Application of Urea and Ammonium Nitrate Solution with Potassium Thiosulfate as a Factor Determining Macroelement Contents in Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Laboratory and Statistical Analysis Methods
3. Results
3.1. Chemical Composition of the Crops
3.1.1. Nitrogen
3.1.2. Phosphorus
3.1.3. Potassium
3.1.4. Magnesium
3.1.5. Calcium
3.1.6. Sulfate–Sulfur (VI)
3.2. Analysis of the Cumulative Effect of the Experimental Factors
3.2.1. Spring Wheat
3.2.2. Spring Rape
3.2.3. Maize
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Wyszkowska, J.; Kordala, N.; Zaborowska, M. Molecular sieve, halloysite, sepiolite and expanded clay as a tool in reducing the content of trace elements in Helianthus annuus L. on copper-contaminated soil. Materials 2023, 16, 1827. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowski, M.; Wyszkowska, J.; Borowik, A.; Kordala, N. Contamination of soil with diesel oil, application of sewage sludge and content of macroelements in oats. Water Air Soil Poll. 2020, 231, 546. [Google Scholar] [CrossRef]
- Kosiorek, M.; Wyszkowski, M. Macroelement content in plants after amendment application to cobalt-contaminated soil. J. Soils Sediments 2021, 21, 1769–1784. [Google Scholar] [CrossRef]
- Fageria, N.K.; Moreira, A. The Role of mineral nutrition on root growth of crop plants. Adv. Agron. 2011, 110, 251–331. [Google Scholar]
- Marska, E.; Maciejewska, M.; Cyran, A. Consequential effect of dolomite on changes in content of calcium, magnesium and essential micronutrients in soil and lettuce fertilised with various doses of ammonium nitrate. Biul. Magnez. 1997, 2, 106–113. [Google Scholar]
- Statistics. The Statistics Portal 2024. Available online: https://www.statista.com/statistics/438967/fertilizer-consumption-globally-by-nutrient/ (accessed on 11 March 2024).
- Bar Tal, A. The Effects of Nitrogen Form on Interactions with Potassium. Res. Find. e-ifc 2011, 29. Available online: https://www.ipipotash.org/publications/eifc-214 (accessed on 30 September 2023).
- Wyszkowski, M.; Kordala, N.; Brodowska, M.S. Trace element content in soils with nitrogen fertilisation and humic acids addition. Agriculture 2023, 13, 968. [Google Scholar] [CrossRef]
- Jat, G.; Majumdar, S.P.; Jat, N.K.; Mazumdar, S.P. Effect of potassium and zinc fertilizer on crop yield, nutrient uptake and distribution of potassium and zinc fractions in Typic Ustipsamment. Indian J. Agric. Sci. 2014, 84, 832–838. [Google Scholar] [CrossRef]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef]
- Brodowska, M.S.; Wyszkowski, M.; Kordala, N. Use of organic materials to limit the potential negative effect of nitrogen on maize in different soils. Materials 2022, 15, 5755. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowski, M.; Kordala, N.; Brodowska, M. Role of humic acids-based fertilisers and nitrogen fertilisers in the regulation of the macroelement content in maize biomass. J. Elem. 2023, 28, 1289–1309. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Potassium control of plant functions: Ecological and agricultural implications. Plants 2021, 10, 419. [Google Scholar] [CrossRef]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture–status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef]
- Brennan, R.; Jayasena, K. Increasing applications of potassium fertiliser to barley crops grown on deficient sandy soils increased grain yields while decreasing some foliar diseases. Aust. J. Agric. Res. 2007, 58, 680–689. [Google Scholar] [CrossRef]
- Scanlan, C.A.; Huth, N.I.; Bell, R.W. Simulating wheat growth response to potassium availability under field conditions with sandy soils. I. Model development. Field Crops Res. 2015, 178, 109–124. [Google Scholar] [CrossRef]
- Fageria, N.K.; Moreira, A.; Moraes, L.A.C.; Moraes, M.F. Nitrogen uptake and use efficiency in upland rice under two nitrogen sources. Comm. Soil Sci. Plant Anal. 2014, 45, 461–469. [Google Scholar] [CrossRef]
- Hejcman, M.; Hejcmanová, P. Yield and nutritive value of grain, glumes and straw of Triticum dicoccum produced by prehistoric technology in comparison to T. aestivum produced by modern technology. Interdisc. Archaeol. Nat. Sci. Archaeol. 2015, 6, 31–45. [Google Scholar] [CrossRef]
