Predictive Production Models for Mountain Meadows: A Review
Abstract
:1. Introduction
2. Crop Predictive Models
2.1. Empirical Models
2.2. Dynamic Models
- -
- Ecological model: they are small models focusing on biotic interactions using elegant equations. Those models explain general ecological patterns, including species interactions, but abiotic effects and spatial heterogeneity are poorly accounted for.
- -
- Biogeochemical: they are parameter-rich models of the cycling of carbon, nutrients, and water. They make long-term predictions about biogeochemical cycles and soil pools. On the other hand, they usually have limited capacity for yield forecasting and limited capacity for heterogeneity and biodiversity.
- -
- Agricultural: they are rich-parameter models focusing on phenology and yield formation. They make short-term predictions of productivity, but they lack long-term predictive capacity and admit no spatial heterogeneity or biodiversity.
2.2.1. APSIM
2.2.2. STICS
2.2.3. LINGRA
2.2.4. CROPSYST
2.2.5. WOFOST
2.2.6. PaSIM
2.2.7. Biome-BCG
2.2.8. CenW
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janišová, M.; Bojko, I.; Ivașcu, C.M.; Iuga, A.; Biro, A.-S.; Magnes, M. Grazing Hay Meadows: History, Distribution, and Ecological Context. Appl. Veg. Sci. 2023, 26, e12723. [Google Scholar] [CrossRef]
- Ascaso, J.; Reiné, R.; Barrantes, O. Evolution of Hay Meadows between 1956, 1986, and 2016 and Its Relation to the Characteristics and Location of the Parcels in the Valley of the River Esera (Pyrenees, Spain). Agronomy 2020, 10, 329. [Google Scholar] [CrossRef]
- Hejcman, M.; Hejcmanová, P.; Pavlů, V.; Beneš, J. Origin and History of Grasslands in Central Europe—A Review. Grass Forage Sci. 2013, 68, 345–363. [Google Scholar] [CrossRef]
- Peeters, A. Environmental Impacts and Future Challenges of Grasslands and Grassland-Based Livestock Production Systems in Europe. In Grasslands: A Global Resource Perspective; Army Printing Press: Lucknow, India, 2015; pp. 365–390. [Google Scholar]
- Puche, N.; Senapati, N.; Flechard, C.R.; Klumpp, K.; Kirschbaum, M.U.F.; Chabbi, A. Modeling Carbon and Water Fluxes of Managed Grasslands: Comparing Flux Variability and Net Carbon Budgets between Grazed and Mowed Systems. Agronomy 2019, 9, 183. [Google Scholar] [CrossRef]
- Li, Z.; Huffman, T.; McConkey, B.; Townley-Smith, L. Monitoring and Modeling Spatial and Temporal Patterns of Grassland Dynamics Using Time-Series MODIS NDVI with Climate and Stocking Data. Remote Sens. Environ. 2013, 138, 232–244. [Google Scholar] [CrossRef]
- Wätzold, F.; Drechsler, M.; Johst, K.; Mewes, M.; Sturm, A. A Novel, Spatiotemporally Explicit Ecological-Economic Modeling Procedure for the Design of Cost-Effective Agri-Environment Schemes to Conserve Biodiversity. Am. J. Agric. Econ. 2016, 98, 489–512. [Google Scholar] [CrossRef]
- Klimek, S.; gen Kemmermann, A.R.; Hofmann, M.; Isselstein, J. Plant Species Richness and Composition in Managed Grasslands: The Relative Importance of Field Management and Environmental Factors. Biol. Conserv. 2007, 134, 559–570. [Google Scholar] [CrossRef]
- Jones, J.A.; Hutchinson, R.; Moldenke, A.; Pfeiffer, V.; Helderop, E.; Thomas, E.; Griffin, J.; Reinholtz, A. Landscape Patterns and Diversity of Meadow Plants and Flower-Visitors in a Mountain Landscape. Landsc. Ecol. 2019, 34, 997–1014. [Google Scholar] [CrossRef]
- Siehoff, S.; Lennartz, G.; Heilburg, I.C.; Roß-Nickoll, M.; Ratte, H.T.; Preuss, T.G. Process-Based Modeling of Grassland Dynamics Built on Ecological Indicator Values for Land Use. Ecol. Model. 2011, 222, 3854–3868. [Google Scholar] [CrossRef]
- Barrachina, M.; Cristóbal, J.; Tulla, A.F. Estimating Above-Ground Biomass on Mountain Meadows and Pastures through Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 184–192. [Google Scholar] [CrossRef]
- Dengler, J.; Janišová, M.; Török, P.; Wellstein, C. Biodiversity of Palaearctic Grasslands: A Synthesis. Agric. Ecosyst. Environ. 2014, 182, 1–14. [Google Scholar] [CrossRef]
