Consideration of the Disease Complexes, the Missing Link to Correctly Analyze the Impact of Intercropping on Disease Development
Abstract
:1. Introduction
2. Trophic Status and Biological Characteristics of Foliar Pathogens
3. Drivers of the Epidemic Dynamics in the Sole Crop Canopy
4. Coinfection and Pathogen Interactions
5. How Intercropping Will Modify the Epidemic Dynamics of Foliar Diseases
5.1. Direct Effect Associated with Dilution and Barrier Effects
5.2. Direct Effect Associated with Defense Induction
5.3. Indirect Effect Associated with a Change in Foliar Receptivity
5.4. Indirect Effect Associated with Microclimate Change
6. Pathogen Interactions in an Intercropping Context
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khoury, C.K.; Bjorkman, A.D.; Dempewolf, H.; Ramirez-Villegas, J.; Guarino, L.; Jarvis, A.; Rieseberg, L.H.; Struik, P.C. Increasing Homogeneity in Global Food Supplies and the Implications for Food Security. Proc. Natl. Acad. Sci. USA 2014, 111, 4001–4006. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D. Global Environmental Impacts of Agricultural Expansion: The Need for Sustainable and Efficient Practices. Proc. Natl. Acad. Sci. USA 1999, 96, 5995. [Google Scholar] [CrossRef]
- Gliessman, S.R. Agroecosystem Sustainability: Developing Practical Strategies; CRC Press: Boca Raton, FL, USA, 2001. Available online: https://trove.nla.gov.au/version/46552792 (accessed on 1 March 2024).
- Bourguet, D.; Guillemaud, T. The Hidden and External Costs of Pesticide Use. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 19, pp. 35–120. [Google Scholar] [CrossRef]
- McDonald, B.A.; Stukenbrock, E.H. Rapid Emergence of Pathogens in Agro-Ecosystems: Global Threats to Agricultural Sustainability and Food Security. Philos. Trans. R. Soc. Lond. B 2016, 371, 20160026. [Google Scholar] [CrossRef] [PubMed]
- Frison, E.A.; Cherfas, J.; Hodgkin, T. Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security. Sustainability 2011, 3, 238–253. [Google Scholar] [CrossRef]
- Renard, D.; Tilman, D. National Food Production Stabilized by Crop Diversity. Nature 2019, 571, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.J.; Veseth, R. Wheat Health Management; APS Press: Saint Paul, MN, USA, 1991. [Google Scholar]
- Letourneau, D.K.; Armbrecht, I.; Rivera, B.S.; Lerma, J.M.; Carmona, E.J.; Daza, M.C.; Escobar, S.; Galindo, V.; Gutiérrez, C.; López, S.D.; et al. Does Plant Diversity Benefit Agroecosystems? A Synthetic Review. Ecol. Appl. 2011, 21, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, P.; Pellerin, S.; Nesme, T. Comparing Crop Rotations between Organic and Conventional Farming. Sci. Rep. 2017, 7, 13761. [Google Scholar] [CrossRef] [PubMed]
- Finckh, M.R. Integration of Breeding and Technology into Diversification Strategies for Disease Control in Modern Agriculture. In Sustainable Disease Management in a European Context; Collinge, D.B., Munk, L., Cooke, B.M., Eds.; Springer: Cham, Swizerland, 2008; pp. 399–409. [Google Scholar] [CrossRef]
- Bonnin, I.; Bonneuil, C.; Goffaux, R.; Montalent, P.; Goldringer, I. Explaining the Decrease in the Genetic Diversity of Wheat in France over the 20th Century. Agric. Ecosyst. Environ. 2014, 195, 183–192. [Google Scholar] [CrossRef]
- Malézieux, E. Designing Cropping Systems from Nature. Agron. Sustain. Dev. 2012, 2, 15–29. [Google Scholar] [CrossRef]
- Beillouin, D.; Ben-Ari, T.; Makowski, D. Evidence Map of Crop Diversification Strategies at the Global Scale. Environ. Res. Lett. 2019, 14, 123001. [Google Scholar] [CrossRef]
