Function and Expression Analysis on StFLA4 in Response to Drought Stress and Tuber Germination in Potato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Verification of StFLA4 Expression Pattern in Potatoes After Drought Stress
2.2. Subcellular Localization
2.3. Overexpressed StFLA4 Vector Construction and Tobacco Transformation
2.4. Drought Stress Treatment and the Expression Patterns of Target Gene Detection
2.5. Physiological Index Measurement of Transgenic Tobacco Under Drought Stress
2.6. Determination of Arabinogalactan Protein Content and Analysis of StFLA4 Expression During Potato Tuber Germination
2.7. Bioinformatic Analysis
2.8. Statistical Analysis
3. Results
3.1. StFLA4 Expression Abundance Is Downregulated Under Drought Stress in Potatoes
3.2. StFLA4 Located on Cell Membrane and Nucleus for Function
3.3. Overexpressing StFLA4 in Tobacco Reduces the Drought Resistance of the Plants
3.4. StFLA4 Inhibits ROS Scavenging and Protection Under Drought Stress
3.5. StFLA4 Is Largely Implicated in Critical Proteins Related to Drought Stress
3.6. The Expression Pattern of StFLA4 Changed with the Tuber Germination in Potato
4. Discussion
4.1. Differential Expression Pattern of StFLA4 Was Related to Drought Stress
4.2. Potato StFLA4 Negative Response to Drought Stress by Inhibiting ROS Scavenging
4.3. StFLA4 Regulation of Potato Tuber Germination
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, J.; Ma, Y.; Xie, R.; Zhang, Z.; Zhang, S.; Wu, X.; Wang, P.; Wang, D.; Lu, C. Integrated metabolomics and transcriptomics reveals difference involved in flavonoid and indole alkaloids biosynthesis in potato tuber flesh. Sci. Hortic. 2023, 324, 112630–112648. [Google Scholar] [CrossRef]
- Pksa, A.; Tajner-Czopek, A.; Gryszkin, A.; Miedzianka, J.; Rytel, E.; Wolny, S. Assessment of the content of Glycoalkaloids in potato snacks made from colored potatoes, tesulting from the action of organic acids and thermal processing. Foods 2024, 13, 1712–1729. [Google Scholar] [CrossRef] [PubMed]
- Pandey, J.; Gautam, S.; Scheuring, D.C.; Koym, J.W.; Vales, M.I. Variation and genetic basis of mineral content in potato tubers and prospects for genomic selection. Front. Plant Sci. 2023, 14, 1301297–1301311. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Johnson, K. Arabinogalactan proteins-multifunctional glycoproteins of the plant cell wall. Cell Surf. 2023, 9, 100102–100106. [Google Scholar] [CrossRef]
- Bao, H.; Zheng, G. Distribution and function oa arebinogalactan-proteins in higher plant. North. Hortic. 2016, 01, 185–191. (In Chinese) [Google Scholar]
- Lu, M.; Zhou, J.; Jiang, S.; Zeng, Y.; Li, C.; Tan, X. The fasciclin-like arabinogalactan proteins of Camellia oil tree are involved in pollen tube growth. Plant Sci. 2023, 326, 111518–111530. [Google Scholar] [CrossRef]
- Lu, S.; Wu, X.; Nie, H.; Xie, R.; Zhang, Z.; Wu, J.; Wang, P.; Bai, Y.; Zheng, Z.; Meng, T.; et al. Bioinformatics and expression analysis of the purple potato FLA gene family. Mol. Plant Breed. 2023, 15, 1353024. Available online: https://link.cnki.net/urlid/46.1068.S.20240826.1558.002 (accessed on 27 August 2024).