- Van Oijen, M.; Barcza, Z.; Confalonieri, R.; Korhonen, P.; Kröel-Dulay, G.; Lellei-Kovács, E.; Louarn, G.; Louault, F.; Martin, R.; Moulin, T.; et al. Incorporating Biodiversity into Biogeochemistry Models to Improve Prediction of Ecosystem Services in Temperate Grasslands: Review and Roadmap. Agronomy 2020, 10, 259. [Google Scholar] [CrossRef]
- Socher, S.A.; Prati, D.; Boch, S.; Müller, J.; Baumbach, H.; Gockel, S.; Hemp, A.; Schöning, I.; Wells, K.; Buscot, F.; et al. Interacting Effects of Fertilization, Mowing and Grazing on Plant Species Diversity of 1500 Grasslands in Germany Differ between Regions. Basic Appl. Ecol. 2013, 14, 126–136. [Google Scholar] [CrossRef]
- Blüthgen, N.; Dormann, C.F.; Prati, D.; Klaus, V.H.; Kleinebecker, T.; Hölzel, N.; Alt, F.; Boch, S.; Gockel, S.; Hemp, A.; et al. A Quantitative Index of Land-Use Intensity in Grasslands: Integrating Mowing, Grazing and Fertilization. Basic Appl. Ecol. 2012, 13, 207–220. [Google Scholar] [CrossRef]
- Murphy, D.J.; Shine, P.; Brien, B.O.; Donovan, M.O.; Murphy, M.D. Utilising Grassland Management and Climate Data for More Accurate Prediction of Herbage Mass Using the Rising Plate Meter. Precis. Agric. 2021, 22, 1189–1216. [Google Scholar] [CrossRef]
- Woodward, S.; Rollo, M. Why Pasture Growth Prediction Is Difficult. Agron. Soc. N. Z. 2002, 32, 17–26. [Google Scholar]
- Socher, S.A.; Prati, D.; Boch, S.; Müller, J.; Klaus, V.H.; Hölzel, N.; Fischer, M. Direct and Productivity-Mediated Indirect Effects of Fertilization, Mowing and Grazing on Grassland Species Richness. J. Ecol. 2012, 100, 1391–1399. [Google Scholar] [CrossRef]
- Fischer, T.; Byerlee, D.; Edmeades, G. Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World? Australian Centre for International Agricultural Research: Canberra, ACT, Australia, 2014. [Google Scholar]
- Aggarwal, P.K.; Kalra, N. Analyzing the Limitations Set by Climatic Factors, Genotype, and Water and Nitrogen Availability on Productivity of Wheat II. Climatically Potential Yields and Management Strategies. Field Crops Res. 1994, 38, 93–103. [Google Scholar] [CrossRef]
- Bellocchi, G.; Rivington, M.; Donatelli, M.; Matthews, K. Validation of Biophysical Models: Issues and Methodologies. A Review. Agron. Sustain. Dev. 2010, 30, 109–130. [Google Scholar] [CrossRef]
- Malik, W.; Boote, K.J.; Hoogenboom, G.; Cavero, J.; Dechmi, F. Adapting the CROPGRO Model to Simulate Alfalfa Growth and Yield. Agron. J. 2018, 110, 1777–1790. [Google Scholar] [CrossRef]
- Neupane, D.; Adhikari, P.; Bhattarai, D.; Rana, B.; Ahmed, Z.; Sharma, U.; Adhikari, D. Does Climate Change Affect the Yield of the Top Three Cereals and Food Security in the World? Earth 2022, 3, 45–71. [Google Scholar] [CrossRef]
- Webber, H.; Gaiser, T.; Ewert, F. What Role Can Crop Models Play in Supporting Climate Change Adaptation Decisions to Enhance Food Security in Sub-Saharan Africa? Agric. Syst. 2014, 127, 161–177. [Google Scholar] [CrossRef]
- Van Oijen, M.; Bellocchi, G.; Höglind, M. Effects of Climate Change on Grassland Biodiversity and Productivity: The Need for a Diversity of Models. Agronomy 2018, 8, 14. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Chen, F.; Li, J.; Wu, J.; Sun, Y.; Zhang, Y.; Deng, T.; Jiang, S.; Zhou, X.; et al. Soil Organic Matter Enhances Aboveground Biomass in Alpine Grassland under Drought. Geoderma 2023, 433, 116430. [Google Scholar] [CrossRef]
- Fer, I.; Kelly, R.; Moorcroft, P.R.; Richardson, A.D.; Cowdery, E.M.; Dietze, M.C. Linking Big Models to Big Data: Efficient Ecosystem Model Calibration through Bayesian Model Emulation. Biogeosciences 2018, 15, 5801–5830. [Google Scholar] [CrossRef]
- Höglind, M.; Cameron, D.; Persson, T.; Huang, X.; van Oijen, M. BASGRA_N: A Model for Grassland Productivity, Quality and Greenhouse Gas Balance. Ecol. Model. 2020, 417, 108925. [Google Scholar] [CrossRef]
- Movedi, E.; Bellocchi, G.; Argenti, G.; Paleari, L.; Vesely, F.; Staglianò, N.; Dibari, C.; Confalonieri, R. Development of Generic Crop Models for Simulation of Multi-Species Plant Communities in Mown Grasslands. Ecol. Model. 2019, 401, 111–128. [Google Scholar] [CrossRef]
- Meng, B.; Ge, J.; Liang, T.; Yang, S.; Gao, J.; Feng, Q.; Cui, X.; Huang, X.; Xie, H. Evaluation of Remote Sensing Inversion Error for the Above-Ground Biomass of Alpine Meadow Grassland Based on Multi-Source Satellite Data. Remote Sens. 2017, 9, 372. [Google Scholar] [CrossRef]
- Wu, D.; Ciais, P.; Viovy, N.; Knapp, A.K.; Wilcox, K.; Bahn, M.; Smith, M.D.; Vicca, S.; Fatichi, S.; Zscheischler, J.; et al. Asymmetric Responses of Primary Productivity to Altered Precipitation Simulated by Ecosystem Models across Three Long-Term Grassland Sites. Biogeosciences 2018, 15, 3421–3437. [Google Scholar] [CrossRef]
- Sándor, R.; Ehrhardt, F.; Grace, P.; Recous, S.; Smith, P.; Snow, V.; Soussana, J.-F.; Basso, B.; Bhatia, A.; Brilli, L.; et al. Residual Correlation and Ensemble Modelling to Improve Crop and Grassland Models. Environ. Model. Softw. 2023, 161, 105625. [Google Scholar] [CrossRef]
- Shaffer, J.A.; Roth, C.L.; Mushet, D.M. Modeling Effects of Crop Production, Energy Development and Conservation-Grassland Loss on Avian Habitat. PLoS ONE 2019, 14, e0198382. [Google Scholar] [CrossRef]
- Tredennick, A.T.; Hooker, G.; Ellner, S.P.; Adler, P.B. A Practical Guide to Selecting Models for Exploration, Inference, and Prediction in Ecology. Ecology 2021, 102, e03336. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.S.; Smeins, F.E. Predicting Grassland Community Changes with an Artificial Neural Network Model. Ecol. Model. 1996, 84, 91–97. [Google Scholar] [CrossRef]
- Liu, H.; Gong, Y.; Li, Y.; Liu, S.; Yu, Z.; Zhao, R. Does Grazing Exclusion Enhance Grassland Restoration? Evidence from Northern China. Ecol. Indic. 2023, 149, 110166. [Google Scholar] [CrossRef]
- Baghdadi, N.; El Hajj, M.; Zribi, M.; Bousbih, S. Calibration of the Water Cloud Model at C-Band for Winter Crop Fields and Grasslands. Remote Sens. 2017, 9, 969. [Google Scholar] [CrossRef]
- Gu, Y.; Boyte, S.P.; Wylie, B.K.; Tieszen, L.L. Identifying Grasslands Suitable for Cellulosic Feedstock Crops in the Greater Platte River Basin: Dynamic Modeling of Ecosystem Performance with 250 m eMODIS. GCB Bioenergy 2012, 4, 96–106. [Google Scholar] [CrossRef]
- Courault, D.; Hadria, R.; Ruget, F.; Olioso, A.; Duchemin, B.; Hagolle, O.; Dedieu, G. Combined Use of FORMOSAT-2 Images with a Crop Model for Biomass and Water Monitoring of Permanent Grassland in Mediterranean Region. Hydrol. Earth Syst. Sci. 2010, 14, 1731–1744. [Google Scholar] [CrossRef]
- Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Schellberg, J.; Bareth, G. Multi-Temporal Crop Surface Models Combined with the RGB Vegetation Index from UAV-Based Image for Forage Monitoring in Grassland. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 991–998. [Google Scholar] [CrossRef]
- Wijesingha, J.; Moeckel, T.; Hensgen, F.; Wachendorf, M. Evaluation of 3D Point Cloud-Based Models for the Prediction of Grassland Biomass. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 352–359. [Google Scholar] [CrossRef]
- Yang, S.; Feng, Q.; Liang, T.; Liu, B.; Zhang, W.; Xie, H. Modeling Grassland Above-Ground Biomass Based on Artificial Neural Network and Remote Sensing in the Three-River Headwaters Region. Remote Sens. Environ. 2018, 204, 448–455. [Google Scholar] [CrossRef]
- Pudumalar, S.; Ramanujam, E.; Rajashree, R.H.; Kavya, C.; Kiruthika, T.; Nisha, J. Crop Recommendation System for Precision Agriculture. In Proceedings of the 2016 Eighth International Conference on Advanced Computing (ICoAC), Chennai, India, 19–21 January 2017; pp. 32–36. [Google Scholar]
- De Rosa, D.; Basso, B.; Fasiolo, M.; Friedl, J.; Fulkerson, B.; Grace, P.R.; Rowlings, D.W. Predicting Pasture Biomass Using a Statistical Model and Machine Learning Algorithm Implemented with Remotely Sensed Imagery. Comput. Electron. Agric. 2021, 180, 105880. [Google Scholar] [CrossRef]
- Cavalli, D.; Bellocchi, G.; Corti, M.; Marino Gallina, P.; Bechini, L. Sensitivity Analysis of C and N Modules in Biogeochemical Crop and Grassland Models Following Manure Addition to Soil. Eur. J. Soil Sci. 2019, 70, 833–846. [Google Scholar] [CrossRef]
- Andales, A.A.; Derner, J.D.; Ahuja, L.R.; Hart, R.H. Strategic and Tactical Prediction of Forage Production in Northern Mixed-Grass Prairie. Rangel. Ecol. Manag. 2006, 59, 576–584. [Google Scholar] [CrossRef]