- Aizen, M.A.; Aguiar, S.; Biesmeijer, J.C.; Garibaldi, L.A.; Inouye, D.W.; Jung, C.; Martins, D.J.; Medel, R.; Morales, C.L.; Ngo, H.; et al. Global Agricultural Productivity Is Threatened by Increasing Pollinator Dependence without a Parallel Increase in Crop Diversification. Glob. Change Biol. 2019, 25, 3516–35127. [Google Scholar] [CrossRef] [PubMed]
- Schott, C.; Mignolet, C.; Meynard, J.M. Les Oléoprotéagineux Dans Les Systèmes de Culture: Évolution Des Assolements et Des Successions Culturales Depuis Les Années 1970 Dans Le Bassin de La Seine. OCL 2010, 17, 276–291. [Google Scholar] [CrossRef]
- Brisson, N.; Gate, P.; Gouache, D.; Charmet, G.; Oury, F.-X.; Huard, F. Why Are Wheat Yields Stagnating in Europe? A Comprehensive Data Analysis for France. Field Crops Res. 2010, 119, 201–212. [Google Scholar] [CrossRef]
- Newton, A.C. Exploitation of Diversity within Crops—The Key to Disease Tolerance? Front. Plant Sci. 2016, 7, 665. [Google Scholar] [CrossRef] [PubMed]
- Gaudio, N.; Escobar-Gutiérrez, A.J.; Casadebaig, P.; Evers, J.B.; Gérard, F.; Louarn, G.; Colbach, N.; Munz, S.; Launay, M.; Marrou, H.; et al. Knowledge and Future Research Opportunities for Modeling Annual Crop Mixtures. A Review. Agron. Sustain. Dev. 2019, 39, 20. [Google Scholar] [CrossRef]
- Litrico, I.; Violle, C. Diversity in Plant Breeding: A New Conceptual Framework. Trends Plant Sci. 2015, 20, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Anten, N.P.R.; Vermeulen, P.J. Tragedies and Crops: Understanding Natural Selection To Improve Cropping Systems. Trends Ecol. Evol. 2016, 31, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Barot, S.; Allard, V.; Cantarel, A.; Enjalbert, J.; Gauffreteau, A.; Goldringer, I.; Lata, J.-C.; Le Roux, X.; Niboyet, A.; Porcher, E. Designing Mixtures of Varieties for Multifunctional Agriculture with the Help of Ecology. A Review. Agron. Sustain. Dev. 2017, 37, 13. [Google Scholar] [CrossRef]
- Borg, J.; Kiær, L.P.; Lecarpentier, C.; Goldringer, I.; Gauffreteau, A.; Saint-Jean, S.; Barot, S.; Enjalbert, J. Unfolding the Potential of Wheat Cultivar Mixtures: A Meta-Analysis Perspective and Identification of Knowledge Gaps. Field Crops Res. 2018, 221, 298–313. [Google Scholar] [CrossRef]
- Petit, S.; Cordeau, S.; Chauvel, B.; Bohan, D.; Guillemin, J.-P.; Steinberg, C. Biodiversity-Based Options for Arable Weed Management. A Review. Agron. Sustain. Dev. 2018, 38, 48. [Google Scholar] [CrossRef]
- Vidal, T.; Gigot, C.; de Vallavieille-Pope, C.; Huber, I.; Saint-Jean, S. Contrasting Plant Height Can Improve the Control of Rain-Borne Diseases in Wheat Cultivar Mixture: Modelling Splash Dispersal in 3-D Canopies. Ann. Bot. 2018, 121, 1299–1308. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, R.; Jarvis, D.I.; Gemmill-Herren, B. The Utility of Crop Genetic Diversity in Maintaining Ecosystem Services. Agric. Ecosyst. Environ. 2008, 123, 261–270. [Google Scholar] [CrossRef]
- Hamilton, W.D. The Genetical Evolution of Social Behaviour. I. J. Theor. Biol. 1964, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, W.D. The Genetical Evolution of Social Behaviour. II. J. Theor. Biol. 1964, 7, 17–52. [Google Scholar] [CrossRef] [PubMed]
