Chemical Composition, Antioxidant Activity, and Milk-Clotting Activity of Aqueous Extracts from Leaves, Stems, and Flowers of Three Tunisian Ecotypes of Spontaneous and Cultivated Onopordum nervosum ssp. platylepis Murb.: A Potential Novel Vegetable Rennet Option
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Extracts
2.3. Chemical Composition of O. platylepis Aerial Parts
2.3.1. Dry Matter Content
2.3.2. Determination of Total Phenols
2.3.3. Total Flavonoid Content
2.3.4. Total Tannin Content
2.3.5. Determination of Sugar Profile
2.3.6. Protein Content
2.3.7. Antioxidant Activity
DPPH Test
ABTS Test
2.4. Milk-Clotting Activity
2.5. Statistical Analyses
3. Results and Discussion
3.1. Chemical Composition of O. platylepis Aerial Parts
3.1.1. Dry Matter Content
3.1.2. Total Phenols, Flavonoids, and Condensed Tannins
3.1.3. Evaluation of Sugar Profile
3.1.4. Protein Content
3.1.5. Antioxidant Activity
Evaluation of Radical Scavenging Activity Using DPPH Test
Evaluation of Radical Scavenging Activity Using ABTS Test
3.2. Milk-Clotting Trial
3.3. Correlation Analysis between Chemical Composition and Biological Activities
3.4. Principal Component and Dendrogram Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaur, N.; Ahmed, T. Bioactive secondary metabolites of medicinal and aromatic plants and their disease-fighting properties. In Medicinal and Aromatic Plants; Springer Nature: Basingstoke, UK, 2021; pp. 113–142. ISBN 978-3-030-58974-5. [Google Scholar]
- Saboon; Chaudhari, S.K.; Arshad, S.; Amjad, M.S.; Akhtar, M.S. Natural compounds extracted from medicinal plants and their applications. Nat. Bio-Act. Compd. 2019, 1, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kaur, I.; Kariyat, R. The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. Int. J. Mol. Sci. 2021, 22, 1442. [Google Scholar] [CrossRef] [PubMed]
- Qaderi, M.M.; Martel, A.B.; Strugnell, C.A. Environmental Factors Regulate Plant Secondary Metabolites. Plants 2023, 12, 447. [Google Scholar] [CrossRef] [PubMed]
- Bigdeloo, M.; Hadian, J.; Nazeri, V. Composition of essential oil compounds from different populations of Thymus caramanicus Jalas. J. Appl. Res. Med. Aromat. Plants. 2017, 7, 95–98. [Google Scholar] [CrossRef]
- Salgotra, R.K.; Chauhan, B.S. Genetic Diversity, Conservation, and Utilization of Plant Genetic Resources. Genes 2023, 14, 174. [Google Scholar] [CrossRef] [PubMed]
- Mandel, J.R.; Dikow, R.B.; Siniscalchi, C.M.; Thapa, R.; Watson, L.E.; Funk, V.A. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl. Acad. Sci. USA 2019, 116, 14083–14088. [Google Scholar] [CrossRef] [PubMed]
- Sobrinho, A.C.N.; de Souza, E.B.; Rocha, M.F.G.; Albuquerque, M.R.J.R.; Bandeira, P.N.; dos Santos, H.S.; de Paula Cavalcante, C.S.; Oliveira, S.S.; Aragão, P.R.; de Morais, S.M.; et al. Chemical composition, antioxidant, antifungal and hemolytic activities of essential oil from Baccharis trinervis (Lam.) Pers. (Asteraceae). Ind. Crops Prod. 2016, 84, 108–115. [Google Scholar] [CrossRef]
- Formisano, C.; Sanna, C.; Ballero, M.; Chianese, G.; Sirignano, C.; Rigano, D.; Millán, E.; Muñoz, E.; Taglialatela-Scafati, O. Anti-inflammatory sesquiterpene lactones from Onopordum illyricum L. (Asteraceae), an Italian medicinal plant. Fitoterapia 2017, 116, 61–65. [Google Scholar] [CrossRef]