- Corson, M.S.; Rotz, C.A.; Skinner, R.H. Evaluating Warm-Season Grass Production in Temperate-Region Pastures: A Simulation Approach. Agric. Syst. 2007, 93, 252–268. [Google Scholar] [CrossRef]
- Hanrahan, L.; Geoghegan, A.; O’Donovan, M.; Griffith, V.; Ruelle, E.; Wallace, M.; Shalloo, L. PastureBase Ireland: A Grassland Decision Support System and National Database. Comput. Electron. Agric. 2017, 136, 193–201. [Google Scholar] [CrossRef]
- Fu, L.; Bo, T.; Du, G.; Zheng, X. Modeling the Responses of Grassland Vegetation Coverage to Grazing Disturbance in an Alpine Meadow. Ecol. Model. 2012, 247, 221–232. [Google Scholar] [CrossRef]
- Wang, H.; Ma, M.; Wang, X.; Yuan, W.; Song, Y.; Tan, J.; Huang, G. Seasonal Variation of Vegetation Productivity over an Alpine Meadow in the Qinghai–Tibet Plateau in China: Modeling the Interactions of Vegetation Productivity, Phenology, and the Soil Freeze–Thaw Process. Ecol. Res. 2013, 28, 271–282. [Google Scholar] [CrossRef]
- Thornley, J.H.M.; Cannell, M.G.R. Temperate Grassland Responses to Climate Change: An Analysis Using the Hurley Pasture Model. Ann. Bot. 1997, 80, 205–221. [Google Scholar] [CrossRef]
- Korhonen, P.; Palosuo, T.; Persson, T.; Höglind, M.; Jégo, G.; Van Oijen, M.; Gustavsson, A.-M.; Bélanger, G.; Virkajärvi, P. Modelling Grass Yields in Northern Climates—A Comparison of Three Growth Models for Timothy. Field Crops Res. 2018, 224, 37–47. [Google Scholar] [CrossRef]
- Pembleton, K.G.; Rawnsley, R.P.; Jacobs, J.L.; Mickan, F.J.; O’Brien, G.N.; Cullen, B.R.; Ramilan, T. Evaluating the Accuracy of the Agricultural Production Systems Simulator (APSIM) Simulating Growth, Development, and Herbage Nutritive Characteristics of Forage Crops Grown in the South-Eastern Dairy Regions of Australia. Crop Pasture Sci. 2013, 64, 147–164. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a New Generation of Agricultural Systems Simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Cichota, R.; Snow, V. Simulating Diverse Pastures with APSIM. Agron. Soc. N. Z. 2018, 48, 77–89. [Google Scholar]
- Moot, D.; Hargreaves, J.; Brown, H.; Teixeira, E. Calibration of the APSIM-Lucerne Model for ‘Grasslands Kaituna’ Lucerne Crops Grown in New Zealand. N. Z. J. Agric. Res. 2015, 58, 190–202. [Google Scholar] [CrossRef]
- Hoffmann, M.P.; Isselstein, J.; Rötter, R.P.; Kayser, M. Nitrogen Management in Crop Rotations after the Break-up of Grassland: Insights from Modelling. Agric. Ecosyst. Environ. 2018, 259, 28–44. [Google Scholar] [CrossRef]
- Robertson, M.; Carberry, P.; Huth, N.; Turpin, J.; Probert, M.; Poulton, P.; Bell, M.; Wright, G.; Yeates, S.; Brinsmead, R. Simulation of Growth and Development of Diverse Legume Species in APSIM. Crop Pasture Sci. 2002, 53, 429–446. [Google Scholar] [CrossRef]
- Li, F.Y.; Snow, V.; Johnson, I. Integration of a Pasture Model into APSIM. In Proceedings of the 15th Agronomy Conference 2010, Lincoln, New Zealand, 15–19 November 2010. [Google Scholar]
- Craig, P.R.; Badgery, W.; Millar, G.; Moore, A. Achieving Modelling of Pasture-Cropping Systems with APSIM and GRAZPLAN. In Proceedings of the 17th Australian Agronomy Conference 2015, Hobart, TAS, Australia, 20–24 September 2015. [Google Scholar]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An Overview of the Crop Model Stics. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Beaudoin, N.; Lecharpentier, P.; Ripoche-Wachter, D.; Strullu, L.; Mary, B.; Léonard, J.; Launay, M.; Justes, E. (Eds.) STICS Soil-Crop Model: Conceptual Framework, Equations and Uses; Éditions Quae: Versailles, France, 2023. [Google Scholar]
- Brilli, L.; Bechini, L.; Bindi, M.; Carozzi, M.; Cavalli, D.; Conant, R.; Dorich, C.D.; Doro, L.; Ehrhardt, F.; Farina, R.; et al. Review and Analysis of Strengths and Weaknesses of Agro-Ecosystem Models for Simulating C and N Fluxes. Sci. Total Environ. 2017, 598, 445–470. [Google Scholar] [CrossRef] [PubMed]