- Karban, R.; Shiojiri, K.; Ishizaki, S.; Wetzel, W.C.; Evans, R.Y. Kin Recognition Affects Plant Communication and Defence. Proc. R. Soc. Lond. B 2013, 280, 20123062. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.J.W.; Hajiboland, R.; Bahrami-Rad, S.; Moradtalab, N.; Anten, N.P.R. Presence of Belowground Neighbors Activates Defense Pathways at the Expense of Growth in Tobacco Plants. Front. Plant Sci. 2019, 10, 751. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Morel, J.-B. Molecular Mechanisms Underlying Microbial Disease Control in Intercropping. Mol. Plant-Microbe Interact. 2019, 32, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Subrahmaniam, H.J.; Libourel, C.; Journet, E.-P.; Morel, J.-B.; Muños, S.; Niebel, A.; Raffaele, S.; Roux, F. The Genetics Underlying Natural Variation of Plant-Plant Interactions, a Beloved but Forgotten Member of the Family of Biotic Interactions. Plant J. 2018, 93, 747–770. [Google Scholar] [CrossRef] [PubMed]
- Biedrzycki, M.L.; Venkatachalam, L.; Harsh, P.B. Transcriptome Analysis of Arabidopsis thaliana Plants in Response to Kin and Stranger Recognition. Plant Signal. Behav. 2011, 6, 1515–1524. [Google Scholar] [CrossRef]
- Hu, L.; Robert, C.A.M.; Cadot, S.; Zhang, X.; Ye, M.; Li, B.; Manzo, D.; Chervet, N.; Steinger, T.; van der Heijden, M.G.A.; et al. Root Exudate Metabolites Drive Plant-Soil Feedbacks on Growth and Defense by Shaping the Rhizosphere Microbiota. Nat. Commun. 2018, 9, 2738. [Google Scholar] [CrossRef]
- Mikaberidze, A.; McDonald, B.A.; Bonhoeffer, S. Developing Smarter Host Mixtures to Control Plant Disease. Plant Pathol. 2015, 64, 996–1004. [Google Scholar] [CrossRef]
- Gandon, S.; Michalakis, Y. Local Adaptation, Evolutionary Potential and Host-Parasite Coevolution: Interactions between Migration, Mutation, Population Size and Generation Time: Local Adaptation and Coevolution. J. Evol. Biol. 2002, 15, 451–462. [Google Scholar] [CrossRef]
- Read, A.F.; Taylor, L.H. The ecology of genetically diverse infections. Science 2001, 292, 1099–1102. [Google Scholar] [CrossRef] [PubMed]
- Balmer, O.; Tanner, M. Prevalence and implications of multiple-strain infections. Lancet Infect. Dis. 2011, 11, 868–878. [Google Scholar] [CrossRef] [PubMed]
- Tollenaere, C.; Susi, H.; Laine, A.L. Evolutionary and Epidemiological Implications of Multiple Infection in Plants. Trends Plant Sci. 2016, 21, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Agrios, G.N. Plant Pathology, 5th ed.; Academic Press: San Diego, CA, USA, 2005. [Google Scholar]
- Doehlemann, G.; Ökmen, B.; Zhu, W.; Sharon, A. Plant pathogenic fungi. Microbiol. Spectrum 2017, 5, FUNK-0023-2016. [Google Scholar] [CrossRef]
- Petersen, R.H. The rust fungus life cycle. Bot. Rev. 1974, 40, 453–513. [Google Scholar] [CrossRef]
- Mengiste, T. Plant immunity to necrotrophs. Annu. Rev. Phytopathol. 2012, 50, 267–294. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.A.; Talbot, N.J. Under pressure: Investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 2009, 7, 185–195. [Google Scholar] [CrossRef]
- Talhinhas, P.; Baroncelli, R. Colletotrichum species and complexes: Geographic distribution, host range and conservation status. Fungal Divers. 2021, 110, 109–198. [Google Scholar] [CrossRef]
- Tudzynski, P.; Scheffer, J. Claviceps purpurea: Molecular aspects of a unique pathogenic lifestyle. Mol. Plant Pathol. 2004, 5, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, R.R.; Bushnell, W.R.; Dik, A.J.; Carver, T.L.W. (Eds.) The Powdery Mildews: A Comprehensive Treatise; APS Press: Saint Paul, MN, USA, 2002. [Google Scholar]
- Willocquet, L.; Savary, S.; Fernandez, L.; Elazegui, F.A.; Castilla, N.; Zhu, D. Structure and validation of RICEPEST, a production situation-driven, crop growth model simulating rice yield response to multiple pest injuries for tropical Asia. Ecol. Model. 2002, 153, 247–268. [Google Scholar] [CrossRef]