- Pottier-Alapetite, G.A. Flore de la Tunisie: Angiospermes-Dicotylédones-Gamopétales; Ministère de l’Enseignement Supérieur et de la Recherche Scientifique et le Ministère de l’Agriculture: Tunis, Tunisia, 1981. [Google Scholar]
- Pandino, G.; Lombardo, S.; Williamson, G.; Mauromicale, G. Polyphenol profile and content in wild and cultivated Cynara cardunculus L. Ital. J. Agron. 2012, 7, e35. [Google Scholar] [CrossRef]
- Sharma, P.; Verma, P.K.; Pankaj, N.K.; Agarwal, S. The Phytochemical Ingredients and Therapeutic Potential of Cynara scolymus L. Pharm. Biomed. Res. 2021, 7, 141–160. [Google Scholar] [CrossRef]
- Petkova, N.; Hambarlyiska, I.; Angelova, E.; Ivanov, I. Fructans, Polyphenols and antioxidant activity in edible roots and thistles from seven medicinal plants. Chiang Mai Univ. J. Nat. Sci. 2021, 20, 2021082. [Google Scholar]
- Pari, L.; Alfano, V.; Stefanoni, W.; Latterini, F.; Liuzzi, F.; De Bari, I.; Valerio, V.; Ciancolini, A. Inulin content in chipped and whole roots of cardoon after six months storage under natural conditions. Sustainability 2021, 13, 3902. [Google Scholar] [CrossRef]
- Barracosa, P.; Barracosa, M.; Pires, E. Cardoon as a sustainable crop for biomass and bioactive compounds production. Chem. Biodivers. 2019, 16, e1900498. [Google Scholar] [CrossRef] [PubMed]
- Bravo Bolívar, M.S.; Pasini, F.; Marzocchi, S.; Ravagli, C.; Tedeschi, P. Future Perspective and Technological Innovation in Cheese Making Using Artichoke (Cynara scolymus) as Vegetable Rennet: A Review. Foods 2023, 12, 3032. [Google Scholar] [CrossRef] [PubMed]
- Tejada, L.; Vioque, M.; Gómez, R.; Fernández-Salguero, J. Effect of lyophilisation, refrigerated storage and frozen storage on the coagulant activity and microbiological quality of Cynara cardunculus L. extracts. J. Sci. Food Agric. 2008, 88, 1301–1306. [Google Scholar] [CrossRef]
- Silva, G.M.d.S.; da Costa, J.S.; Freire, J.O.; Santos, L.S.; Bonomo, R.C.F. Artichoke Leaf Extracts: Proteolytic Activity, Coagulant and Hplc Analysis. Cienc. E Agrotecnol. 2021, 45, e001721. [Google Scholar] [CrossRef]
- Ordiales, E.; Martín, A.; Benito, M.J.; Hernández, A.; Ruiz-Moyano, S.; Córdoba, M.D.G. Technological Characterisation by Free Zone Capillary Electrophoresis (FCZE) of the Vegetable Rennet (Cynara cardunculus) Used in “Torta Del Casar” Cheese-Making. Food Chem. 2012, 133, 227–235. [Google Scholar] [CrossRef]
- Folgado, A.; Abranches, R. Plant aspartic proteases for industrial applications: Thistle get better. Plants 2020, 9, 147. [Google Scholar] [CrossRef]
- Pimentel, C.; Van Der Straeten, D.; Pires, E.; Faro, C.; Rodrigues-Pousada, C. Characterization and expression analysis of the aspartic protease gene family of Cynara cardunculus L. FEBS J. 2007, 274, 2523–2539. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, R.N.; Chisari, M.; Spagna, G.; Mauromicale, G. Natural ingredients for cheese-making: Vegetable rennets extracts from Cynara cardunculus L. Ingredienti Aliment. 2009, 8, 6–12. [Google Scholar]
- Barracosa, P.; Simões, I.; Martins, A.P.; Barros, M.; Pires, E. Biochemical diversity of cardoon flowers (Cynara cardunculus L.): Predicting PDO Mediterranean cheese textures. Food Biosci. 2021, 39, 100805. [Google Scholar] [CrossRef]