- Kherif, O.; Seghouani, M.; Justes, E.; Plaza-Bonilla, D.; Bouhenache, A.; Zemmouri, B.; Dokukin, P.; Latati, M. The First Calibration and Evaluation of the STICS Soil-Crop Model on Chickpea-Based Intercropping System under Mediterranean Conditions. Eur. J. Agron. 2022, 133, 126449. [Google Scholar] [CrossRef]
- Jing, Q.; Jégo, G.; Bélanger, G.; Chantigny, M.H.; Rochette, P. Simulation of Water and Nitrogen Balances in a Perennial Forage System Using the STICS Model. Field Crops Res. 2017, 201, 10–18. [Google Scholar] [CrossRef]
- Meyer, N.; Bergez, J.-E.; Justes, E.; Constantin, J. Influence of Cover Crop on Water and Nitrogen Balances and Cash Crop Yield in a Temperate Climate: A Modelling Approach Using the STICS Soil-Crop Model. Eur. J. Agron. 2022, 132, 126416. [Google Scholar] [CrossRef]
- Yin, X.; Beaudoin, N.; Ferchaud, F.; Mary, B.; Strullu, L.; Chlébowski, F.; Clivot, H.; Herre, C.; Duval, J.; Louarn, G. Long-Term Modelling of Soil N Mineralization and N Fate Using STICS in a 34-Year Crop Rotation Experiment. Geoderma 2020, 357, 113956. [Google Scholar] [CrossRef]
- Schapendonk, A.H.C.M.; Stol, W.; van Kraalingen, D.W.G.; Bouman, B.A.M. LINGRA, a Sink/Source Model to Simulate Grassland Productivity in Europe. Eur. J. Agron. 1998, 9, 87–100. [Google Scholar] [CrossRef]
- Giannitsopoulos, M.; Burgess, P.; Richter, G.M.; Bell, M.; Topp, C.F.E.; Ingram, J.; Takahashi, T. LINGRA-N Grassland Management Tool. Available online: https://cord.cranfield.ac.uk/ndownloader/articles/11359613/versions/5 (accessed on 15 March 2024).
- Pogačar, T.; Ipavec, D.; Verbič, J.; Kajfež-Bogataj, L. Calibration of the LINGRA-N Model to Simulate Herbage Yield of Grass Monocultures and Permanent Grassland in Slovenia. Acta Agric. Slov. 2015, 105, 111–123. [Google Scholar] [CrossRef]
- Pogačar, T.; Bogataj, L.K. Simulation of Grass Sward Dry Matter Yield in Slovenia Using the LINGRA-N Model. Ital. J. Agron. 2018, 13, 44–56. [Google Scholar] [CrossRef]
- Giannitsopoulos, M.L.; Burgess, P.J.; Richter, G.M.; Bell, M.J.; Topp, C.F.E.; Ingram, J.; Takahashi, T. Modelling the Interactions of Soils, Climate, and Management for Grass Production in England and Wales. Agronomy 2021, 11, 677. [Google Scholar] [CrossRef]
- Stol, W.; Bouman, B.A.M.; Schapendonk, H.C.M. Timely and Regional Monitoring of Forage Production in the European Union: The LINGRA Model. In Proceedings of the Second SAI Annual Users’ Seminars, Baveno Italy, 21–22 May 1998. [Google Scholar]
- Barrett, P.D.; Laidlaw, A.S.; Mayne, C.S. Development of a European Herbage Growth Model (the EU Grazemore Project). Land use systems in grassland dominated regions. In Proceedings of the 20th General Meeting of the European Grassland Federation, Luzern, Switzerland, 21–24 June 2004. [Google Scholar]
- Suárez-Rey, E.M.; Romero-Gámez, M.; Giménez, C.; Thompson, R.B.; Gallardo, M. Use of EU-Rotate_N and CropSyst Models to Predict Yield, Growth and Water and N Dynamics of Fertigated Leafy Vegetables in a Mediterranean Climate and to Determine N Fertilizer Requirements. Agric. Syst. 2016, 149, 150–164. [Google Scholar] [CrossRef]
- Stockle, C.O.; Cabelguenne, M.; Debaeke, P. Comparison of CropSyst Performance for Water Management in Southwestern France Using Submodels of Different Levels of Complexity. Eur. J. Agron. 1997, 7, 89–98. [Google Scholar] [CrossRef]
- Stockle, C.O.; Martin, S.A.; Campbell, G.S. CropSyst, a Cropping Systems Simulation Model: Water/Nitrogen Budgets and Crop Yield. Agric. Syst. 1994, 46, 335–359. [Google Scholar] [CrossRef]
- Piseddu, F. Knowledge Synthesis and Process-Based Modelling of Relationships between Plant Diversity, Environment and Management in Grasslands. Ph.D. Thesis, Université Clermont Auvergne, Clermont-Ferrand, France, 2022. [Google Scholar]
- Saseendran, S.A.; Ahuja, L.R.; Ma, L.; Timlin, D.; Stöckle, C.O.; Boote, K.J.; Hoogenboom, G. Current Water Deficit Stress Simulations in Selected Agricultural System Models. In Response of Crops to Limited Water; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 1–38. ISBN 978-0-89118-188-0. [Google Scholar]
- Morari, F.; Lugato, E.; Borin, M. An Integrated Non-Point Source Model-GIS System for Selecting Criteria of Best Management Practices in the Po Valley, North Italy. Agric. Ecosyst. Environ. 2004, 102, 247–262. [Google Scholar] [CrossRef]