- Plantegenest, M.; Le May, C.; Fabre, F. Landscape epidemiology of plant diseases. J. Roy. Soc. Interface 2007, 4, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Fitt, B.D.L.; Huang, Y.J.; van den Bosch, F.; West, J.S. Coexistence of related pathogen species on arable crops in space and time. Annu. Rev. Phytopathol. 2006, 44, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Pariaud, B.; Ravigné, V.; Halkett, F.; Goyeau, H.; Carlier, J.; Lannou, C. Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathol. 2009, 58, 409–424. [Google Scholar] [CrossRef]
- Barrett, L.G.; Thrall, P.H.; Burdon, J.J.; Linde, C.C. Life history determines genetic structure and evolutionary potential of host–parasite interactions. Trends Ecol. Evol. 2008, 23, 678–685. [Google Scholar] [CrossRef] [PubMed]
- White, J. The plant as a metapopulation. Ann. Rev. Ecol. Syst. 1979, 10, 109–145. [Google Scholar] [CrossRef]
- Barthelemy, D.; Cargaglio, Y. Modélisation et simulation de l’architecture des arbres. For. Enterp. 1991, 73, 28–39. [Google Scholar]
- De Reffye, P.; Houllier, F.; Blaise, F.; Barthelemy, D.; Dauzat, J.; Auclair, D. A model simulating above- and below-ground tree architecture with agroforestry applications. Agrofor. Syst. 1995, 30, 175–197. [Google Scholar] [CrossRef]
- Begon, M.; Harper, J.L.; Towsend, C.R. Ecology, Individuals, Populations and Communities; Blackwell Science: London, UK, 2006. [Google Scholar]
- Al-Naimi, F.A.; Garrett, K.A.; Bockus, W.W. Competition, facilitation, and niche differentiation in two foliar pathogens. Oecologia 2005, 143, 449–457. [Google Scholar] [CrossRef]
- Pianka, E.R. Competition and Niche Theory in Theoretical Ecology; May, R.M., Ed.; Sinauer: Sunderland, MA, USA, 1981; pp. 167–196. [Google Scholar]
- Alley, T.R. Competition theory, evolution, and the concept of an ecological niche. Acta Biotheor. 1982, 31, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Amarasekare, P.; Hoopes, M.F.; Mouquet, N.; Holyoa, M. Mechanisms of coexistence in competitive metacommunities. Am. Nat. 2004, 164, 310–326. [Google Scholar] [CrossRef] [PubMed]
- Mideo, N. Parasite adaptations to within-host competition. Trends Parasitol. 2009, 25, 261–268. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, R.H. Geographical Ecology; Harper & Row: New York, NY, USA, 1972. [Google Scholar]
- Putman, R.J. Competition and coexistence in a multi-species grazing system. Acta Theriol. 1986, 31, 271–291. [Google Scholar] [CrossRef]
- Hellard, E.; Fouchet, D.; Vavre, F.; Pontier, D. Parasite–parasite interactions in the wild: How to detect them? Trends Parasitol. 2015, 31, 640–652. [Google Scholar] [CrossRef] [PubMed]
- Susi, H.; Vale, P.F.; Laine, A.L. Host genotype and coinfection modify the relationship of within and between host transmission. Am. Nat. 2015, 186, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Dutt, A.; Rault, A.; Andrivon, D.; Jumel, S.; Le Roy, G.; Baranger, A.; Le May, C. Competition and facilitation among fungal plant parasites affect their life-history traits. OIKOS 2021, 130, 652–667. [Google Scholar] [CrossRef]
- Fodor, E. Ecological niche of plant pathogen. Ann. For. Res. 2011, 54, 3–21. [Google Scholar]
- Ploetz, R.C. Black Sigatoka of Banana. The Plant Health Instructor. 2001. Available online: https://www.apsnet.org/edcenter/apsnetfeatures/Pages/BlackSigatoka.aspx (accessed on 15 February 2024).
- Balesdent, M.H.; Fudal, I.; Ollivier, B.; Bally, P.; Grandaubert, J.; Eber, F.; Chèvre, A.M.; Leflon, M.; Rouxel, T. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence toward Brassica rapa. New Phytol. 2013, 198, 887–898. [Google Scholar] [CrossRef]
- Tivoli, B.; Banniza, S. Comparison of the epidemiology of ascochyta blights on grain legumes. Eur. J. Plant Pathol. 2007, 119, 59–76. [Google Scholar] [CrossRef]
- Kus, J.V.; Zaton, K.; Sarkar, R.; Cameron, R.K. Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell 2002, 14, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.E. Relationships between onion leaf age and susceptibility to Alternaria porri. Plant Dis. 1983, 67, 284–286. [Google Scholar] [CrossRef]
- Reuveni, M.; Tuzun, S.; Cole, J.S.; Siegel, M.R.; Kuć, J. The effects of plant age and leaf position on the susceptibility of tobacco to blue mould caused by Peronospora tabacina. Phytopathology 1986, 76, 455–458. [Google Scholar] [CrossRef]
- Pretorius, Z.A.; Rijkenberg, F.H.J.; Wilcoxson, R.D. Effects of growth stage, leaf position and temperature on adult-plant resistance of wheat infected by Puccinia recondita f.sp. tritici. Plant Pathol. 1988, 37, 36–44. [Google Scholar] [CrossRef]
- Roumen, E.C.; Bonman, J.M.; Parlevliet, J.E. Leaf age related partial resistance to Pyricularia oryzae in tropical lowland rice cultivars as measured by the number of sporulating lesions. Phytopathology 1992, 82, 1414–1417. [Google Scholar] [CrossRef]
- Le May, C.; Potage, G.; Andrivon, D.; Tivoli, B.; Outreman, Y. Plant disease complex: Antagonism and synergism between pathogens of the Ascochyta blight complex on pea. J. Phytopathol. 2009, 157, 715–721. [Google Scholar] [CrossRef]
- Boixel, A.L.; Chelle, M.; Suffert, F. Patterns of thermal adaptation in a globally distributed plant pathogen: Local diversity and plasticity reveal two-tier dynamics. Ecol. Evol. 2022, 12, e8515. [Google Scholar] [CrossRef]
- Khokhar, M.K.; Hooda, K.S.; Sharma, S.S.; Singh, V. Post flowering stalk rot complex of maize—Present status and future prospects. Maydica 2014, 59, 226–242. [Google Scholar]
- Pfordt, A.; Ramos Romero, L.; Schiwek, S.; Karlovsky, P.; von Tiedemann, A. Impact of environmental conditions and agronomic practices on the prevalence of Fusarium species associated with Ear- and Stalk Rot in Maize. Pathogens 2020, 9, 236. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Moffat, C.S.; Lopez-Ruiz, F.J.; Gibberd, M.R.; Hamblin, J.; Zerihun, A. Host–multi-pathogen warfare: Pathogen interactions in co-infected plants. Front. Plant Sci. 2017, 8, 1806. [Google Scholar] [CrossRef]
- Somera, T.S.; Mazzola, M. Toward a holistic view of orchard ecosystem dynamics: A comprehensive review of the multiple factors governing development or suppression of apple replant disease. Front. Microbiol. 2022, 13, 949404. [Google Scholar] [CrossRef] [PubMed]
- Avelino, J.; Romero-Gurdia, A.; Cruz-Cuellar, H.F.; Declerck, F.A.J. Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee root-knot nematodes. Ecol. Appl. 2012, 22, 584–596. [Google Scholar] [CrossRef] [PubMed]
- Malézieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D.; Ozier-Lafontaine, H.; Rapidel, B.; Tourdonnet, S.; Valantin-Morison, M. Mixing plant species in cropping systems: Concepts, tools and models. A review. Agron. Sustain. Dev. 2009, 29, 43–62. [Google Scholar] [CrossRef]
- Ratnadass, F.; Avelino, J.; Fernandes, P.; Letourmy, P.; Babin, R.; Debert, P.; Deguine, J.P.; Grechi, I.; Naudin, K.; Rhino, B.; et al. Synergies and tradeoffs in natural regulation of crop pests and diseases under plant species diversification. Crop Prot. 2021, 146, 105658. [Google Scholar] [CrossRef]
- Root, R.B. Organization of a plant-arthropod association in simple and diverse habitats—fauna of collards (Brassica oleracea). Ecol. Monogr. 1973, 43, 95–120. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; Finckh, M.R. Plant diseases and management approaches in organic farming systems. Ann. Rev. Phytopathol. 2016, 54, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.E.; Tilman, D.; Groth, J.V. Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology 2002, 83, 1713–1726. [Google Scholar] [CrossRef]
- Mundt, C.C.; Léonard, K.J. Effect of host genotype unit area on development of focal epidemics of bean rust and common maize rust in mixtures of resistant and susceptible plants. Phytopathology 1986, 76, 895–900. [Google Scholar] [CrossRef]
- Ngugi, H.K.; King, S.B.; Holt, J.; Julian, A.M. Simultaneous temporal progress of sorghum anthracnose and leaf blight in crop mixtures with disparate patterns. Phytopathology 2001, 91, 720–729. [Google Scholar] [CrossRef]
- Schoeny, A.; Jumel, S.; Rouault, F.; Lemarchand, E.; Tivoli, B. Effect and underlying mechanisms of pea-cereal intercropping on the epidemic development of ascochyta blight. Eur. J. Plant Pathol. 2010, 126, 317–331. [Google Scholar] [CrossRef]
- Gomez-Rodriguez, O.; Zavaleta-Mejia, E.; Gonzalez-Hernandez, V.A.; Livera-Munoz, M.; Cardenas-Soriano, E. Allelopathy and microclimatic modification of intercropping with marigold on tomato early blight disease development. Field Crops Res. 2003, 83, 27–34. [Google Scholar] [CrossRef]
- Mills, D.J.; Coffman, C.B.; Teasdale, J.R.; Everts, K.L.; Anderson, J.D. Factors associated with foliar disease of staked fresh market tomatoes grown under differing bed strategies. Plant Dis. 2002, 86, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ren, C.; Liu, Y.; Zhu, J.; Li, B.; Mu, W.; Liu, F. Pepper-Maize intercropping affects the occurrence of anthracnose in hot pepper. Crop Protec. 2021, 148, 105750. [Google Scholar] [CrossRef]
- Ding, X.; Yang, M.; Huang, H.; Chan, Y.; He, X.; Li, C.; Zhu, Y.; Zhu, S. Priming maize resistance by its neighbours: Activating 1.4-benzoxazine-3-ones synthesis and defense gene expression to alleviate leaf disease. Front. Plant Sci. 2015, 6, 830. [Google Scholar] [CrossRef]
- Campos, M.L.; Kang, J.H.; Howe, G.A. Jasmonate-triggered plant immunity. J. Chem. Ecol. 2014, 40, 657–675. [Google Scholar] [CrossRef]
- Wu, J.; Bao, X.; Zhang, J.; Lu, B.; Sun, N.; Wang, Y.; Yang, N.; Xing, Y.; Gallaway, R.M.; Li, L. Facilitation between intercropped species increases micronutrient acquisition and control rust disease in maize. Field Crops Res. 2024, 307, 109241. [Google Scholar] [CrossRef]
- Brooker, R.W.; Karley, A.J.; Newton, A.C.; Pakeman, R.J.; Schöb, C. Facilitation and sustainable agriculture: A mechanistic approach to reconciling crop production and conservation. Funct. Ecol. 2016, 30, 98–107. [Google Scholar] [CrossRef]
- Kumar, V.; Mills, D.J.; Anderson, J.D.; Mattoo, A.K. An alternative agriculture system is defined by a distinct expression profile of select gene transcripts and proteins. Proc. Natl. Acad. Sci. USA 2004, 101, 10535–10540. [Google Scholar] [CrossRef]
- Richard, B.; Jumel, S.; Rouault, F.; Tivoli, B. Influence of plant stage and organ age on the receptivity of Pisum sativum to Mycosphaerella pinodes. Eur. J. Plant Pathol. 2012, 132, 367–379. [Google Scholar] [CrossRef]
- Li, L.; Tilman, D.; Lambers, H.; Zhang, F.S. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture. New Phytol. 2014, 203, 63–69. [Google Scholar] [CrossRef]
- Chaboussou, F. Healthy Crops: A New Agricultural Revolution; Jon Carpenter Publishing: Charlbury, UK, 2004. [Google Scholar]
- Corre-Hellou, G.; Baranger, A.; Bedoussac, L.; Cassagne, N.; Cannavacciuolo, M.; