Improving Water Productivity Using Subsurface Drip Irrigation in the Southwest Monsoon Area in Yunnan Province of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Measurements
2.3.1. Growth of Tomato Plants
2.3.2. Tomato Yield, Quality, and Water Productivity
2.3.3. Determination of Physiological Indexes
2.3.4. Statistical Methods
3. Results
3.1. The Impacts of Different Irrigation Treatments on Tomato Growth
3.2. Impacts on Plant Physiological Indexes
3.3. Impacts on Fruit Quality Characteristics
3.4. Impacts on Fruit Yield and Irrigation Water Productivity
4. Discussion
4.1. Effects of Subsurface Drip Irrigation on Tomato Growth and Physiological Characteristics
4.2. Effects of Subsurface Drip Irrigation on Fruit Production and Fruit Quality
4.3. Influence of Subsurface Drip Irrigation on Water Productivity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Zheng, Z.; Huang, K.; Yang, X.; Tian, L. Sensitivity of altitudinal vegetation in Southwest China to changes in the Indian summer monsoon during the past 68000 years. Quat. Sci. Rev. 2020, 239, 106359. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.; Cheng, F.; Deng, H.; Chen, S. Drought Monitoring in Yunnan Province Based on a TRMM Precipitation Product. Nat. Hazards 2020, 104, 2369–2387. [Google Scholar] [CrossRef]
- Qiu, J.; Cao, J.; Lan, G.; Liang, Y.; Li, Q. The influence of land use patterns on soil bacterial community structure in the karst graben basin of Yunnan province, China. Forests 2020, 11, 51. [Google Scholar] [CrossRef]
- Zheng, X.; Kang, W.; Zhao, T.; Luo, Y.; Duan, C.; Chen, J. Long-term trends in sunshine duration over Yunnan-Guizhou plateau in Southwest China for 1961–2005. Geophys. Res. Lett. 2008, 35, 386–390. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, P.; Zhu, T.; Li, Q.; Cao, J. The characteristics of soil C, N, and P stoichiometric ratios as affected by geological background in a karst graben area, southwest China. Forests 2019, 10, 601. [Google Scholar] [CrossRef]
- Jiang, Y.; Yuan, D.; Xie, S.; Li, L.; Zhang, G.; He, R. Groundwater quality and land use change in a typical karst agricultural region: A case study of Xiaojiang watershed, Yunnan. J. Geogr. Sci. 2006, 4, 23–32. [Google Scholar] [CrossRef]
- Dahlberg, J.A. The Influence of Drip Irrigation on Cotton Petiole Nitrates and Yield; The University of Arizona: Tucson, AZ, USA, 1987. [Google Scholar]
- Alam, M. Crop production using subsurface drip irrigation (SDI) and in-field evaluation. Trans. Vis. Soc. Jpn. 1990, 10, 97–98. [Google Scholar]
- Aydinsakir, K.; Buyuktas, D.; Din, N.; Erdurmus, C.; Yegin, A.B. Yield and bioethanol productivity of sorghum under surface and subsurface drip irrigation. Agric. Water Manag. 2021, 243, 106452. [Google Scholar] [CrossRef]
