Melatonin Affects Leymus chinensis Aboveground Growth and Photosynthesis by Regulating Rhizome Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Plant Materials
2.2. Experimental Design and Treatment Management
2.3. Experimental and Analytical Procedures
2.3.1. Determination of Traits of Aboveground and Rhizomes
2.3.2. Determination of Photosynthetic Index
2.3.3. Statistical Analyses
3. Results
3.1. Aboveground Growth of Leymus chinensis
3.2. Rhizome Growth of Leymus chinensis
3.3. The Relationship between Rhizome Growth and Above Ground Growth
3.4. Photosynthesis of Different Leymus chinensis
3.5. The Relationship between Rhizome Growth and Photosynthesis
3.6. Effects of Exogenous Melatonin Treatment on Rhizome Growth
3.7. Effects of Exogenous Melatonin Treatment on Aboveground Growth
3.8. Effects of Exogenous Melatonin Treatment on Photosynthesis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, G.; Wang, D. History and implications of research on germplasm resources of Leymus chinensis. Chin. J. Grassl. 2022, 44, 1–9. [Google Scholar]
- Sun, H. Adaptive Strategies for Aboveground/Subsurface Growth of Leymus chinensis to Salinity and Mowing. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2022. [Google Scholar]
- Chen, S.; Huang, X.; Yan, X.; Liang, Y.; Wang, Y.; Li, X.; Peng, X.; Ma, X.; Zhang, L.; Cai, Y.; et al. Transcriptome Analysis in Sheepgrass (Leymus chinensis): A Dominant Perennial Grass of the Eurasian Steppe. PLoS ONE 2013, 8, e67974. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, C.; Liu, G. Suitable for the cultivation of high quality forage in the north Leymus chinensis. Aquac. Tech. Consult. 2009, 46. [Google Scholar] [CrossRef]
- Yang, X.; Xu, Z. Cows often use high-quality pasture Leymus chinensis. Grass Anim. Husb. 2010, 62. [Google Scholar] [CrossRef]
- Chang, C. Comprehensive Evaluation and Distribution Pattern of Agronomic Traits and Quality of Germplasm Resources of Leymus chinensis. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2020. [Google Scholar]
- Zhang, J. A preliminary study on rhizomes growth and regeneration dynamics of Leymus chinensis population. Chin. Grassl. Sci. 1988, 33–36. [Google Scholar]
- Zhang, J.; Li, X.; Tian, S.; Chen, G. Spiral expansion of the clonal population of Leymus chinensis. Acta Ecol. Sin. 2015, 35, 2509–2515. [Google Scholar]
- Bai, W.H.; Hou, X.; Wu, Z.; Ren, W.; Zhao, Q. Research progress on morphological plasticity of rhizome cloning of Leymus chinensis. Pratacultural Sci. 2019, 36, 821–834. [Google Scholar]
- Carles, S.; Lamhamedi, M.S.; Stowe, D.C.; Bernier, P.Y.; Veilleux, L.; Margolis, H.A. Relationships between frost hardiness, root growth potential, and photosynthesis of nursery-grown white spruce seedlings. Ann. For. Sci. 2011, 68, 1303–1313. [Google Scholar] [CrossRef]
- Humphries, E.C.; French, S.A.W. Photosynthesis in sugar beet depends on root growth. Planta 1969, 88, 87–90. [Google Scholar] [CrossRef]
- Sun, J.; Lu, N.; Xu, H.; Maruo, T.; Guo, S. Root Zone Cooling and Exogenous Spermidine Root-Pretreatment Promoting Lactuca sativa L. Growth and Photosynthesis in the High temperature Season. Front. Plant Sci. 2016, 7, 368. [Google Scholar] [CrossRef]
- Mauro, R.P.; Agnello, M.; Distefano, M.; Sabatino, L.; San Bautista Primo, A.; Leonardi, C.; Giuffrida, F. Chlorophyll Fluorescence, Photosynthesis and Growth of Tomato Plants as Affected by Long-Term Oxygen Root Zone Deprivation and Grafting. Agronomy 2020, 10, 137. [Google Scholar] [CrossRef]