- Pravia, M.V.; Kemanian, A.R.; Terra, J.A. Soil Carbon and Nitrogen Dynamics of Integrated Crop-Pasture Systems with Annual and Perennial Forages. In Proceedings of the XXII International Grassland Congress, Sydney, Australia, 15–19 September 2013. [Google Scholar]
- de Wit, A.; Boogaard, H.; Fumagalli, D.; Janssen, S.; Knapen, R.; van Kraalingen, D.; Supit, I.; van der Wijngaart, R.; van Diepen, K. 25 Years of the WOFOST Cropping Systems Model. Agric. Syst. 2019, 168, 154–167. [Google Scholar] [CrossRef]
- Wang, X.; Johnson, D.L. Parameterization of WOFOST for a Typical Eurasian Steppe Grassland. In Proceedings of the Fall Meeting 2018, Washington, DC, USA, 10–14 December 2018. [Google Scholar]
- Kroes, J.G.; Supit, I. Impact Analysis of Drought, Water Excess and Salinity on Grass Production in The Netherlands Using Historical and Future Climate Data. Agric. Ecosyst. Environ. 2011, 144, 370–381. [Google Scholar] [CrossRef]
- Zhang, X.; He, B.; Quan, X. Assimilation of 30m Resolution LAI into Crop Growth Model for Improving LAI Estimation in Plateau Grassland. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1296–1299. [Google Scholar]
- Camargo, G.G.T.; Kemanian, A.R. Six Crop Models Differ in Their Simulation of Water Uptake. Agric. For. Meteorol. 2016, 220, 116–129. [Google Scholar] [CrossRef]
- Zhang, Y.; Shu, Q.; Wang, L.; Quan, X.; Liu, X.; Lu, B. Estimation of Fuel Biomass for Grasslands Using Data Assimilation Technique. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 9988–9991. [Google Scholar]
- Piseddu, F.; Hadj Saadi, D.; Movedi, M.; Picon-Cochard, C.; Roggero, P.P.; Confalonieri, R.; Bellocchi, G.; Seddaiu, G. Modelling Multi-Species Grasslands with Plant-Specific Suitability Functions. In Proceedings of the 28th EGF General Meeting on “Meeting the Future Demands for Grassland Production” Grassland Science in Europe, Online, 19–21 October 2020; Volume 25, p. 541. [Google Scholar]
- Pulina, A.; Lai, R.; Salis, L.; Seddaiu, G.; Roggero, P.P.; Bellocchi, G. Modelling Pasture Production and Soil Temperature, Water and Carbon Fluxes in Mediterranean Grassland Systems with the Pasture Simulation Model. Grass Forage Sci. 2018, 73, 272–283. [Google Scholar] [CrossRef]
- Graux, A.-I.; Bellocchi, G.; Lardy, R.; Soussana, J.-F. Ensemble Modelling of Climate Change Risks and Opportunities for Managed Grasslands in France. Agric. For. Meteorol. 2013, 170, 114–131. [Google Scholar] [CrossRef]
- Ben Touhami, H.; Lardy, R.; Barra, V.; Bellocchi, G. Screening Parameters in the Pasture Simulation Model Using the Morris Method. Ecol. Model. 2013, 266, 42–57. [Google Scholar] [CrossRef]
- Graux, A.-I.; Gaurut, M.; Agabriel, J.; Baumont, R.; Delagarde, R.; Delaby, L.; Soussana, J.-F. Development of the Pasture Simulation Model for Assessing Livestock Production under Climate Change. Agric. Ecosyst. Environ. 2011, 144, 69–91. [Google Scholar] [CrossRef]
- Ben Touhami, H.; Bellocchi, G. Bayesian Calibration of the Pasture Simulation Model (PaSim) to Simulate European Grasslands under Water Stress. Ecol. Inform. 2015, 30, 356–364. [Google Scholar] [CrossRef]
- Aghajanzadeh-Darzi, P.; Martin, R.; Laperche, S.; Jayet, P.-A. Climate Change Impacts on European Agriculture Revisited: Adding the Economic Dimension of Grasslands. Reg. Environ. Chang. 2017, 17, 261–272. [Google Scholar] [CrossRef]
- Riedo, M.; Gyalistras, D.; Fuhrer, J. Net Primary Production and Carbon Stocks in Differently Managed Grasslands: Simulation of Site-Specific Sensitivity to an Increase in Atmospheric CO2 and to Climate Change. Ecol. Model. 2000, 134, 207–227. [Google Scholar] [CrossRef]
- Sun, Q.; Li, B.; Zhang, T.; Yuan, Y.; Gao, X.; Ge, J.; Li, F.; Zhang, Z. An Improved Biome-BGC Model for Estimating Net Primary Productivity of Alpine Meadow on the Qinghai-Tibet Plateau. Ecol. Model. 2017, 350, 55–68. [Google Scholar] [CrossRef]
- Sándor, R.; Barcza, Z.; Hidy, D.; Lellei-Kovács, E.; Ma, S.; Bellocchi, G. Modelling of Grassland Fluxes in Europe: Evaluation of Two Biogeochemical Models. Agric. Ecosyst. Environ. 2016, 215, 1–19. [Google Scholar] [CrossRef]
- Sanchez-Ruiz, S.; Chiesi, M.; Fibbi, L.; Carrara, A.; Maselli, F.; Gilabert, M.A. Optimized Application of Biome-BGC for Modeling the Daily GPP of Natural Vegetation over Peninsular Spain. J. Geophys. Res. Biogeosci. 2018, 123, 531–546. [Google Scholar] [CrossRef]
- Hidy, D.; Barcza, Z.; Haszpra, L.; Churkina, G.; Pintér, K.; Nagy, Z. Development of the Biome-BGC Model for Simulation of Managed Herbaceous Ecosystems. Ecol. Model. 2012, 226, 99–119. [Google Scholar] [CrossRef]
- Tomelleri, E. Modeling the Carbon Cycle and Its Interactions with Management Practices in Grasslands; Study University of Padova: Padua, Italy, 2007. [Google Scholar]
- Maselli, F.; Argenti, G.; Chiesi, M.; Angeli, L.; Papale, D. Simulation of Grassland Productivity by the Combination of Ground and Satellite Data. Agric. Ecosyst. Environ. 2013, 165, 163–172. [Google Scholar] [CrossRef]
- Lellei-Kovács, E.; Barcza, Z.; Hidy, D.; Horváth, F.; Ittzés, D.; Ittzés, P.; Ma, S.; Bellocchi, G. Application of Biome-BGC MuSo in Managed Grassland Ecosystems in the Euro-Mediteranean Region. FACCE MACSUR Rep. 2014, 3, 3–58. [Google Scholar]
- Liáng, L.L.; Kirschbaum, M.U.F.; Giltrap, D.L.; Wall, A.M.; Campbell, D.I. Modelling the Effects of Pasture Renewal on the Carbon Balance of Grazed Pastures. Sci. Total Environ. 2020, 715, 136917. [Google Scholar] [CrossRef] [PubMed]
- Giltrap, D.L.; Kirschbaum, M.U.F.; Liáng, L.L. The Potential Effectiveness of Four Different Options to Reduce Environmental Impacts of Grazed Pastures. A Model-Based Assessment. Agric. Syst. 2021, 186, 102960. [Google Scholar] [CrossRef]
- Puche, N.J.B.; Kirschbaum, M.U.F.; Viovy, N.; Chabbi, A. Potential Impacts of Climate Change on the Productivity and Soil Carbon Stocks of Managed Grasslands. PLoS ONE 2023, 18, e0283370. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, F.; Soussana, J.-F.; Bellocchi, G.; Grace, P.; McAuliffe, R.; Recous, S.; Sándor, R.; Smith, P.; Snow, V.; de Antoni Migliorati, M.; et al. Assessing Uncertainties in Crop and Pasture Ensemble Model Simulations of Productivity and N2O Emissions. Glob. Chang. Biol. 2018, 24, e603–e616. [Google Scholar] [CrossRef] [PubMed]
- Kirschbaum, M.U.F.; Rutledge, S.; Kuijper, I.A.; Mudge, P.L.; Puche, N.; Wall, A.M.; Roach, C.G.; Schipper, L.A.; Campbell, D.I. Modelling Carbon and Water Exchange of a Grazed Pasture in New Zealand Constrained by Eddy Covariance Measurements. Sci. Total Environ. 2015, 512–513, 273–286. [Google Scholar] [CrossRef]
- Giltrap, D.L.; Kirschbaum, M.U.F.; Laubach, J.; Hunt, J.E. The Effects of Irrigation on Carbon Balance in an Irrigated Grazed Pasture System in New Zealand. Agric. Syst. 2020, 182, 102851. [Google Scholar] [CrossRef]
- Liang, L.L.; Campbell, D.I.; Wall, A.M.; Schipper, L.A. Nitrous Oxide Fluxes Determined by Continuous Eddy Covariance Measurements from Intensively Grazed Pastures: Temporal Patterns and Environmental Controls. Agric. Ecosyst. Environ. 2018, 268, 171–180. [Google Scholar] [CrossRef]
- Vogeler, I.; Kluß, C.; Peters, T.; Taube, F. How Much Complexity Is Required for Modelling Grassland Production at Regional Scales? Land 2023, 12, 327. [Google Scholar] [CrossRef]
- Sándor, R.; Barcza, Z.; Acutis, M.; Doro, L.; Hidy, D.; Köchy, M.; Minet, J.; Lellei-Kovács, E.; Ma, S.; Perego, A.; et al. Multi-Model Simulation of Soil Temperature, Soil Water Content and Biomass in Euro-Mediterranean Grasslands: Uncertainties and Ensemble Performance. Eur. J. Agron. 2017, 88, 22–40. [Google Scholar] [CrossRef]
- Ruelle, E.; Hennessy, D.; Delaby, L. Development of the Moorepark St Gilles Grass Growth Model (MoSt GG Model): A Predictive Model for Grass Growth for Pasture Based Systems. Eur. J. Agron. 2018, 99, 80–91. [Google Scholar] [CrossRef]
- Selbie, D.R.; Buckthought, L.E.; Shepherd, M.A. Chapter Four—The Challenge of the Urine Patch for Managing Nitrogen in Grazed Pasture Systems. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 129, pp. 229–292. [Google Scholar]
- Homburger, H.; Lüscher, A.; Scherer-Lorenzen, M.; Schneider, M.K. Patterns of Livestock Activity on Heterogeneous Subalpine Pastures Reveal Distinct Responses to Spatial Autocorrelation, Environment and Management. Mov. Ecol. 2015, 3, 35. [Google Scholar] [CrossRef] [PubMed]
- Donovan, M.; Monaghan, R. Impacts of Grazing on Ground Cover, Soil Physical Properties and Soil Loss via Surface Erosion: A Novel Geospatial Modelling Approach. J. Environ. Manag. 2021, 287, 112206. [Google Scholar] [CrossRef] [PubMed]
- Harrison, M.T.; Cullen, B.R.; Rawnsley, R.P. Modelling the Sensitivity of Agricultural Systems to Climate Change and Extreme Climatic Events. Agric. Syst. 2016, 148, 135–148. [Google Scholar] [CrossRef]
- Buisan, S.T.; Saz, M.A.; López-Moreno, J.I. Spatial and Temporal Variability of Winter Snow and Precipitation Days in the Western and Central Spanish Pyrenees. Int. J. Climatol. 2015, 35, 259–274. [Google Scholar] [CrossRef]
- Aquilani, C.; Confessore, A.; Bozzi, R.; Sirtori, F.; Pugliese, C. Review: Precision Livestock Farming Technologies in Pasture-Based Livestock Systems. Animal 2022, 16, 100429. [Google Scholar] [CrossRef]
- Michez, A.; Lejeune, P.; Bauwens, S.; Herinaina, A.A.L.; Blaise, Y.; Castro Muñoz, E.; Lebeau, F.; Bindelle, J. Mapping and Monitoring of Biomass and Grazing in Pasture with an Unmanned Aerial System. Remote Sens. 2019, 11, 473. [Google Scholar] [CrossRef]
- Insua, J.R.; Utsumi, S.A.; Basso, B. Estimation of Spatial and Temporal Variability of Pasture Growth and Digestibility in Grazing Rotations Coupling Unmanned Aerial Vehicle (UAV) with Crop Simulation Models. PLoS ONE 2019, 14, e0212773. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, P.L.; Paull, D.R.; McNally, J.; Kalinowski, T.; Ebert, D.; Little, B.; Smith, D.V.; Rahman, A.; Valencia, P.; Ingham, A.B.; et al. Use of Sensor-Determined Behaviours to Develop Algorithms for Pasture Intake by Individual Grazing Cattle. Crop Pasture Sci. 2017, 68, 1091–1099. [Google Scholar] [CrossRef]
- Ash, A.; Hunt, L.; McDonald, C.; Scanlan, J.; Bell, L.; Cowley, R.; Watson, I.; McIvor, J.; MacLeod, N. Boosting the Productivity and Profitability of Northern Australian Beef Enterprises: Exploring Innovation Options Using Simulation Modelling and Systems Analysis. Agric. Syst. 2015, 139, 50–65. [Google Scholar] [CrossRef]
Model | Type | Grassland Calibrated | Area of Study | References |
---|---|---|---|---|
APSIM | Agricultural | Yes | Europe, Oceania | [52,53,54,55,56,57,58,59,60] |
STICS | Agricultural | No | Europe, North America | [61,62,63,64,65,66,67] |
LINGRA | Agricultural | Yes | Europe | [68,69,70,71,72,73,74] |
CROPSYST | Agricultural | No | Europe | [75,76,77,78,79,80,81] |
WOFOST | Agricultural | No | China, Europe | [82,83,84,85,86,87,88] |
PaSIM | Biogeochemical | Yes | Europe | [89,90,91,92,93,94,95] |
Biome-BCG | Biogeochemical | Yes | China, Europe, North America | [96,97,98,99,100,101,102] |
CenW | Biogeochemical | Yes | Europe, Oceania, North America | [103,104,105,106,107,108,109,110] |
Model | Mowing | Grazing | Biodiversity | Fertilization | Amount of Data Required |
---|---|---|---|---|---|
APSIM | Yes | Yes | Yes | Yes | Medium |
STICS | No | Yes | No | Yes | Medium |
LINGRA | No | Yes | No | Yes | Low |
CROPSYST | No | Yes | No | Yes | Medium |
WOFOST | No | No | No | Yes | Low |
PaSIM | Yes | Yes | Yes | No | High |
Biome-BCG | Yes | Yes | Yes | No | High |
CenW | No | No | Yes | No | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarne, A.; Usón, A.; Reiné, R. Predictive Production Models for Mountain Meadows: A Review. Agronomy 2024, 14, 830. https://doi.org/10.3390/agronomy14040830
Jarne A, Usón A, Reiné R. Predictive Production Models for Mountain Meadows: A Review. Agronomy. 2024; 14(4):830. https://doi.org/10.3390/agronomy14040830
Chicago/Turabian StyleJarne, Adrián, Asunción Usón, and Ramón Reiné. 2024. "Predictive Production Models for Mountain Meadows: A Review" Agronomy 14, no. 4: 830. https://doi.org/10.3390/agronomy14040830
APA StyleJarne, A., Usón, A., & Reiné, R. (2024). Predictive Production Models for Mountain Meadows: A Review. Agronomy, 14(4), 830. https://doi.org/10.3390/agronomy14040830