- Cao, X.; Feng, Y.; Li, H.; Zheng, H.; Wang, J.; Tong, C. Effects of subsurface drip irrigation on water consumption and yields of alfalfa under different water and fertilizer conditions. J. Sensors 2021, 2021, 6617437. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Zhang, Z.; Liu, X. Subsurface drip irrigation scheduling for cucumber (Cucumis sativus L.) grown in solar greenhouse based on 20 cm standard pan evaporation in Northeast China. Sci. Hortic. 2009, 123, 51–57. [Google Scholar] [CrossRef]
- Incrocci, L.; Malorgio, F.; Bartola, A.D.; Pardossi, A. The influence of drip irrigation or subirrigation on tomato grown in closed-loop substrate culture with saline water. Sci. Hortic. 2006, 107, 365–372. [Google Scholar] [CrossRef]
- Al-Omran, A.R.; Wahab-Allah, M.A.; Nadeem, M.; El-Eter, A. Impact of saline water rates under surface and subsurface drip irrigation system on tomato production. Turk. J. Agric. For. 2010, 33, 1–15. [Google Scholar]
- Franco, L.; Motisi, A.; Provenzano, G. Evaluation of subsurface drip irrigation emitters on a split-root container-grown citrus rootstock (citrange ‘Ccarrizo’). Acta Hortic. 2022, 1335, 533–540. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef]
- Spreer, W.; Müller, J.; Hegele, M.; Ongprasert, S. Effect of deficit irrigation on fruit growth and yield of mango (Mangifera indica L.) in northern Thailand. Acta Hortic. 2009, 820, 357–364. [Google Scholar] [CrossRef]
- Romero, P.; Botia, P.; Garcia, F. Effects of regulated deficit irrigation under subsurface drip irrigation conditions on water relations of mature almond trees. Plant Soil 2004, 260, 155–168. [Google Scholar] [CrossRef]
- Ahmed, R.; Yusoff Abd Samad, M.; Uddin, M.K.; Quddus, M.A.; Hossain, M.A.M. Recent Trends in the Foliar Spraying of Zinc Nutrient and Zinc Oxide Nanoparticles in Tomato Production. Agronomy 2021, 11, 2074. [Google Scholar] [CrossRef]
- Li, F.; Chen, X.; Zhou, S.; Xie, Q.; Chen, G. Overexpression of slmbp22 in tomato affects plant growth and enhances tolerance to drought stress. Plant Sci. 2020, 301, 110672. [Google Scholar] [CrossRef]
- Zheng, C.; Wan, L.; Wang, R.; Wang, G.; Dong, L.; Yang, T.; Yang, Q.; Zhou, J. Effects of rock lithology and soil nutrients on nitrogen and phosphorus mobility in trees in non-karst and karst forests of southwest China. For. Ecol. Manag. 2023, 548, 121392. [Google Scholar] [CrossRef]
- An, S.; Zhou, J.; Liu, B.; Cheng, M.; Yang, H.; Sun, X. Effects of trace irrigation pipe depth on development, yield and water use efficiency of tomato in solar greenhouse. Crops 2013, 3, 86–89. (In Chinese) [Google Scholar]
- Zhang, R.; Liu, J.; Zhu, J.; Jin, J.; Wei, Q.; Shi, Y. Trace quantity irrigation technology with crop water-requirement triggering and self-adaptive function. Water Sav. Irrigation. 2013, 1, 48–51. (In Chinese) [Google Scholar]
- Zhu, H. Micro-irrigation Primary Bar Scree Device Research. J. Irrig. Drain. 2017, 36, 29–33. (In Chinese) [Google Scholar]
- Trovato, M.; Mattioli, R.; Costantino, P. Multiple roles of proline in plant stress tolerance and development. Rend. Lincei 2008, 19, 325–346. [Google Scholar] [CrossRef]