- Jiao, Y.; Yang, Q.; Liu, L.; Pang, J.; Wang, X.; Zhou, Q.; Wang, L.; Huang, X. Endocytosis of root cells induced by low-dose lanthanum(III) can promote seedling photomorphogenesis and leaf photosynthesis. Plant Soil 2023, 488, 637–651. [Google Scholar] [CrossRef]
- Miao, Y.; Luo, X.; Gao, X.; Wang, W.; Li, B.; Hou, L. Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings. Sci. Hortic. 2020, 272, 109577. [Google Scholar] [CrossRef]
- Fan, Y.; Li, L.; Guo, F.; Hou, X. Tolerance of Forage Grass to Abiotic Stresses by Melatonin Application: Effects, Mechanisms, and Progresses. Agriculture 2024, 14, 171. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, G.Z.; Dou, J.H.; Niu, Y.; Li, R.R.; An, W.W.; Tang, Z.Q.; Yu, J.H. Melatonin Modulates Tomato Root Morphology by Regulating Key Genes and Endogenous Hormones. Plants 2024, 13, 383. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Singh, S.K.; Mathpal, B.; Verma, K.K.; Garg, V.K.; Bhattacharyya, M.; Bhatt, R. The Biosynthesis, Mechanism of Action, and Physiological Functions of Melatonin in Horticultural Plants: A Review. Horticulturae 2023, 9, 913. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, B.; Zhang, H.J.; Weeda, S.; Yang, C.; Yang, Z.C.; Ren, S.; Guo, Y.D. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J. Pineal Res. 2013, 54, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Byeon, Y.; Back, K. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. J. Pineal Res. 2014, 56, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Debnath, B.; Hussain, M.; Irshad, M.; Mitra, S.; Li, M.; Liu, S.; Qiu, D. Exogenous Melatonin Mitigates Acid Rain Stress to Tomato Plants through Modulation of Leaf Ultrastructure, Photosynthesis and Antioxidant Potential. Molecules 2018, 23, 388. [Google Scholar] [CrossRef]
- Ahmad, I.; Zhu, G.; Zhou, G.; Liu, J.; Younas, M.U.; Zhu, Y. Melatonin Role in Plant Growth and Physiology under Abiotic Stress. Int. J. Mol. Sci. 2023, 24, 8759. [Google Scholar] [CrossRef]
- Xia, H.; Yang, C.; Liang, Y.; He, Z.; Guo, Y.; Lang, Y.; Wei, J.; Tian, X.; Lin, L.; Deng, H.; et al. Melatonin and arbuscular mycorrhizal fungi synergistically improve drought toleration in kiwifruit seedlings by increasing mycorrhizal colonization and nutrient uptake. Front. Plant Sci. 2022, 13, 1073917. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lv, Q.; Tian, J.; Zhang, Y.; Jiang, C.; Zhang, W. The high genetic yield of Xinjiang cotton is associated with improvements in boll-leaf system photosynthesis. Field Crops Res. 2023, 304, 109176. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, X.; Dong, Y.; Zhang, F.; He, Q.; Chen, J.; Zhu, S.; Zhao, T. Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis, scavenging reactive oxygen species and coordinating with phytohormone signal pathways. Ind. Crops Prod. 2021, 169, 113671. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, S.; Ding, F. Melatonin Mitigates Chilling-Induced Oxidative Stress and Photosynthesis Inhibition in Tomato Plants. Antioxidants 2020, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Song, Y. Effects of Melatonin Pretreatment on the Growth of Lespedezadaurica under NaCl Stress. Master’s Thesis, Shanxi Agricultural University, Taiyuan, China, 2022. [Google Scholar]