- Nikolajsen, M.T.; Pacholski, A.S.; Sommer, S.G. Urea ammonium nitrate solution treated with inhibitor technology: Effects on ammonia emission reduction, wheat yield, and inorganic N in soil. Agronomy 2020, 10, 161. [Google Scholar] [CrossRef]
- Debele, R.D. Effect of nitrogen, phosphorus and sulfur nutrients on growth and yield attributes of bread wheat. J. Ecol. Nat. Resour. 2021, 5, 355–365. [Google Scholar]
- Drury, C.F.; Yang, X.; Reynolds, W.D.; Calder, W.; Oloya, T.O.; Woodley, A.L. Combining urease and nitrification inhibitors with incorporation reduces ammonia and nitrous oxide emissions and increases corn yields. J. Environ. Qual. 2017, 46, 939–994. [Google Scholar] [CrossRef] [PubMed]
- Woodley, A.L.; Drury, C.F.; Yang, X.M.; Reynolds, W.D.; Calder, W.; Oloya, T.O. Streaming urea ammonium nitrate with or without enhanced efficiency products impacted corn yields, ammonia, and nitrous oxide emissions. Agron. J. 2018, 110, 444–454. [Google Scholar] [CrossRef]
- Robertson, G.P.; Groffman, P. Nitrogen transformations. In Soil Microbiology, Ecology and Biochemistry, 4th ed.; Eldor, A.P., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 421–446. [Google Scholar] [CrossRef]
- Mustafa, A.; Athar, F.; Khan, I.; Chattha, M.U.; Nawaz, M.; Shah, A.N.; Mahmood, A.; Batool, M.; Aslam, M.T.; Jaremko, M.; et al. Improving crop productivity and nitrogen use efficiency using sulfur and zinc-coated urea: A review. Front. Plant Sci. 2022, 13, 942384. [Google Scholar] [CrossRef] [PubMed]
- Rietra, R.P.J.J.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 1895–1920. [Google Scholar] [CrossRef]
- Cai, Z.; Gao, S.; Xu, M.; Hanson, B.D. Evaluation of potassium thiosulfate as a nitrification inhibitor to reduce nitrous oxide emissions. Sci. Total Environ. 2018, 618, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Emam, S.M.; Semida, W.M. Foliar-applied Amcoton® and potassium thiosulfate enhances the growth and productivity of three faba beans varieties by improving photosynthetic efficiency. Arch. Agric. Environ. Sci. 2020, 5, 89–96. [Google Scholar] [CrossRef]
- Edwards, J.; Arnall, B.; Zhang, H. Methods for applying topdress nitrogen to wheat. Okla. Coop. Ext. Serv. 2024, PSS-2261. Available online: https://extension.okstate.edu/fact-sheets/print-publications/pss/methods-for-applying-topdress-nitrogen-to-wheat-pss-2261.pdf (accessed on 11 March 2024).
- Zdunek, A.; Możeński, C.; Biskupski, A.; Bielski, P. Safety hazards during production and storage of liquid N-S fertilizers. Przem. Chem. 2013, 92, 2192–2197. [Google Scholar]
- Wyszkowski, M.; Brodowska, M.S.; Karsznia, M. Innovative fertiliser based on urea and ammonium nitrate solution with potassium thiosulphate as a crucial factor in shaping plant yield and its parameters. Agronomy 2024, 14, 802. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Zhang, M.; Chen, Q.; Zheng, L.; Li, Y.C.; Sun, L. The combined application of controlled-release urea and fulvic acid improved the soil nutrient supply and maize yield. Arch. Agron. Soil Sci. 2021, 67, 633–646. [Google Scholar] [CrossRef]
- Khan, A.; Afridi, M.Z.; Airf, M.; Ali, S.; Muhammad, I. A sustainable approach toward maize production: Effectiveness of farmyad manure and urea nitrogen. Ann. Biol. Sci. 2017, 5, 8–13. [Google Scholar] [CrossRef]
- Hussain, I.; Khan, A.; Akbarm, H. Maize growth in response to beneficial microbes, Humic acid and farmyard manure application. Sarhad J. Agric. 2021, 37, 1426–1435. [Google Scholar] [CrossRef]
- Asibi, A.E.; Chai, Q.A.; Coulter, J. Mechanisms of nitrogen use in maize. Agronomy 2019, 9, 775. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Update 2015. In World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 182. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 28 April 2023).
- SpeedDigester K-439 Operation Manual; BÜCHI Labortechnik AG: Flawil, Switzerland, 2019; p. 68. Available online: http://assets.buchi.com/image/upload/v1605792630/pdf/Brochures/PB_11592447_K-439_en.pdf (accessed on 22 March 2024).
- Pal, S.K. Methods of Soil and Plant Analysis; New India Publishing Agency (NIPA): India, 2021; Available online: https://www.perlego.com/book/1975463/methods-of-soil-and-plant-analysis-pdf (accessed on 12 December 2023).