- Singandhupe, R.B.; Rao, G.G.S.N.; Patil, N.G.; Brahmanand, P.S. Fertigation studies and irrigation scheduling in drip irrigation system in tomato crop (Lycopersicon esculentum L.). Eur. J. Agron. 2003, 19, 327–340. [Google Scholar] [CrossRef]
- Zhuge, Y.; Zhang, X.; Zhang, Y.; Li, J.; Yang, L.; Huang, Y.; Liu, M. Tomato root response to subsurface drip irrigation. Pedosphere 2004, 14, 205–212. [Google Scholar]
- Shabbir, A.; Mao, H.; Ullah, I.; Buttar, N.A.; Lakhiar, I.A. Effects of drip irrigation emitter density with various irrigation levels on physiological parameters, root, yield, and quality of cherry tomato. Agronomy 2020, 10, 1685. [Google Scholar] [CrossRef]
- Locascio, S.J.; Smajstsrla, A.G.; Hensel, D.H.; Weigartner, D.P. Potato growth uniformity as affected by subsurface drip and seepage irrigation. HortScience Publ. Am. Soc. Hortic. Sci. 1997, 32, 529C–529. [Google Scholar] [CrossRef]
- Singh, D.K.; Singh, R.M.; Rao, K.V.R. Subsurface drip irrigation system for enhanced productivity of vegetables. Environ. Ecol. 2010, 28, 1639–1642. [Google Scholar]
- Wang, H.; Wang, N.; Quan, H.; Zhang, F.; Fan, J.; Feng, H.; Cheng, M.; Liao, Z.; Wang, X.; Xiang, Y. Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis. Agric. Water Manag. 2022, 269, 107645. [Google Scholar] [CrossRef]
- Seidel, S.J.; Schütze, N.; Fahle, M.; Ruelle, P. Optimal Irrigation Scheduling, Irrigation Control and Drip Line Layout to Increase Water Productivity and Profit in Subsurface Drip-Irrigated Agriculture. Irrig. Drain. 2014, 64, 501–518. [Google Scholar] [CrossRef]
- Douh, B.; Boujelben, A. Water saving and eggplant response to subsurface drip irrigation. J. Agric. Segm. 2010, 1, 1525. [Google Scholar]
- Lamm, F.R.; Trooien, T.P. Subsurface drip irrigation for corn production: A review of 10 years of research in Kansas. Irrig. Sci. 2003, 22, 195–200. [Google Scholar] [CrossRef]
Index | Value |
---|---|
Soil bulk density (g/cm3) | 1.27 |
Total nitrogen (g·kg−1) | 2.878 |
Ammonium nitrogen (mg·kg−1) | 144.88 |
Nitric nitrogen (mg·kg−1) | 18.506 |
Total phosphorus (g·kg−1) | 0.533 |
Rapidly available phosphorus (mg·kg−1) | 29.769 |
Fast-acting potassium (mg·kg−1) | 46.793 |
Organic matter (g·kg−1) | 8.487 |
pH | 7.24 |
Treatment | Irrigation Methods | Lower Limit of Soil Moisture |
---|---|---|
A1 | Drip irrigation under film (A treatments) | 75~85 |
A2 | 65~75 | |
A3 | 55~65 | |
C1 | Subsurface drip irrigation (C treatments) | 75~85 |
C2 | 65~75 | |
C3 | 55~65 |
Days after Transplantation | Plant Height Increases in Different Growth Stages (cm/d) | |||||
---|---|---|---|---|---|---|
A1 | C1 | A2 | C2 | A3 | C3 | |
14~21 | 2.83 a | 2.80 a | 2.80 a | 2.81 a | 2.69 a | 2.79 a |
21~28 | 4.36 b | 4.17 ab | 4.32 b | 3.94 ab | 3.95 ab | 3.90 a |
28~35 | 5.57 d | 5.29 c | 5.10 bc | 4.94 b | 4.46 ab | 4.34 a |
35~42 | 5.14 d | 4.80 bc | 4.90 c | 4.77 bc | 5.01 c | 4.23 ab |
42~49 | 3.81 c | 3.86 c | 3.24 b | 2.86 ab | 2.43 a | 2.62 a |
49~56 | 1.43 a | 1.76 ab | 1.90 b | 2.10 b | 2.43 c | 2.67 d |
56~63 | 0.24 a | 0.90 b | 0.62 ab | 1.52 c | 0.52 ab | 0.62 ab |