- Hernandez-Ruiz, J.; Cano, A.; Arnao, M.B. Melatonin: A growth-stimulating compound present in lupin tissues. Planta 2004, 220, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Li, H.; Song, X. Seed priming with melatonin effects on seed germination and seedling growth in maize under salinity stress. Pak J Bot 2016, 48, 1345–1352. [Google Scholar]
- Kamran, M.; Wennan, S.; Ahmad, I.; Xiangping, M.; Wenwen, C.; Xudong, Z.; Siwei, M.; Khan, A.; Qingfang, H.; Tiening, L. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region. Sci. Rep. 2018, 8, 4818. [Google Scholar] [CrossRef] [PubMed]
- Pelagio-Flores, R.; Muñoz-Parra, E.; Ortiz-Castro, R.; López-Bucio, J. Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J. Pineal Res. 2012, 53, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Jahan, M.S.; Guo, S.; Baloch, A.R.; Sun, J.; Shu, S.; Wang, Y.; Ahammed, G.J.; Kabir, K.; Roy, R. Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol. Environ. Saf. 2020, 197, 110593. [Google Scholar] [CrossRef]
- Zhu, L.; Li, A.; Sun, H.; Li, P.; Liu, X.; Guo, C.; Zhang, Y.; Zhang, K.; Bai, Z.; Dong, H.; et al. The effect of exogenous melatonin on root growth and lifespan and seed cotton yield under drought stress. Ind. Crops Prod. 2023, 204, 117344. [Google Scholar] [CrossRef]
- Altaf, M.A.; Shahid, R.; Ren, M.-X.; Naz, S.; Altaf, M.M.; Khan, L.U.; Tiwari, R.K.; Lal, M.K.; Shahid, M.A.; Kumar, R. Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants 2022, 11, 309–319. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, B.; Zhang, G.; Li, J.; Wang, Y.; Meng, Y.; Zhou, Z. Effect of soil salinity, soil drought, and their combined action on the biochemical characteristics of cotton roots. Acta Physiol. Plant. 2013, 35, 3167–3179. [Google Scholar] [CrossRef]
- Zakaria, N.I.; Ismail, M.R.; Awang, Y.; Megat Wahab, P.E.; Berahim, Z. Effect of Root Restriction on the Growth, Photosynthesis Rate, and Source and Sink Relationship of Chilli (Capsicum annuum L.) Grown in Soilless Culture. BioMed Res. Int. 2020, 2020, 2706937. [Google Scholar] [CrossRef]
- Thomas, R.B.; Strain, B.R. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. Plant Physiol. 1991, 96, 627–634. [Google Scholar] [CrossRef]
- Yildirim, E.; Ekinci, M.; Turan, M.; Agar, G.; Ors, S.; Dursun, A.; Kul, R.; Akgul, G. Physiological and Biochemical Changes of Pepper Cultivars Under Combined Salt and Drought Stress. Gesunde Pflanz. 2022, 74, 675–683. [Google Scholar] [CrossRef]
- Shi, K.; Ding, X.; Dong, D.; Zhou, Y.; Yu, J. Root restriction-induced limitation to photosynthesis in tomato (Lycopersicon esculentum Mill.) leaves. Sci. Hortic. 2008, 117, 197–202. [Google Scholar] [CrossRef]
- Dubik, S.P.; Krizek, D.T.; Stimart, D.P. Influence of root zone restriction on mineral element concentration, water potential, chlorophyll concentration, and partitioning of assimilate in spreading euonymus (E. Kiautschovica Loes. ‘Sieboldiana’). J. Plant Nutr. 1990, 13, 677–699. [Google Scholar] [CrossRef]
- Khan, M.N.; Zhang, J.; Luo, T.; Liu, J.; Rizwan, M.; Fahad, S.; Xu, Z.; Hu, L. Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification: Antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration. Ind. Crops Prod. 2019, 140, 111597. [Google Scholar] [CrossRef]
