Red Group | Green Group | Blue Group | Yellow Group | ||||
---|---|---|---|---|---|---|---|---|
K | O | K | O | K | O | K | O | |
1 | Climate change | 11,648 | Management | 2469 | Agriculture | 7464 | Yield | 1339 |
2 | Impact | 4581 | Land use | 1722 | Adaptation | 2755 | Growth | 1000 |
3 | Variability | 1871 | Biodiversity | 984 | Food security | 1964 | Productivity | 974 |
4 | Temperature | 1647 | Soil | 909 | Vulnerability | 1295 | Responses | 709 |
5 | Drought | 1490 | Conservation | 899 | Sustainability | 1174 | Wheat | 688 |
6 | Model | 1484 | Dynamics | 865 | Resilience | 745 | Maize | 634 |
7 | Precipitation | 1136 | Nitrogen | 766 | Policy | 692 | Rice | 412 |
8 | Water | 1111 | Mitigation | 733 | Risk | 667 | Crop yield | 388 |
9 | Irrigation | 931 | Carbon | 677 | Farmers | 649 | Crop production | 374 |
10 | Trends | 918 | Greenhouse-gas emissions | 659 | Adoption | 612 | CO2 | 363 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yao, H.; Li, Z.; Wu, F.; Liu, B.; Wu, Y.; Chun, K.P.; Octavianti, T.; Cui, X.; Xu, Y. A Bibliometric Analysis of Global Research on Climate Change and Agriculture from 1985 to 2023. Agronomy 2024, 14, 2729. https://doi.org/10.3390/agronomy14112729
Li C, Yao H, Li Z, Wu F, Liu B, Wu Y, Chun KP, Octavianti T, Cui X, Xu Y. A Bibliometric Analysis of Global Research on Climate Change and Agriculture from 1985 to 2023. Agronomy. 2024; 14(11):2729. https://doi.org/10.3390/agronomy14112729
Chicago/Turabian StyleLi, Cheng, Hongda Yao, Zhaozhe Li, Fang Wu, Bo Liu, Yongping Wu, Kwok Pan Chun, Thanti Octavianti, Xuefeng Cui, and Yang Xu. 2024. "A Bibliometric Analysis of Global Research on Climate Change and Agriculture from 1985 to 2023" Agronomy 14, no. 11: 2729. https://doi.org/10.3390/agronomy14112729
APA StyleLi, C., Yao, H., Li, Z., Wu, F., Liu, B., Wu, Y., Chun, K. P., Octavianti, T., Cui, X., & Xu, Y. (2024). A Bibliometric Analysis of Global Research on Climate Change and Agriculture from 1985 to 2023. Agronomy, 14(11), 2729. https://doi.org/10.3390/agronomy14112729