Treatments | Root Volume (cm3) | Root Diameter (mm) | Root Length (cm) | Root Surface Area (cm2) |
---|---|---|---|---|
A1 | 44.60 a | 1.20 abc | 3945.1 a | 1486.4 a |
C1 | 46.20 ab | 1.18 ab | 4226.4 bcd | 1566.0 bc |
A2 | 48.20 c | 1.22 cd | 4126.5 abc | 1580.4 bc |
C2 | 49.13 c | 1.23 cd | 4137.9 bc | 1597.8 cd |
A3 | 51.43 d | 1.25 d | 4193.7 bcd | 1645.9 e |
C3 | 53.70 e | 1.25 d | 4383.4 d | 1707.3 f |
Treatments | Leaf Dry Weight (g) | Leaf Dry Weight Ratio (%) | Stem Dry Weight (g) | Stem Dry Weight Ratio (%) | Root Dry Weight (g) | Root Dry Weight Ratio (%) | Root/Shoot Ratio (%) | Total Dry Weight (g) |
---|---|---|---|---|---|---|---|---|
A1 | 95.98 e | 52.65 ab | 72.78 e | 42.94 c | 8.05 a | 4.41 a | 4.614 a | 176.81 |
C1 | 90.64 de | 53.87 ab | 68.89 d | 40.95 abc | 8.68 ab | 5.16 bc | 5.441 bc | 168.21 |
A2 | 85.92 cd | 54.48 ab | 62.99 cd | 39.90 ab | 8.86 b | 5.62 cd | 5.951 cd | 157.77 |
C2 | 82.51 bc | 51.96 a | 66.94 cd | 41.99 c | 9.61 cd | 6.04 de | 6.436 de | 159.06 |
A3 | 77.37 ab | 55.66 ab | 51.51 ab | 37.04 a | 10.15 e | 7.30 f | 7.875 f | 139.03 |
C3 | 72.62 a | 55.01 ab | 48.78 ab | 36.87 a | 10.69 f | 8.12 g | 8.841 g | 132.09 |
Fruit Yield in the Early Period (kg/hm2) | Fruit Yield in the Full Bearing Period (kg/hm2) | Fruit Yield in the Later Period (kg/hm2) | Single Fruit Weight (kg) | Total Fruit Yield (kg/hm2) | Frequency of Irrigation | Irrigation Water Amount (m3/hm2) | IWP (kg/m3) | |
---|---|---|---|---|---|---|---|---|
A1 | 20,145 d | 57,855 de | 7560 a | 141.29 c | 85,560 e | 11 | 2522.1 | 33.9 e |
C1 | 11,850 b | 60,015 e | 13,125 b | 138.08 bc | 84,990 e | 13 | 2056.4 | 41.3 e |
A2 | 18,735 cd | 50,985 d | 9885 a | 139.24 bc | 79,605 d | 8 | 2157.4 | 36.9 d |
C2 | 10,650 ab | 47,355 c | 18,780 c | 136.75 ab | 76,785 c | 10 | 1857.3 | 41.3 c |
A3 | 16,110 c | 42,090 b | 15,795 bc | 133.18 a | 73,995 b | 6 | 1935.3 | 37.7 b |
C3 | 9555 a | 37,725 a | 22,830 de | 133.48 a | 70,110 a | 6 | 1689.2 | 40.9 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, L.; Jian, Y.; Zhang, M.; Tong, J.; Rebi, A.; Zhou, J. Improving Water Productivity Using Subsurface Drip Irrigation in the Southwest Monsoon Area in Yunnan Province of China. Agronomy 2024, 14, 679. https://doi.org/10.3390/agronomy14040679
Wan L, Jian Y, Zhang M, Tong J, Rebi A, Zhou J. Improving Water Productivity Using Subsurface Drip Irrigation in the Southwest Monsoon Area in Yunnan Province of China. Agronomy. 2024; 14(4):679. https://doi.org/10.3390/agronomy14040679
Chicago/Turabian StyleWan, Long, Yi Jian, Mei Zhang, Jing Tong, Ansa Rebi, and JinXing Zhou. 2024. "Improving Water Productivity Using Subsurface Drip Irrigation in the Southwest Monsoon Area in Yunnan Province of China" Agronomy 14, no. 4: 679. https://doi.org/10.3390/agronomy14040679
APA StyleWan, L., Jian, Y., Zhang, M., Tong, J., Rebi, A., & Zhou, J. (2024). Improving Water Productivity Using Subsurface Drip Irrigation in the Southwest Monsoon Area in Yunnan Province of China. Agronomy, 14(4), 679. https://doi.org/10.3390/agronomy14040679