- Smolikova, G.; Dolgikh, E.; Vikhnina, M.; Frolov, A.; Medvedev, S. Genetic and hormonal regulation of chlorophyll degradation during maturation of seeds with green embryos. Int. J. Mol. Sci. 2017, 18, 1993. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Cao, S.; Xie, K.; Chi, Z.; Wang, J.; Wang, H.; Wei, Y.; Shao, X.; Zhang, C.; Xu, F. Melatonin delays yellowing of broccoli during storage by regulating chlorophyll catabolism and maintaining chloroplast ultrastructure. Postharvest Biol. Technol. 2021, 172, 111378. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Wang, W.; Sun, Y. Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 2016, 54, 19–27. [Google Scholar] [CrossRef]
- Han, Q.-H.; Huang, B.; Ding, C.-B.; Zhang, Z.-W.; Chen, Y.-E.; Hu, C.; Zhou, L.-J.; Huang, Y.; Liao, J.-Q.; Yuan, S. Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings. Front. Plant Sci. 2017, 8, 785. [Google Scholar] [CrossRef]
- Huang, B.; Chen, Y.-E.; Zhao, Y.-Q.; Ding, C.-B.; Liao, J.-Q.; Hu, C.; Zhou, L.-J.; Zhang, Z.-W.; Yuan, S.; Yuan, M. Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Front. Plant Sci. 2019, 10, 677. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Xu, W.; Liu, A.; Chen, S. COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato. Front. Plant Sci. 2018, 9, 386258. [Google Scholar] [CrossRef]
Leymus chinensis | Longitudes | Latitude | Altitude/m | Location |
---|---|---|---|---|
LC2 | 48°32′ | 119°41′ | 778 | Ewenke Autonomous Banner, Hulunbeier City, Inner Mongolia |
LC13 | 46°35′ | 121°26′ | 577 | Horqin Yuyizen Banner, Xing’anmeng, Inner Mongolia |
LC14 | 45°50′ | 120°27′ | 934 | Horqin Right Wing Middle Banner, Xing’an League, Inner Mongolia |
LC19 | 47°33′ | 124°14′ | 152 | Fuyu County, Qiqihar City, Heilongjiang Province, China |
LC23 | 44°51′ | 118°37′ | 1016 | Xiwuzhumqin Banner, Xilingol League, Inner Mongolia |
LC26 | 45°38′ | 117°17′ | 1045 | Dongwuzhumqin Banner, Xilin Gol League, Inner Mongolia |
LC27 | 47°40′ | 106°45′ | 1349 | Central Province of Mongolia |
LC44 | 41°37′ | 109°47′ | 1590 | Darhan Maoming’an Union Banner, Baotou, Inner Mongolia |
LC62 | 35°31′ | 113°11′ | 1215 | Lingchuan County, Jincheng City, Shanxi Province |
Number | Type of Traits | Name of Traits | Abbreviation | Unit | Method |
---|---|---|---|---|---|
1 | Aboveground | Plant height | PH | cm | The height from the ground to the highest point of the plant (after the leaves are vertical) |
2 | Stem thickness | ST | mm | Rhizome diameter | |
3 | Stem length | SL | cm | The length from base to tip of the stem | |
4 | Number of leaf | NL | Healthy intact leaf count | ||
5 | Leaf length | LL | cm | The length of the central healthy intact leaf blade, from neck to tip | |
6 | Leaf width | LW | mm | Central healthy intact blade, measuring the width at the widest point | |
7 | Leaf length × leaf width | LL × LW | cm2 | LL × LW | |
8 | Underground | Root length | RL | cm | Distance from tiller node to terminal bud diameter |
9 | Root thickness | RT | mm | The diameter of the rhizome | |
10 | Number of extravaginal ramets | NER | The number of seeds outside the mother cluster | ||
11 | Clonal growth rate | CGR | % | Number of rhizomes/days of clone growth |
Leymus chinensis | PH/cm | ST/mm | SL/cm | LL/cm | LW/mm | NL | LL × LW/cm2 |
---|---|---|---|---|---|---|---|
LC2 | 32.60 ± 1.66 c | 5.41 ± 0.24 cd | 2.93 ± 0.40 abc | 24.03 ± 0.50 de | 7.3 ± 0.06 ab | 6.62 ± 0.07 d | 17.64 ± 1.71 cd |
LC13 | 34.2 ± 2.08 c | 4.84 ± 0.16 de | 2.00 ± 0.62 d | 20.03 ± 0.92 f | 7.2 ± 0.08 ab | 6.3 ± 0.10 de | 14.35 ± 1.50 de |