- Saci, F.; Zikiou, A.; Fiala, S.; Bensouici, C. Bioactive compounds and pharmacological activities of enzymatic extracts of cardoon flowers (Cynara cardunculus L.) used as coagulants in cheese production. Biotechnol. Res. Cent. 2023. manuscript in preparation; to be submitted; Available at Research Square. [Google Scholar] [CrossRef]
- El Oualidi, J.; Khamar, H.; Fennane, M.; Ibn Tattou, M.; Chauvet, S.; Taleb, M.S. Checklist des endémiques et spécimens types de la flore vasculaire de l’Afrique du Nord. Doc. L’Institut. Sci. 2012, 25, 1–189. [Google Scholar]
- Cardinali, F.; Taccari, M.; Milanović, V.; Osimani, A.; Polverigiani, S.; Garofalo, C.; Foligni, R.; Mozzon, M.; Zitti, S.; Raffaelli, N.; et al. Yeast and mould dynamics in Caciofiore della Sibilla cheese coagulated with an aqueous extract of Carlina acanthifolia All. Yeast 2016, 33, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Fernando, A.L.; Costa, J.; Barbosa, B.; Monti, A.; Rettenmaier, N. Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean Region. Biomass Bioenergy 2018, 111, 174–186. [Google Scholar] [CrossRef]
- Essaidi, I.; Dhen, N.; Lassoued, G.; Kouki, R.; Haouala, F.; Alhudhaibi, A.M.; Dridi Al Mohandes, B. Onopordum nervosum ssp. platylepis Flowers as a Promising Source of Antioxidant and Clotting Milk Agents: Behavior of Spontaneous and Cultivated Plants under Different Drying Methodologies. Processes 2023, 11, 2962. [Google Scholar] [CrossRef]
- Mattalia, G.; Sõukand, R.; Corvo, P.; Pieroni, A. Wild food thistle gathering and pastoralism: An inextricable link in the biocultural landscape of Barbagia, central Sardinia (Italy). Sustainability 2020, 12, 5105. [Google Scholar] [CrossRef]
- Camini, F.C.; Costa, D.C. Silymarin: Not just another antioxidant. J. Basic Clin. Physiol. Pharmacol. 2020, 31, 20190206. [Google Scholar] [CrossRef] [PubMed]
- Verotta, L.; Belvisi, L.; Bertacche, V.; Loi, M.C. Complete Characterization of Extracts of Onopordum illyricum L. (Asteraceae) by HPLC/PDA/ESIMS and NMR. Nat. Prod. Commun. 2008, 3, 1934578X0800301219. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Constituents and pharmacology of Onopordum acanthium. IOSR J. Pharm. 2020, 10, 7–14. [Google Scholar]
- Valizadeh, E.; Zonouz, N.F.; Zand, A.; Shahbazi, S.; Malekian, A. Evaluation of antioxidant potentials of extracts of cotton thistle (‘Onopordum leptolepis’ DC.) obtained by various solvents. Aust. J. Crop Sci. 2011, 5, 1163–1166. [Google Scholar]
- Caddeo, C.; Tuberoso, C.I.G.; Floris, S.; Masala, V.; Sanna, C.; Pintus, F. A Nanotechnological Approach to Exploit and Enhance the Bioactivity of an Extract from Onopordum illyricum L. Leaves. Plants 2023, 12, 1453. [Google Scholar] [CrossRef]
- Brahmakshatriya, R.D.; Donker, J.D. Five methods for determination of silage dry matter. J. Dairy Sci. 1971, 54, 1470–1474. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Alasalvar, C.; Morris, A.; Baron, M.; Shahidi, F. Comparison of antioxidant activity, anthocyanins, carotenoids. and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J. Agric. Food Chem. 2005, 53, 7592–7599. [Google Scholar] [CrossRef] [PubMed]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Julkunen-Titto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Lorenzoni, A.S.; Aydos, L.F.; Klein, M.P.; Rodrigues, R.C.; Hertz, P.F. Fructooligosaccharides synthesis by highly stable immobilized β-fructofuranosidase from Aspergillus aculeatus. Carbohydr. Polym. 