- Grzesiuk, W. Nephelometric Determination of Sulfate Sulfur in Plants. Rocz. Gleboz. 1968, 1, 167–173. [Google Scholar]
- PN-R-04032; Soil and Mineral Materials—Sampling and Determination of Particle Size Distribution. Polish Committee for Standardization: Warszawa, Poland, 1998; pp. 1–12.
- ISO 10390; Soil Quality—Determination of Ph. International Organization for Standardization: Geneva, Switzerland, 2005.
- ISO 11261; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 1995.
- PN-R-04023; Chemical and Agricultural Analysis—Determination of the Content of Available Phosphorus in Mineral Soils. Polish Standards Committee: Warszawa, Poland, 1996.
- PN-R-04022; Chemical and Agricultural Analysis—Determination of the Content Available Potassium in Mineral Soils. Polish Standards Committee: Warszawa, Poland, 1996.
- Boratyński, K.; Grom, A.; Ziętecka, M. Research on the content of sulfur in soil. Part I. Rocz. Gleboz. 1975, 3, 121–139. [Google Scholar]
- TIBCO Software Inc. Statistica (Data Analysis Software System), Version 13; TIBCO Software Inc.: Palo Alto, CA, USA, 2017. [Google Scholar]
- Zhang, F.; Niu, J.; Zhang, W.; Chen, X.; Li, C.; Yuan, L.; Xie, J. Potassium nutrition of crops under varied regimes of nitrogen supply. Plant Soil 2010, 335, 21–34. [Google Scholar] [CrossRef]
- Hao, D.-L.; Zhou, J.-Y.; Li, L.; Qu, J.; Li, X.-H.; Chen, R.-R.; Kong, W.-Y.; Li, D.-D.; Li, J.-J.; Guo, H.-L.; et al. An appropriate ammonium: Nitrate ratio promotes the growth of centipede grass: Insight from physiological and micromorphological analyses. Front. Plant Sci. 2023, 14, 1324820. [Google Scholar] [CrossRef] [PubMed]
- Guinto, D.F. Nitrogen Fertilisation Effects on the Quality of Selected Crops: A Review. Agron. N. Z. 2016, 46, 121–132. Available online: https://www.agronomysociety.nz/files/2016_12._Review_-_N_fert_effects_on_some_crops.pdf (accessed on 1 October 2023).
- Liu, K.; Zhang, C.; Guan, B.; Yang, R.; Liu, K.; Wang, Z.; Li, X.; Xue, K.; Yin, L.; Wang, X. The effect of different sowing dates on dry matter and nitrogen dynamics for winter wheat: An experimental simulation study. PeerJ 2021, 10, e11700. [Google Scholar] [CrossRef]
- Galieni, A.; Stagnari, F.; Visioli, G.; Marmiroli, N.; Speca, S.; Angelozzi, G.; D’Egidio, S.; Pisante, M. Nitrogen fertilisation of durum wheat: A case study in Mediterranean area during transition to conservation agriculture. Ital. J. Agron. 2016, 11, 12–23. [Google Scholar] [CrossRef]
- Wysocka, K.; Cacak-Pietrzak, G.; Feledyn-Szewczyk, B.; Studnicki, M. The baking quality of wheat flour (Ttriticum aestivum L.) obtained from wheat grains cultivated in various farming systems (organic vs. integrated vs. conventional). Appl. Sci. 2024, 14, 1886. [Google Scholar] [CrossRef]
- Wroblewitz, S.; Hüther, L.; Manderscheid, R.; Weigel, H.-J.; Wätzig, H.; Dänicke, S. The effect of free air carbon dioxide enrichment and nitrogen fertilisation on the chemical composition and nutritional value of wheat and barley grain. Arch. Animal Nutr. 2013, 67, 263–278. [Google Scholar] [CrossRef]
- Njira, K.O.W.; Nabwami, J. A review of effects of nutrient elements on crop quality. Afr. J. Food Agric. Nutr. Dev. 2015, 15, 9777–9783. Available online: http://www.bioline.org.br/pdf?nd15011 (accessed on 6 March 2024). [CrossRef]
- Yang, D.; Zhao, J.; Bi, C.; Li, L.; Wang, Z. Transcriptome and proteomics analysis of wheat seedling roots reveals that increasing NH4+/NO3– ratio induced root lignification and reduced nitrogen utilization. Front. Plant Sci. 2022, 12, 797260. [Google Scholar] [CrossRef]
- Kong, L.; Sun, M.; Wang, F.; Liu, J.; Feng, B.; Si, J.; Zhang, B.; Li, S.; Li, H. Effects of high NH4+ on K+ uptake, culm mechanical strength and grain filling in wheat. Front. Plant Sci. 2014, 5, 703. [Google Scholar] [CrossRef]
- ten Hoopen, F.; Cuin, T.A.; Pedas, P.; Hegelund, J.N.; Shabala, S.; Schjoerring, J.K.; Jahn, T.P. Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: Molecular mechanisms and physiological consequences. J. Exp. Bot. 2010, 61, 2303–2315. [Google Scholar] [CrossRef]
- Hafsi, C.; Debez, A.; Abdelly, C. Potassium deficiency in plants: Effects and signaling cascades. Acta Physiol. Plant. 2014, 36, 1055–1070. [Google Scholar] [CrossRef]
- Lai, C.H.; Settinayake, A.R.H.; Yeo, W.S.; Lau, S.W.; Jang, T.K. Crop nutrients review and the impact of fertilizer of the plantation in Malaysia: A mini-review. Comm. Soil Sci. Plant Anal. 2019, 50, 2089–2105. [Google Scholar] [CrossRef]
- Dawson, A.E.; Bedford, A.J.; Hamilton, R.T.; Shand, M.J. The effect of potassium fertilisation and timing on potassium uptake, grain yield and grain quality in a spring sown wheat crop. Agron. N. Z. 2018, 48, 372–389. Available online: https://www.agronomysociety.org.nz/files/ASNZ_2018_02._K_fertilisation_on_spring_wheat.pdf (accessed on 29 September 2023).