- Guerriero, G.; Mangeot-Peter, L.; Mangeot-Peter, L.; Legay, S.; Behr, M. Identification of fasciclin-like arabinogalactan proteins in textile hemp (Cannabis sativa L.): In silico analyses and gene expression patterns in different tissues. BMC Genom. 2017, 18, 741–754. [Google Scholar] [CrossRef]
- Li, W.; Zhao, F.; Fang, W.; Xie, D.; Hou, J.; Yang, X.; Zhao, Y.; Tang, Z.; Nie, L.; Lv, S. Identification of early salt stress responsive proteins in seedling roots of upland cotton (Gossypium hirsutum L.) employing iTRAQ-based proteomic technique. Front. Plant Sci. 2015, 6, 732–746. [Google Scholar] [CrossRef]
- Seifert, G.J.; Xue, H.; Tuba, A. The Arabidopsis thaliana FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 gene acts synergistically with abscisic acid signalling to control root growth. Ann. Bot. 2014, 6, 1125–1133. [Google Scholar] [CrossRef]
- Griffiths, J.; Crepeau, M.; Ralet, M.; Seifert, G.; North, H. Dissecting seed mucilage adherence mediated by FEI2 and SOS5. Front. Plant Sci. 2016, 7, 1073–1086. [Google Scholar] [CrossRef]
- Xue, H.; Seifert, G.J. FASCICLIN LIKE ARABINOGALACTAN PROTEIN 4 and RESPIRATORY BURST OXIDASE HOMOLOG D and F independently modulate abscisic acid signaling. Plant Signal Behav. 2015, 10, e989064. [Google Scholar] [CrossRef] [PubMed]
- Basu, D.; Tian, L.; Debrosse, T.; Poirier, E.; Emch, K.; Herock, H.; Travers, A.; Showalter, A. Glycosylation of a fasciclin-Like arabinogalactan-protein (SOS5) mediates root growth and seed mucilage adherence via a cell wall receptor-like kinase (FEI1/FEI2) pathway in Arabidopsis. PLoS ONE 2016, 11, e145092. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, D.; Kawamura, Y.; Uemura, M. Cold acclimation is accompanied by complex responses of glycosylphosphatidylinositol (GPI)-anchored proteins in Arabidopsis. J. Exp. Bot. 2016, 67, 5203–5215. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Zhao, J. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J. Exp. Bot. 2010, 61, 2647–2668. [Google Scholar] [CrossRef]
- Seifert, G.J. The FLA4-FEI pathway: A unique and mysterious signaling module related to cell wall structure and stress signaling. Genes 2021, 12, 145–162. [Google Scholar] [CrossRef]
- Cagnola, J.; Dumont de Chassart, S.; Ibarra, G.; Chimenti, C.; Ricardi, M.; Delzer, B.; Ghiglione, H.; Zhu, T.; Elena, O.; Estevez, M.J.; et al. Reduced expression of selected FASCICLIN-IKE ARABINOGALACTAN PROTEIN genes associates with the abortion of kernels in feld crops of Zea mays (maize) and of Arabidopsis seeds. Plant Cell Environ. 2018, 41, 661–674. [Google Scholar] [CrossRef]
- Faik, A.; Abouzouhair, J.; Sarhan, F. Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): Identification and bioinformatic analyses. Mol. Genet. Genom. 2006, 276, 478–494. [Google Scholar] [CrossRef]
- Pang, W. Significance and implementation of potato staple cropping strategy. Grain Process. 2019, 3. (In Chinese) [Google Scholar]
- Yin, Z.; Zhao, Q.; Lv, X.; Zhang, X.; Wu, Y. Circular RNA ath-circ032768, a competing endogenous RNA, response the drought stress by targeting miR472-RPS5 module. Plant Biol. 2024, 26, 544–559. [Google Scholar] [CrossRef]
- Bai, Y.; Shi, K.; Shan, D.; Wang, C.; Yan, T.; Hu, Z.; Zheng, X.; Zhang, T.; Song, H.; Li, R.; et al. The WRKY17-WRKY50 complex modulates anthocyanin biosynthesis to improve drought tolerance in apple. Plant Sci. 2024, 340, 111965–111977. [Google Scholar] [CrossRef]
- Yan, X.; Wu, X.; Sun, F.; Nie, H.; Du, X.; Li, X.; Fang, Y.; Zhai, Y.; Zhao, Y.; Fan, B.; et al. Clonging and functional study of AmGDSL1 in Agropyron mongolicum. Int. J. Mol. Sci. 2024, 25, 9467–9482. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.; Zhao, N.; Li, B.; Jiang, K.; Li, H.; Zhang, J.; Guo, A.; Hua, J. Evolutionary comparison of lncRNAs in four cotton species and functional identification of LncR4682-PAS2-KCS19 module in fiber elongation. Plant J. 2024, 120, 1421–1437. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.T.; Sun, B.; Niu, J.Q.; Tan, Q.L.; Li, J.; Yang, L.T.; Li, Y.R. Overexpression of sugarcane gene SoSnRK2.1 confers drought tolerance in transgenic tobacco. Plant Cell Rep. 2016, 35, 1891–1905. [Google Scholar] [CrossRef]
- Nie, H.; Wang, Y.; Wei, C.; Grover, C.E.; Su, Y.; Wendel, J.F.; Hua, J. Embryogenic calli induction and salt stress response revealed by RNA-Seq in diploid wild species Gossypium sturtianum and Gossypium raimondii. Front. Plant Sci. 2021, 12, 715041–715057. [Google Scholar] [CrossRef]