2014, 103, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Kruger, N.J. The Bradford Method for protein quantitation. In The Protein Protocols Handbook; Walker, J.M., Ed.; Springer Protocols Handbooks; Humana Press: Totowa, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hwang, W.I.; Lim, S.T. Antioxidant and anticancer activities of organic extracts from Platycodon grandiforum A. De Candolle roots. J. Ethnopharmacol. 2004, 93, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Libouga, D.G.; Ngah, E.; Nono, Y.J.; Bitjoka, L. Clotting of cow (Bos taurus) and goat milk (Capra hircus) using calve and kid rennets. Afr. J. Biotechnol. 2008, 7, 3490–3496. [Google Scholar]
- Ewais, E.A.; El-Maboud, M.M.A.; Haggag, M.I. Studies on chemical constituents and biological activity of Pulicaria incisa subsp. Incisa (Asteraceae). Rep. Opin. 2014, 6, 27–33. [Google Scholar]
- Mandim, F.; Pinela, J.; Marcelino, S.; Dias, M.I.; Barracosa, P.; Ivanov, M.; Soković, M.; Santos-Buelga, C.; Barros, L. Insights into the phenolic composition and in vitro bioactivity of cardoon capitulum: A nutraceutical-oriented valorization study. Food Chem. 2024, 435, 137480. [Google Scholar] [CrossRef]
- Fratianni, F.; Tucci, M.; De Palma, M.; Pepe, R.; Nazzaro, F. Polyphenolic composition in different parts of some cultivars of globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori). Food Chem. 2007, 104, 1282–1286. [Google Scholar] [CrossRef]
- Bohman, B.; Phillips, R.D.; Flematti, G.R.; Peakall, R. (Methylthio) phenol semio chemicals are exploited by deceptive orchids as sexual attractants for Campylothynnus than nine wasps. Fitoterapia 2018, 126, 78–82. [Google Scholar] [CrossRef]
- Lattanzio, V. Phenolic compounds: Introduction. In Natural Products: Phytochemistry, Botany and Metabolism of Akaloids, Phenolics and Terpenes; Ramawat, K.G., Mérillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1543–1580. [Google Scholar]
- Velez, Z.; Campinho, M.A.; Guerra, A.R.; García, L.; Ramos, P.; Guerreiro, O.; Felício, L.; Schmitt, F.; Duarte, M. Biological Characterization of Cynara cardunculus L. Methanolic extracts: Antioxidant, anti-proliferative, anti-migratory and anti-angiogenic activities. Agriculture 2012, 2, 472492. [Google Scholar] [CrossRef]
- Parzhanova, A.B.; Petkova, N.T.; Ivanov, I.G.; Ivanova, S.D. Evaluation of biologically active substance and antioxidant potential of medicinal plants extracts for food and cosmetic purposes. J. Pharm. Sci. Res. 2018, 10, 1804–1809. [Google Scholar]
- Raudone, L.; Radušiene, J.; Seyis, F.; Yayla, F.; Vilkickyte, G.; Marksa, M.; Ivanauskas, L.; Cırak, C. Distribution of phenolic compounds and antioxidant activity in plant parts and populations of seven under-utilized wild Achillea species. Plants 2022, 11, 447. [Google Scholar] [CrossRef] [PubMed]
- Alamanni, M.C.; Cossu, M. Antioxidant activity of the extracts of the edible part of artichoke (Cynara scolymus L.) var spinososardo. Ital. J. Food Sci. 2003, 15, 187–195. [Google Scholar]
- Khaldi, S.; Chaouachi, F.; Ksouri, R.; El Gazeh, M. Polyphenolic Composition in Different Organs of Tunisia Populations of Cynara Cardunculus L. and Their Antioxidant Activity. J. Food Nutr. Res. 2013, 1, 1–6. [Google Scholar] [CrossRef]