- Gebreslassie, H.B. Effect of potassium fertilizer on crop production. J. Nat. Sci. Res. 2016, 6, 1–6. Available online: https://core.ac.uk/download/pdf/234656325.pdf (accessed on 10 May 2024).
- Aown, M.; Raza, S.; Saleem, M.F.; Anjum, S.A.; Khaliq, T.; Wahid, M.A. Foliar application of potassium under water deficit conditions improved the growth and yield of wheat (Triticum aestivum L.). J. Anim. Plant Sci. 2012, 22, 431–437. Available online: http://www.thejaps.org.pk/docs/v-22-2/32.pdf (accessed on 10 May 2024).
- Surányi, S.; Izsáki, Z. Plant analysis application for environmentally friendly fertilization of winter barley (Hordeum vulgare L.). Appl. Ecol. Environ. Res. 2018, 16, 5213–5226. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Kronzucker, H.J. The nitrogen–potassium intersection: Membranes, metabolism, and mechanism. Plant Cell Environ. 2016, 10, 2029–2041. [Google Scholar] [CrossRef]
- Mirsoleimani, A.; Najafi-Ghiri, M.; Heydari, H.; Farokhzadeh, S. Effect of nitrogen, phosphorus and potassium deficiencies on some morphological and physiological properties and nutrient uptake by two almond rootstocks. Folia Hort. 2021, 33, 235–247. [Google Scholar] [CrossRef]
- Prasad, R.; Shivay, Y.S.; Kumar, D. Interactions of zinc with other nutrients in soils and plants—A review. Indian J. Fertil. 2016, 12, 16–26. [Google Scholar]
- Duncan, E.G.; O’Sullivan, C.A.; Roper, M.M.; Biggs, J.S.; Peoples, M.B. Influence of co-application of nitrogen with phosphorus, potassium and sulphur on the apparent efficiency of nitrogen fertiliser use, grain yield and protein content of wheat: Review. Field Crops Res. 2018, 226, 56–65. [Google Scholar] [CrossRef]
- Munns, R.; Schmidt, S. Nutrient uptake from soils. In Plants in Action, 2nd ed.; Munns, R., Schmidt, S., Beveridge, C., Eds.; Australian Society of Plant Scientists: Melbourne, Australia, 2017; pp. 1–59. Available online: https://www.asps.org.au/wp-content/uploads/Chapter-4-for-PDF-.pdf (accessed on 23 March 2024).
- Marschner, P.; Rengel, Z. Nutrient availability in soils. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 315–330. [Google Scholar]
- Weil, R.R.; Brady, N.C. Soil phosphorus and potassium. Chapter 14. In The Nature and Properties of Soils, 15th ed.; Pearson: Columbus, OH, USA, 2017; pp. 6433–6695. [Google Scholar]
- Ibrahim, M.; Iqbal, M.; Tang, Y.-T.; Khan, S.; Guan, D.-X.; Li, G. Phosphorus mobilization in plant–soil environments and inspired strategies for managing phosphorus: A review. Agronomy 2022, 12, 2539. [Google Scholar] [CrossRef]
- Wang, R.; Cresswell, T.; Johansen, M.P.; Harrison, J.J.; Jiang, Y.; Keitel, C.; Cavagnaro, T.R.; Dijkstra, F.A. Reallocation of nitrogen and phosphorus from roots drives regrowth of grasses and sedges after defoliation under deficit irrigation and nitrogen enrichment. J. Ecol. 2021, 109, 4071–4080. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Wyszkowski, M. Resistance of aerobic microorganisms and soil enzyme response to soil contamination with Ekodiesel Ultra fuel. Environ. Sci. Pollut. Res. 2017, 24, 24346–24363. [Google Scholar] [CrossRef]
Varieties | Spring Wheat (Triticum aestivum L.) | Spring Rape (Brassica napus L. var. napus) | Maize (Zea mays L.) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N:K:S | N:K:S | N:K1:S1 | N:K2:S2 | N:K3:S3 | N:K:S | N:K1:S1 | N:K2:S2 | N:K3:S3 | N:K:S | N:K1:S1 | N:K2:S2 | N:K3:S3 |
N:K:S ratio | 1:0:0 | 1:0.5:0.3 | 1:0.7:0.5 | 1:0.9:0.6 | 1:0:0 | 1:0.5:0.3 | 1:0.7:0.5 | 1:0.9:0.6 | 1:0:0 | 1:0.8:0.5 | 1:1.1:0.7 | 1:1.4:1 |
N 1 series | ||||||||||||
N | 140 | 140 | 140 | 140 | 160 | 160 | 160 | 160 | 160 | 160 | 160 | 160 |
P2O5 | 60 | 60 | 60 | 60 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
K2O | 0 | 70 | 98 | 126 | 0 | 80 | 112 | 144 | 0 | 128 | 176 | 224 |
S | 0 | 42 | 70 | 84 | 0 | 54 | 80 | 108 | 0 | 80 | 112 | 160 |
N 2 series | ||||||||||||
N | 105 | 105 | 105 | 105 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 |
P2O5 | 60 | 60 | 60 | 60 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
K2O | 0 | 53 | 74 | 95 | 0 | 60 | 84 | 108 | 0 | 96 | 132 | 168 |
S | 0 | 31.5 | 52.5 | 63 | 0 | 36 | 60 | 72 | 0 | 60 | 84 | 120 |
N:K:S (C) | Soil Kind (A) | |||||
---|---|---|---|---|---|---|
Soil 1 | Soil 2 | |||||
Nitrogen Dose (B) | ||||||
N 1 | N 2 | Average | N 1 | N 2 | Average | |
Spring wheat (Triticum aestivum L.) grain | ||||||
N:K:S | 18.95 | 17.36 | 18.16 | 22.31 | 21.00 | 21.66 |
N:K1:S1 | 18.39 | 16.71 | 17.55 | 20.91 | 19.13 | 20.02 |
N:K2:S2 | 18.11 | 17.27 | 17.69 | 21.93 | 19.32 | 20.63 |
N:K3:S3 | 17.55 | 15.87 | 16.71 | 21.65 | 22.96 | 22.31 |
Average | 18.25 | 16.80 | 17.53 | 21.70 | 20.60 | 21.15 |
LSD0.01 | A—0.59; B—0.59; C—0.83; A × B—n.s.; A × C—0.83; B × C—n.s.; A × B × C—1.66 | |||||
Spring rape (Brassica napus L. var. napus) seed | ||||||
N:K:S | 33.41 | 32.06 | 32.74 | 36.49 | 31.83 | 34.16 |
N:K1:S1 | 28.75 | 28.19 | 28.47 | 32.20 | 30.80 | 31.50 |
N:K2:S2 | 26.97 | 26.79 | 26.88 | 30.43 | 31.36 | 30.90 |
N:K3:S3 | 28.70 | 30.61 | 29.66 | 33.60 | 32.06 | 32.83 |
Average | 29.46 | 29.41 | 29.44 | 33.18 | 31.51 | 32.35 |
LSD0.01 | A—0.89; B–0.89; C—1.26; A × B—n.s.; A × C—n.s.; B × C—1.78; A × B × C—n.s. | |||||
Maize (Zea mays L.) aerial parts | ||||||
N:K:S | 7.19 | 8.59 | 7.89 | 9.33 | 8.59 | 8.96 |
N:K1:S1 | 7.28 | 7.56 | 7.42 | 7.93 | 7.37 | 7.65 |
N:K2:S2 | 7.19 | 7.56 | 7.38 | 8.87 | 6.07 | 7.47 |
N:K3:S3 | 8.49 | 8.87 | 8.68 | 8.12 | 5.88 | 7.00 |
Average | 7.54 | 8.15 | 7.84 | 8.56 | 6.98 | 7.77 |
LSD0.01 | A—n.s.; B—n.s.; C—1.26; A × B—n.s.; A × C—n.s.; B × C—1.78; A × B × C—n.s. |
N:K:S (C) | Soil Kind (A) | |||||
---|---|---|---|---|---|---|
Soil 1 | Soil 2 | |||||
Nitrogen Dose (B) | ||||||
N 1 | N 2 | Average | N 1 | N 2 | Average | |
Spring wheat (Triticum aestivum L.) grain | ||||||
N:K:S | 3.76 | 4.10 | 3.93 | 3.92 | 4.22 | 4.07 |
N:K1:S1 | 4.12 | 3.93 | 4.03 | 3.44 | 4.66 | 4.05 |
N:K2:S2 | 3.82 | 3.86 | 3.84 | 3.20 | 3.56 | 3.38 |
N:K3:S3 | 4.62 | 3.85 | 4.24 | 3.60 | 4.12 | 3.86 |
Average | 4.08 | 3.94 | 4.01 | 3.54 | 4.14 | 3.84 |
LSD0.01 | A—n.s.; B–n.s.; C—n.s.; A × B—n.s.; A × C—n.s.; B × C—n.s.; A × B × C—n.s. | |||||
Spring rape (Brassica napus L. var. napus) seed | ||||||
N:K:S | 4.55 | 4.34 | 4.45 | 4.75 | 4.84 | 4.80 |
N:K1:S1 | 4.13 | 4.16 | 4.15 | 4.61 | 4.78 | 4.70 |
N:K2:S2 | 4.21 | 4.26 | 4.24 | 4.36 | 4.76 | 4.56 |
N:K3:S3 | 4.34 | 4.64 | 4.49 | 4.44 | 5.27 | 4.86 |
Average | 4.31 | 4.35 | 4.33 | 4.54 | 4.91 | 4.73 |
LSD0.01 | A—0.22; B—n.s.; C—n.s.; A × B—n.s.; A × C—n.s.; B × C—n.s.; A × B × C—n.s. | |||||
Maize (Zea mays L.) aerial parts | ||||||
N:K:S | 1.28 | 1.27 | 1.28 | 1.46 | 1.65 | 1.56 |
N:K1:S1 | 1.23 | 1.41 | 1.32 | 1.55 | 1.57 | 1.56 |
N:K2:S2 | 1.18 | 1.55 | 1.37 | 1.35 | 1.18 | 1.27 |
N:K3:S3 | 1.45 | 1.54 | 1.50 | 1.71 | 1.43 | 1.57 |
Average | 1.29 | 1.44 | 1.36 | 1.52 | 1.46 | 1.49 |
LSD0.01 | A—0.22; B—n.s.; C—n.s.; A × B—n.s.; A × C—n.s.; B × C—n.s.; A × B × C—n.s. |
N:K:S (C) | Soil Kind (A) | |||||
---|---|---|---|---|---|---|
Soil 1 | Soil 2 | |||||
Nitrogen Dose (B) | ||||||
N 1 | N 2 | Average | N 1 | N 2 | Average | |
Spring wheat (Triticum aestivum L.) grain | ||||||
N:K:S | 5.50 | 5.55 | 5.53 | 5.88 | 5.76 | 5.82 |
N:K1:S1 | 5.55 | 5.81 | 5.68 | 5.91 | 5.71 | 5.81 |
N:K2:S2 | 5.76 | 5.92 | 5.84 | 5.81 | 6.38 | 6.10 |
N:K3:S3 | 5.66 | 5.93 | 5.80 | 6.00 | 6.21 | 6.11 |
Average | 5.62 | 5.80 | 5.71 | 5.90 | 6.02 | 5.96 |
LSD0.01 | A—0.22; B—n.s.; C—n.s.; A × B—n.s.; A × C—n.s.; B × C—n.s.; A × B × C—n.s. | |||||
Spring rape (Brassica napus L. var. napus) seed | ||||||
N:K:S | 10.39 | 8.17 | 9.28 | 6.29 | 6.17 | 6.23 |
N:K1:S1 | 6.63 | 6.53 | 6.58 | 7.31 | 6.85 | 7.08 |
N:K2:S2 | 6.68 | 6.52 | 6.60 | 5.07 | 7.00 | 6.04 |
N:K3:S3 | 7.00 | 6.50 | 6.75 | 5.01 | 7.01 | 6.01 |
Average | 7.68 | 6.93 | 7.30 | 5.92 | 6.76 | 6.34 |
LSD0.01 | A—0.38; B—n.s.; C—0.53; A × B—0.53; A × C—0.75; B × C—0.75; A × B × C—1.06 | |||||
Maize (Zea mays L.) aerial parts | ||||||
N:K:S | 7.47 | 8.79 | 8.13 | 9.09 | 10.79 | 9.94 |
N:K1:S1 | 10.89 | 12.77 | 11.83 | 14.42 | 13.84 | 14.13 |
N:K2:S2 | 12.76 | 14.29 | 13.53 | 17.27 | 12.91 | 15.09 |
N:K3:S3 | 16.12 | 18.41 | 17.27 | 17.45 | 14.67 | 16.06 |
Average | 11.81 | 13.57 | 12.69 | 14.56 | 13.05 | 13.81 |
LSD0.01 | A—0.27; B—n.s.; C—0.38; A × B—0.38; A × C—0.53; B × C—0.53; A × B × C—0.75 |
N:K:S (C) | Soil Kind (A) | |||||
---|---|---|---|---|---|---|
Soil 1 | Soil 2 | |||||
Nitrogen Dose (B) | ||||||
N 1 | N 2 | Average | N 1 | N 2 | Average | |
Spring wheat (Triticum aestivum L.) grain | ||||||
N:K:S | 1.68 | 1.49 | 1.59 | 1.60 | 1.49 | 1.55 |
N:K1:S1 | 1.55 | 1.84 | 1.70 | 1.48 | 1.53 | 1.51 |
N:K2:S2 | 1.70 | 1.63 | 1.67 | 1.46 | 1.47 | 1.47 |
N:K3:S3 | 1.52 | 1.49 | 1.51 | 1.71 | 1.67 | 1.69 |
Average | 1.61 | 1.61 | 1.61 | 1.56 | 1.54 | 1.55 |
LSD0.01 | A—n.s.; B—n.s.; C—n.s.; A × B—n.s.; A × C—0.17; B × C—0.17; A × B × C—n.s. | |||||
Spring rape (Brassica napus L. var. napus) seed | ||||||
N:K:S | 4.58 | 4.38 | 4.48 | 3.60 | 3.98 | 3.79 |
N:K1:S1 | 4.37 | 3.99 | 4.18 | 3.99 | 3.90 | 3.95 |
N:K2:S2 | 4.28 | 3.79 | 4.04 | 3.05 | 3.82 | 3.44 |
N:K3:S3 | 4.05 | 3.93 | 3.99 | 2.92 | 3.77 | 3.35 |
Average | 4.32 | 4.02 | 4.17 | 3.39 | 3.87 | 3.63 |
LSD0.01 | A–0.14, B–n.s., C–0.20, A × B–0.20, A × C–n.s., B × C–0.28, A × B × C–0.40 | |||||
Maize (Zea mays L.) aerial parts | ||||||
N:K:S | 1.99 | 2.00 | 2.00 | 1.83 | 1.85 | 1.84 |
N:K1:S1 | 1.40 | 1.56 | 1.48 | 1.59 | 1.31 | 1.45 |
N:K2:S2 | 1.34 | 1.46 | 1.40 | 1.46 | 1.15 | 1.31 |
N:K3:S3 | 1.33 | 1.43 | 1.38 | 1.33 | 1.09 | 1.21 |
Average | 1.52 | 1.61 | 1.56 | 1.55 | 1.35 | 1.45 |
LSD0.01 | A–0.06, B–n.s., C–0.09, A × B–0.09, A × C–n.s., B × C–n.s., A × B × C–0.18 |
N:K:S (C) | Soil Kind (A) | |||||
---|---|---|---|---|---|---|
Soil 1 | Soil 2 | |||||
Nitrogen Dose (B) | ||||||
N 1 | N 2 | Average | N 1 | N 2 | Average | |
Spring wheat (Triticum aestivum L.) grain | ||||||
N:K:S | 1.58 | 1.19 | 1.39 | 1.20 | 1.28 | 1.24 |
N:K1:S1 | 1.13 | 1.60 | 1.37 | 1.74 | 1.64 | 1.69 |
N:K2:S2 | 1.09 | 1.56 | 1.33 | 1.64 | 1.67 | 1.66 |
N:K3:S3 | 1.08 | 0.89 | 0.99 | 1.84 | 1.80 | 1.82 |
Average | 1.22 | 1.31 | 1.27 | 1.61 | 1.60 | 1.60 |
LSD0.01 | A–0.12, B–n.s., C–0.16, A × B–n.s., A × C–0.23, B × C–0.23, A × B × C–0.33 | |||||
Spring rape (Brassica napus L. var. napus) seed | ||||||
N:K:S | 4.49 | 2.19 | 3.34 | 4.42 | 3.89 | 4.16 |
N:K1:S1 | 3.82 | 2.07 | 2.95 | 3.85 | 4.36 | 4.11 |
N:K2:S2 | 2.53 | 2.13 | 2.33 | 3.27 | 4.56 | 3.92 |
N:K3:S3 | 1.96 | 2.96 | 2.46 | 3.99 | 4.00 | 4.00 |
Average | 3.20 | 2.34 | 2.77 | 3.88 | 4.20 | 4.04 |
LSD0.01 | A–0.21, B–0.21, C–0.30, A × B–0.30, A × C–0.42, B × C–0.42, A × B × C–0.57 | |||||
Maize (Zea mays L.) aerial parts | ||||||
N:K:S | 2.25 | 3.25 | 2.75 | 3.51 | 3.67 | 3.59 |
N:K1:S1 | 2.92 | 3.37 | 3.15 | 3.68 | 3.13 | 3.41 |
N:K2:S2 | 2.98 | 3.07 | 3.03 | 3.21 | 2.73 | 2.97 |
N:K3:S3 | 2.97 | 3.19 | 3.08 | 3.30 | 2.71 | 3.01 |
Average | 2.78 | 3.22 | 3.00 | 3.43 | 3.06 | 3.24 |
LSD0.01 | A–0.17, B–n.s., C–0.25, A × B–0.25, A × C–0.34, B × C–0.34, A × B × C–0.48 |
N:K:S (C) | Soil Kind (A) | |||||
---|---|---|---|---|---|---|
Soil 1 | Soil 2 | |||||
Nitrogen Dose (B) | ||||||
N 1 | N 2 | Average | N 1 | N 2 | Average | |
Spring wheat (Triticum aestivum L.) grain | ||||||
N:K:S | 0.243 | 0.281 | 0.262 | 0.388 | 0.413 | 0.401 |
N:K1:S1 | 0.328 | 0.353 | 0.341 | 0.669 | 0.328 | 0.499 |
N:K2:S2 | 0.339 | 0.289 | 0.314 | 0.748 | 0.293 | 0.521 |
N:K3:S3 | 0.318 | 0.320 | 0.319 | 1.220 | 1.054 | 1.137 |
Average | 0.307 | 0.311 | 0.309 | 0.756 | 0.522 | 0.639 |
LSD0.01 | A—0.020; B—0.020; C—0.028; A × B—0.028; A × C—0.040; B × C—0.040; A × B × C—0.057 | |||||
Spring rape (Brassica napus L. var. napus) seed | ||||||
N:K:S | 0.205 | 0.173 | 0.189 | 0.187 | 0.198 | 0.193 |
N:K1:S1 | 0.253 | 0.260 | 0.257 | 0.405 | 0.307 | 0.356 |
N:K2:S2 | 0.311 | 0.270 | 0.291 | 0.343 | 0.378 | 0.361 |
N:K3:S3 | 0.382 | 0.334 | 0.358 | 0.337 | 0.352 | 0.345 |
Average | 0.288 | 0.259 | 0.274 | 0.318 | 0.309 | 0.313 |
LSD0.01 | A—0.020; B—0.020; C—0.028; A × B—n.s.; A × C—0.039; B × C—n.s.; A × B × C—0.056 | |||||
Maize (Zea mays L.) aerial parts | ||||||
N:K:S | 0.202 | 0.251 | 0.227 | 0.161 | 0.223 | 0.192 |
N:K1:S1 | 0.592 | 0.459 | 0.526 | 0.649 | 0.524 | 0.587 |
N:K2:S2 | 0.778 | 0.675 | 0.727 | 0.681 | 0.600 | 0.641 |
N:K3:S3 | 0.801 | 0.920 | 0.861 | 0.827 | 0.676 | 0.752 |
Average | 0.593 | 0.576 | 0.585 | 0.580 | 0.506 | 0.543 |
LSD0.01 | A—0.023; B—0.023; C—0.032; A × B—0.032; A × C—0.046; B × C—0.046; A × B × C—0.064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brodowska, M.S.; Wyszkowski, M.; Karsznia, M. Application of Urea and Ammonium Nitrate Solution with Potassium Thiosulfate as a Factor Determining Macroelement Contents in Plants. Agronomy 2024, 14, 1097. https://doi.org/10.3390/agronomy14061097
Brodowska MS, Wyszkowski M, Karsznia M. Application of Urea and Ammonium Nitrate Solution with Potassium Thiosulfate as a Factor Determining Macroelement Contents in Plants. Agronomy. 2024; 14(6):1097. https://doi.org/10.3390/agronomy14061097
Chicago/Turabian StyleBrodowska, Marzena S., Mirosław Wyszkowski, and Monika Karsznia. 2024. "Application of Urea and Ammonium Nitrate Solution with Potassium Thiosulfate as a Factor Determining Macroelement Contents in Plants" Agronomy 14, no. 6: 1097. https://doi.org/10.3390/agronomy14061097
APA StyleBrodowska, M. S., Wyszkowski, M., & Karsznia, M. (2024). Application of Urea and Ammonium Nitrate Solution with Potassium Thiosulfate as a Factor Determining Macroelement Contents in Plants. Agronomy, 14(6), 1097. https://doi.org/10.3390/agronomy14061097