- Li, J.; Gong, Z.; Yang, D. Effect of cinnamomum longepaniculatum essential oil on potato bud germination. China Potato 2022, 36, 341–349. (In Chinese) [Google Scholar]
- Sprenger, H.; Kurowsky, C.; Horn, R.; Erban, A.; Seddig, S.; Rudack, K.; Fischer, A.; Walther, D.; Zuther, E.; Köhl, K.; et al. The drought response of potato reference cultivars with contrasting tolerance. Plant Cell Environ. 2016, 39, 2370–2389. [Google Scholar] [CrossRef]
- Tanz, T.; Castleden, I.; Small, I.; Millar, A. Fluorescent protein tagging as a tool to define the subcellular distribution of proteins in plant. Front. Plant Sci. 2013, 24, 214–223. [Google Scholar] [CrossRef]
- Huang, X.; Wang, W.; Zhang, Q.; Liu, J. A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol. 2013, 162, 1178–1194. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, P.; Si, T.; Hsu, C.; Wang, L.; Zayed, O.; Yu, Z.; Zhu, Y.; Dong, J.; Tao, W.; et al. MAP kinase cascades regulate the cold response by modulating ICE1 protein stability. Dev. Cell. 2017, 43, 618–629. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, C.; Wang, C.; Yang, Y.; Yang, L.; Gao, X.; Zhang, H. Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees. J. Exp. Bot. 2015, 66, 1291–1302. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, L.; Hao, C.; Wan, M.; Tao, Y.; Zhuang, Y.; Su, Y.; Li, L. The microRNA408-plantacyanin module balances plant growth and drought resistance by regulating reactive oxygen species homeostasis in guard cells. Plant Cell. 2024, 36, 4338–4355. [Google Scholar] [CrossRef] [PubMed]
- Challabathula, D.; Analin, B.; Mohanan, A.; Bakka, K. Differential modulation of photosynthesis, ROS and antioxidant enzyme activities in stress-sensitive and -tolerant rice cultivars during salinity and drought upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. J. Plant Physiol. 2022, 268, 153583–153597. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef]
- Ahanger, M.; Agarwal, R. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol. Bioch. 2017, 115, 449–460. [Google Scholar] [CrossRef]
- Foyer, C. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 2018, 154, 134–142. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, H.; Ai, X.; Dong, Q.; Shi, X.; Zhao, X.; Zhong, C.; Yu, H. Improving chilling tolerance of peanut seedlings by enhancing antioxidant-modulated ROS scavenging ability, alleviating photosynthetic inhibition, and mobilizing nutrient absorption. Plant Biol. 2024, 26, 532–543. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, J.; Fu, X.; Zhao, C.; Zhang, W.; Gao, H.; Zhu, C.; Song, X.; Zhao, Y.; An, Y.; et al. PagPXYs improve drought tolerance by regulating reactive oxygen species homeostasis in the cambium of Populus alba × P. glandulosa. Plant Sci. 2024, 344, 112106–112116. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Y.; Zhou, K.; Tian, C.; Aslam, M.; Zhang, B.; Liu, W.; Zou, H. Overexpression of ZmEREBP60 enhances drought tolerance in maize. J. Plant Physiol. 2022, 275, 153763–153773. [Google Scholar] [CrossRef]
- Hudson, K.; Hudson, M. The basic helix-loop-helix transcription factor family in the sacred lotus, nelumbo nucifera. Trop. Plant Biol. 2014, 7, 65–70. [Google Scholar] [CrossRef]
- Qi, X.; Xu, W.; Zhang, J.; Guo, R.; Zhao, M.; Hu, L.; Wang, H.; Dong, H.; Li, Y. Physiological characteristics and metabolomics of transg enic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress. Protoplasma 2016, 254, 1017–1030. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, H.; Lu, S.; Wu, X.; Wang, P.; Li, N.; Ma, Y.; Wu, J.; Ma, Y. Function and Expression Analysis on StFLA4 in Response to Drought Stress and Tuber Germination in Potato. Agronomy 2024, 14, 2988. https://doi.org/10.3390/agronomy14122988
Nie H, Lu S, Wu X, Wang P, Li N, Ma Y, Wu J, Ma Y. Function and Expression Analysis on StFLA4 in Response to Drought Stress and Tuber Germination in Potato. Agronomy. 2024; 14(12):2988. https://doi.org/10.3390/agronomy14122988
Chicago/Turabian StyleNie, Hushuai, Siqi Lu, Xiaojuan Wu, Peijie Wang, Nan Li, Yu Ma, Juan Wu, and Yanhong Ma. 2024. "Function and Expression Analysis on StFLA4 in Response to Drought Stress and Tuber Germination in Potato" Agronomy 14, no. 12: 2988. https://doi.org/10.3390/agronomy14122988
APA StyleNie, H., Lu, S., Wu, X., Wang, P., Li, N., Ma, Y., Wu, J., & Ma, Y. (2024). Function and Expression Analysis on StFLA4 in Response to Drought Stress and Tuber Germination in Potato. Agronomy, 14(12), 2988. https://doi.org/10.3390/agronomy14122988