- Sedó, J.; Saiz-Poseu, J.; Busqué, F.; Ruiz-Molina, D. Catechol-based biomimetic functional materials. Adv. Mater. 2013, 25, 653–701. [Google Scholar] [CrossRef] [PubMed]
- Saricaoglu, B.; Subaşı, B.G.; Karbancioglu-Guler, F.; Lorenzo, J.M.; Capanoglu, E. Phenolic compounds as natural microbial toxin detoxifying agents. Toxicon 2023, 222, 106989. [Google Scholar] [CrossRef]
- Tworkoski, T. Developmental and environmental effects on assimilate partitioning in Canada thistle (Cirsium arvense). Weed Sci. 1992, 40, 79–85. [Google Scholar] [CrossRef]
- Tiley, G.E. Biological flora of the British Isles: Cirsium arvense (L.) scop. J. Ecol. 2010, 98, 938–983. [Google Scholar] [CrossRef]
- Ben Amira, A.; Blecker, C.; Richel, A.; Arias, A.A.; Fickers, P.; Francis, F.; Besbes, S.; Attia, H. Influence of the ripening stage and the lyophilization of wild cardoon flowers on their chemical composition, enzymatic activities of extracts and technological properties of cheese curds. Food Chem. 2018, 245, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Raccuia, S.A.; Melilli, M.G. Cynara cardunculus L.; a potential source of inulin in the Mediterranean environment: Screening of genetic variability. Aust. J. Agric. Res. 2004, 55, 693–698.66. [Google Scholar] [CrossRef]
- Mena, P.; Angelino, D. Plant food nutrition. and human health. Nutrients 2020, 12, 2157. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.I.; Barros, L.; Barreira, J.C.M.; Alves, M.J.; Barracosa, P.; Ferreira, I.C.F.R. Phenolic profile and bioactivity of cardoon (Cynara cardunculus L.) inflorescence parts:Selecting the best genotype for food applications. Food Chem. 2018, 268, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Svecova, E.; Rea, E.; and Lucini, L. Effects of saline stress on mineral composition. phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system. J. Sci. Food Agric. 2013, 93, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Pereira, C.; Tzortzakis, N.; Barros, L.; Ferreira, I.C. Nutritional value and bioactive compounds characterization of plant parts from Cynara cardunculus L. (Asteraceae) cultivated in central Greece. Front. Plant Sci. 2018, 9, 459. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A.; Pereira, C.; Barros, L.; Ferreira, I.C. Leaf parts from Greek artichoke genotypes as a good source of bioactive compounds and antioxidants. Food Funct. 2017, 8, 2022–2029. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, C.H.; Andrade, M.A.; Vilarinho, F.; Castanheira, I.; Fernando, A.L.; Loizzo, M.R.; Sanches Silva, A. A New Insight on Cardoon: Exploring New Uses besides Cheese Making with a View to Zero Waste. Foods 2020, 9, 564. [Google Scholar] [CrossRef]
- Ksouri, R.; Megdiche, W.; Falleh, H.; Trabelsi, N.; Boulaaba, M.; Smaoui, A.; Abdelly, C. Influence of biological. environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. Comptes Rendus. Biol. 2008, 331, 865–873. [Google Scholar] [CrossRef]
- Devi, S.; Kumar, V.; Singh, S.K.; Dubey, A.K.; Kim, J.J. Flavonoids: Potential candidates for the treatment of neurodegenerative disorders. Biomedicines 2021, 9, 99. [Google Scholar] [CrossRef]