LC14 | 46.59 ± 6.90 a | 3.65 ± 0.27 f | 2.00 ± 0.50 d | 30.87 ± 0.40 b | 9.2 ± 0.14 a | 9.34 ± 0.32 b | 28.33 ± 4.72 a |
LC19 | 50.47 ± 2.51 a | 6.9 ± 0.11 a | 3.33 ± 0.29 ab | 28.33 ± 0.97 bc | 7.3 ± 0.08 ab | 10.41 ± 0.19 a | 20.77 ± 2.17 bc |
LC23 | 40.43 ± 1.76 b | 5.67 ± 0.57 bc | 3.63 ± 0.06 a | 22.10 ± 3.72 ef | 4.7 ± 0.15 c | 8.17 ± 0.29 c | 9.95 ± 1.97 ef |
LC26 | 34.21 ± 1.39 c | 5.28 ± 0.33 cd | 2.30 ± 0.30 cd | 26.27 ± 1.37 cd | 6.8 ± 0.10 b | 6.14 ± 0.05 e | 18.01 ± 3.46 cd |
LC27 | 32.16 ± 1.79 c | 4.53 ± 0.36 e | 2.67 ± 0.58 bcd | 23.83 ± 1.37 de | 4.8 ± 0.18 c | 5.2 ± 0.17 f | 11.47 ± 3.94 ef |
LC44 | 45.93 ± 3.39 a | 6.08 ± 0.28 b | 2.58 ± 0.38 bcd | 33.67 ± 0.71 a | 7.0 ± 0.05 b | 9.53 ± 0.25 b | 23.57 ± 0.50 ab |
LC62 | 34.66 ± 1.16 c | 6.12 ± 0.39 b | 2.10 ± 0.36 d | 24.33 ± 1.16 de | 3.0 ± 0.10 c | 5.43 ± 0.40 f | 7.38 ± 2.77 f |
Leymus chinensis | Treatment | PH/cm | ST/mm | SLcm | LLcm | LWmm | NL | LL × LW/cm2 |
---|---|---|---|---|---|---|---|---|
LC 2 | CK | 44.53 ± 4.72 c | 1.86 ± 0.19 ab | 8.35 ± 0.13 d | 25.10 ± 2.58 b | 7.24 ± 0.51 b | 3.75 ± 0.29 ab | 18.17 ± 1.765 c |
100 µmol/L | 47.91 ± 3.71 bc | 1.86 ± 0.13 ab | 11.30 ± 0.50 a | 25.53 ± 1.35 b | 9.33 ± 0.50 a | 4.38 ± 0.63 a | 23.98 ± 1.321 b | |
200 µmol/L | 58.83 ± 8.39 a | 2.09 ± 0.13 a | 11.40 ± 0.68 a | 31.35 ± 2.36 a | 10.23 ± 0.83 a | 4.00 ± 0.41 ab | 31.95 ± 1.311 a | |
300 µmol/L | 54.53 ± 4.03 ab | 1.74 ± 0.37 b | 9.55 ± 0.48 c | 26.95 ± 2.08 b | 8.02 ± 1.11 b | 3.63 ± 0.25 b | 21.60 ± 3.314 bc | |
400 µmol/L | 44.68 ± 1.36 c | 1.82 ± 0.19 ab | 10.55 ± 0.55 b | 26.75 ± 1.80 b | 7.49 ± 0.91 b | 3.75 ± 0.29 ab | 20.15 ± 3.601 c | |
500 µmol/L | 45.95 ± 4.54 c | 1.90 ± 0.16 ab | 10.50 ± 0.22 b | 24.98 ± 2.42 b | 7.36 ± 0.72 b | 3.00 ± 0.41 c | 18.26 ± 0.612 c | |
LC19 | CK | 56.55 ± 1.11 b | 1.52 ± 0.15 e | 7.30 ± 0.85 c | 7.18 ± 1.10 c | 5.25 ± 0.74 b | 5.50 ± 0.58 a | 3.72 ± 0.292 d |
100 µmol/L | 64.70 ± 3.46 a | 2.33 ± 0.17 a | 13.60 ± 0.34 a | 29.48 ± 2.29 b | 5.07 ± 0.33 b | 5.00 ± 0.41 ab | 15.05 ± 1.153 c | |
200 µmol/L | 58.28 ± 1.83 b | 2.08 ± 0.04 b | 10.33 ± 0.91 b | 41.13 ± 1.26 a | 7.44 ± 0.39 a | 5.50 ± 0.58 a | 30.62 ± 2.465 a | |
300 µmol/L | 56.55 ± 1.59 b | 1.97 ± 0.06 bc | 9.53 ± 0.38 b | 32.10 ± 5.04 b | 7.04 ± 0.84 a | 3.50 ± 0.58 c | 22.65 ± 4.734 b | |
400 µmol/L | 53.20 ± 0.22 c | 1.74 ± 0.19 de | 7.77 ± 0.76 c | 37.93 ± 3.12 a | 5.80 ± 0.40 b | 0.50 bc | 21.91 ± 1.295 b | |
500 µmol/L | 50.08 ± 2.63 d | 1.77 ± 0.18 cd | 7.95 ± 0.68 c | 30.08 ± 3.60 b | 7.02 ± 0.73 a | 4.00 ± 0.41 c | 21.14 ± 3.707 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Li, L.; Ma, T.; Hou, X. Melatonin Affects Leymus chinensis Aboveground Growth and Photosynthesis by Regulating Rhizome Growth. Agronomy 2024, 14, 1151. https://doi.org/10.3390/agronomy14061151
Fan Y, Li L, Ma T, Hou X. Melatonin Affects Leymus chinensis Aboveground Growth and Photosynthesis by Regulating Rhizome Growth. Agronomy. 2024; 14(6):1151. https://doi.org/10.3390/agronomy14061151
Chicago/Turabian StyleFan, Yufeng, Lingling Li, Tao Ma, and Xiangyang Hou. 2024. "Melatonin Affects Leymus chinensis Aboveground Growth and Photosynthesis by Regulating Rhizome Growth" Agronomy 14, no. 6: 1151. https://doi.org/10.3390/agronomy14061151
APA StyleFan, Y., Li, L., Ma, T., & Hou, X. (2024). Melatonin Affects Leymus chinensis Aboveground Growth and Photosynthesis by Regulating Rhizome Growth. Agronomy, 14(6), 1151. https://doi.org/10.3390/agronomy14061151