- Guiné, R.P.; Tenreiro, M.I.; Correia, A.C.; Correia, P.M.; Barracosa, P. Analysis of factors influencing the physical, chemical and sensorial properties of Serra da Estrela cheeses. J. Food Meas. Charact. 2016, 10, 643–657. [Google Scholar] [CrossRef]
- Vairo-Cavalli, S.; Claver, S.; Priolo, N.; Natalucci, C. Extraction and partial characterization of a coagulant preparation from Silybum marianum flowers. J. Dairy Res. 2005, 72, 271–275. [Google Scholar] [CrossRef]
- Brutti, C.B.; Pardo, M.F.; Caffini, N.O.; Natalucci, C.L. Onopordum acanthium L. (Asteraceae) flowers as coagulating agent for cheesemaking. LWT-Food Sci. Technol. 2012, 45, 172–179. [Google Scholar] [CrossRef]
- Han, B.; Huang, S.; Huang, G.; Wu, X.; Jin, H.; Liu, Y.; Xiao, Y.; Zhou, R. Genetic relatedness and association mapping of horticulturally valuable traits for the ceiba plants using ddRAD sequencing. Hortic. Plant J. 2023, 9, 826–836. [Google Scholar] [CrossRef]
- Khatri, D.; Chhetri, S.B.B. Reducing sugar, total phenolic content, and antioxidant potential of nepalese plants. Biomed. Res. Int. 2020, 2020, 7296859. [Google Scholar] [CrossRef]
- Bolouri-Moghaddam, M.R.; Le Roy, K.; Xiang, L.; Rolland, F.; Van den Ende, W. Sugar signaling and antioxidant network connections in plant cells. FEBS J. 2010, 277, 2022–2037. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef]
- Zargoosh, Z.; Ghavam, M.; Bacchetta, G.; Tavili, A. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Sci. Rep. 2019, 9, 16021. [Google Scholar] [CrossRef]
- Onsaard, W.; Kate-Ngam, S.; Onsaard, E. Physicochemical and antioxidant properties of rice bran protein hydrolysates obtained from different proteases. J. Food Meas. Charact. 2023, 17, 2374–2385. [Google Scholar] [CrossRef]
- Nicosia, F.D.; Puglisi, I.; Pino, A.; Caggia, C.; Randazzo, C.L. Plant Milk-Clotting Enzymes for Cheesemaking. Foods 2022, 11, 871. [Google Scholar] [CrossRef] [PubMed]
Population | Province | Locality | Coordinate Points |
---|---|---|---|
NA | Nabeul | Nabeul | 36°28′12.3″ N, 10°40′08.7″ E |
SO | Sousse | Chott Mariem | 35°55′01.2″ N, 10°33′43.5″ E |
KA | Kairouan | Sbikha | 35°53′44.6″ N, 9°54′43.8″ E |
SO | KA | NA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Leaves | Stems | Flowers | Leaves | Stems | Flowers | Leaves | Stems | Flowers | ||
Dry Matter (%) | SP | 20.79 ± 2.29% b(ns) | 24.41 ± 3.3% b(ns) | 30.04 ± 2.15% a(ns) | 21.69 ± 1.28% b(ns) | 25.55 ± 1.57% b(ns) | 35.44 ± 3.96% a(ns) | 21.8 ± 2.45% b(ns) | 26.2 ± 2.19% b(ns) | 38.86 ± 2.8% a(ns) |
CL | 26.73 ± 1.2% e | 31.33 ± 1.62% cd | 33.65 ± 2.55% bc | 23.12 ± 1.52%f | 27.9 ± 1.93% de | 36.1 ± 2.34% b | 23.3 ± 2.08% f | 29.2 ± 2.23% de | 39.87 ± 1.24% a | |
Total Phenols (mg EAG/g) | SP | 23.57 ± 0.76 d** | 17.51 ± 1.98 e** | 41.52 ± 2.06 a** | 28.74 ± 0.95 c** | 11.93 ± 0.57 f** | 32.39 ± 4.14 b (ns) | 18.67 ± 1.86 e (ns) | 10.86 ± 1.79 f (ns) | 44.75 ± 0.16 a** |
CL | 15.18 ± 0.21 c | 4.52 ± 0.19 d | 27.87 ± 2.31 b | 13.66 ± 2.74 c | 7.10 ± 0.71 d | 32.71 ± 3.09 b | 17.64 ± 1.27 c | 6.26 ± 2.74 d | 39.79 ± 2.59 a | |
Flavonoids (mg QE/g) | SP | 9.79 ± 0.72 a** | 4.21 ± 0.50 d** | 11.42 ± 0.23 a** | 10.67 ± 1.82 a** | 3.27 ± 0.13 d(ns) | 6.77 ± 0.97 b(ns) | 6.23 ± 0.89 bc** | 4.75 ± 1.16 cd(ns) | 7.63 ± 1.02 b** |
CL | 4.28 ± 0.47 b | 1.79 ± 0.47 d | 6.72 ± 0.92 a | 7.29 ± 1.23 a | 2.72 ± 0.60 cd | 6.7 ± 0.54 a | 3.99 ± 0.93 bc | 4.77 ± 0.58 b | 5.19 ± 0.60 b | |
Condensed Tannins (mg CE/g) | SP | 1.95 ± 0.09 bc(ns) | 2.81 ± 0.24 ab(ns) | 1.92 ± 0.02 bc(ns) | 2.84 ± 0.97 ab(ns) | 3 ± 0.475 a (ns) | 2.20 ± 0.11 bc(ns) | 1.50 ± 0.18 c(ns) | 2.17 ± 0.22 bc(ns) | 2.24 ± 0.02 bc(ns) |
CL | 1.64 ± 0.13 b | 2.81 ± 0.65 a | 1.90 ± 0.65 ab | 2 ± 0.65 ab | 2.51 ± 0.47 ab | 1.90 ± 0.33 ab | 1.56 ± 0.22 b | 2.41 ± 0.116 ab | 2.30 ± 0.76 ab | |
Protein content (mg BSA/g) | SP | 0.55 ± 0.03 d(ns) | 0.32 ± 0.08 e(ns) | 2.31 ± 0.09 a(ns) | 0.33 ± 0.01 e** | 0.1 ± 0.01 f(ns) | 1.9 ± 0.06 c(ns) | 0.46 ± 0.09 de(ns) | 0.28 ± 0.04 e** | 2.11 ± 0.23 b(ns) |
CL | 0.49 ± 0.06 d | 0.28 ± 0.01 e | 2.43 ± 0.1 a | 0.21 ± 0.03 ef | 0.16 ± 0.02 f | 1.96 ± 0.13 c | 0.48 ± 0.01 d | 0.2 ± 0.02 e | 2.2 ± 0.15 b |
PT | SO | KA | NA | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Leaves | Stems | Flowers | Leaves | Stems | Flowers | Leaves | Stems | Flowers | ||
Xyl (mg/g) | SP | ND | ND | 95.6 ± 1.64 a** | ND | ND | 40.7 ± 1.52 b(ns) | ND | ND | 36.7 ± 1.41 c** |
CL | ND | 3.75 ± 0.37 **d | 60.7 ± 2.66 a | ND | ND | 43.3 ± 1.73 b(ns) | ND | ND | 26.7 ±1.37 c | |
Suc (mg/g) | SP | ND | ND | 75.4 ±1.1 c** | ND | ND | 96 ±.0.95 a | ND | ND | 87.4 b**± 0.73 |
CL | ND | ND | ND | ND | 55.3 ±1.02 **c | 156.8 ± 3.2 a** | 53.1 ** ± 2.33 d | 22.53 ** ± 1.39 e | 64.9 ± 1.88 b | |
Man (mg/g) | SP | ND | 20.5 ± 2.03 a** | ND | 3.4 ± 0.98 b** | ND | ND | ND | ND | ND |
CL | ND | 7.4 ± 0.5 | ND | ND | ND | ND | ND | ND | ND | |
Glu (mg/g) | SP | 67.1 ± 0.79 **f | 32.89 ± 1.35 h | 136.1 ± 4.9 b | 68.18 ± 2.86 **e | 37.34 ± 1.97 g | 214.8 ± 2.08 **a | 75.76 ± 2.74 **d | 17.3 ± 1.3 **i | 129.48 ± 3.13 c (ns) |
CL | ND | 46.45 ± 0.88 e** | 205.2 ± 4.59 **a | 26.5 ± 1.02 f | 83.36 ± 2.34 **d | 133.8 ± 4.65 b | ND | ND | 122.2 ± 3.42 c (ns) | |
Gal (mg/g) | SP | 42.72 ± 1.51 b** | ND | ND | 6.35 ± 0.68 e (ns) | 8.49 ± 0.52 d | ND | 28.08 ± 2.11 c | 55.24 ± 0.65 a** | ND |
CL | 4.36 ± 0.47 d | ND | ND | 6 ± 1.21 c(ns) | 13.52 ± 1.89 b** | ND | 51.0 ± 2.64 a** | ND | ND | |
Fru (mg/g) | SP | ND | 158 ± 0.9 d** | 219.8 ± 1.8 b** | ND | 95 ± 1.57 e | 191.5 ± 2.87 c | ND | 303.3 ± 7.88 a** | ND |
CL | ND | 153.3 ± 0.26 d | 173 ± 4.81 c | ND | 117.84 ± 1.45 e** | 252.9 ± 3.12 a** | ND | ND | 233.1 ± 1.76 b** | |
Ara (mg/g) | SP | 51.2 ± 0.86 b** | ND | ND | ND | ND | ND | 45.95 ± 1.79 c | 59.13 ± 7.66 a** | ND |
CL | ND | ND | ND | 24.5 ± 0.94 b** | ND | ND | 63.4 ± 1.53 a** | ND | ND |
SO | KA | NA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Leaves | Stems | Flowers | Leaves | Stems | Flowers | Leaves | Stems | Flowers | |||
IC50 (mg/mL) | DPPH | SP | 0.24 ± 0.01 de | 1.173 ± 0.11 b** | 0.2 ± 0.05 de | 0.23 ± 0.01 de** | 1.82 ± 0.244 a** | 0.34 ± 0.01 cd** | 0.46 ± 0.01 c** | 0.49 ± 0.05 c | 0.13 ± 0.02 e (ns) |
CL | 0.54 ± 0.02 c** | 1.01 ± 0.12 a** | 0.366 ± 0.03 d** | 0.09 ± 0.01 f | 0.74 ± 0.04 b | 0.26 ± 0.02 e | 0.13 ± 0.03 f | 0.9 ± 0.01 a** | 0.12 ± 0.03 f(ns) | ||
ABTS | SP | 0.28 ± 0.07 d | 0.74 ± 0.01 b | 0.23 ± 0.02 d | 0.1 ± 0.01 e(ns) | 0.98 ± 0.04 a** | 0.4 ± 0.02 c** | 0.48 ± 0.02 c** | 0.38 ± 0.03 cd(ns) | 0.14 ± 0.01 e | |
CL | 0.58 ± 0.04 b** | 0.88 ± 0.11 a** | 0.53 ± 0.02 b** | 0.12 ± 0.01 d(ns) | 0.15 ± 0.01 d | 0.3 ± 0.07 c | 0.3 ± 0.02 c | 0.35 ± 0.04 c(ns) | 0.27 ± 0.03 c** | ||
Ct (s) | SP | ND | ND | 65 c | ND | ND | 108 a | ND | ND | 91 b | |
CL | ND | ND | 58 c | ND | ND | 100 a | ND | ND | 83 b | ||
MCA (UP) | SP | ND | ND | 1.54 ± 0.11 a(ns) | ND | ND | 0.92 ± 0.06 c | ND | ND | 1.1 ± 0.13 b(ns) | |
CL | ND | ND | 1.74 ± 0.29 a(ns) | ND | ND | 1 ± 0.05 c** | ND | ND | 1.2 ± 0.08 b(ns) |
TPC | TF | CT | Xyl | Sac | Man | Glu | Gal | Fru | Ara | PC | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IC50 (ABTS) | Pearson Correlation | −0.394 ** | −0.605 ** | 0.030 | −0.224 | −0.348 ** | 0.424 ** | −0.258 | −0.088 | 0.151 | −0.134 | −0.255 |
Sig. (2-tailed) | 0.003 | 0.000 | 0.832 | 0.103 | 0.010 | 0.001 | 0.060 | 0.526 | 0.276 | 0.335 | 0.062 | |
IC50 (DPPH) | Pearson Correlation | −0.562 ** | −0.577 ** | 0.263 | −0.348 ** | −0.372 ** | 0.434 ** | −0.349 ** | −0.188 | 0.041 | −0.304 * | −0.470 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.054 | 0.010 | 0.006 | 0.001 | 0.010 | 0.174 | 0.766 | 0.025 | 0.000 | |
MCA (UP) | Pearson Correlation | 0.728 ** | 0.391 ** | −0.347 * | 0.925 ** | 0.556 ** | −0.240 | 0.844 ** | −0.443 ** | 0.481 ** | −0.398 ** | 0.962 ** |
Sig. (2-tailed) | 0.000 | 0.003 | 0.010 | 0.000 | 0.000 | 0.081 | 0.000 | 0.001 | 0.000 | 0.003 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouki, R.; Essaidi, I.; Annabi, K.; Dhen, N.; Haouala, F.; Alhudhaibi, A.M.; Alrudayni, H.A.; Bziouech, S.A.; Ayari, O.; Al Mohandes Dridi, B. Chemical Composition, Antioxidant Activity, and Milk-Clotting Activity of Aqueous Extracts from Leaves, Stems, and Flowers of Three Tunisian Ecotypes of Spontaneous and Cultivated Onopordum nervosum ssp. platylepis Murb.: A Potential Novel Vegetable Rennet Option. Agronomy 2024, 14, 987. https://doi.org/10.3390/agronomy14050987
Kouki R, Essaidi I, Annabi K, Dhen N, Haouala F, Alhudhaibi AM, Alrudayni HA, Bziouech SA, Ayari O, Al Mohandes Dridi B. Chemical Composition, Antioxidant Activity, and Milk-Clotting Activity of Aqueous Extracts from Leaves, Stems, and Flowers of Three Tunisian Ecotypes of Spontaneous and Cultivated Onopordum nervosum ssp. platylepis Murb.: A Potential Novel Vegetable Rennet Option. Agronomy. 2024; 14(5):987. https://doi.org/10.3390/agronomy14050987
Chicago/Turabian StyleKouki, Rania, Ismahen Essaidi, Khouloud Annabi, Najla Dhen, Faouzi Haouala, Abdulrahman M. Alhudhaibi, Hassan A. Alrudayni, Samra Akef Bziouech, Olfa Ayari, and Bouthaina Al Mohandes Dridi. 2024. "Chemical Composition, Antioxidant Activity, and Milk-Clotting Activity of Aqueous Extracts from Leaves, Stems, and Flowers of Three Tunisian Ecotypes of Spontaneous and Cultivated Onopordum nervosum ssp. platylepis Murb.: A Potential Novel Vegetable Rennet Option" Agronomy 14, no. 5: 987. https://doi.org/10.3390/agronomy14050987
APA StyleKouki, R., Essaidi, I., Annabi, K., Dhen, N., Haouala, F., Alhudhaibi, A. M., Alrudayni, H. A., Bziouech, S. A., Ayari, O., & Al Mohandes Dridi, B. (2024). Chemical Composition, Antioxidant Activity, and Milk-Clotting Activity of Aqueous Extracts from Leaves, Stems, and Flowers of Three Tunisian Ecotypes of Spontaneous and Cultivated Onopordum nervosum ssp. platylepis Murb.: A Potential Novel Vegetable Rennet Option. Agronomy, 14(5), 987. https://doi.org/10.3390/agronomy14050987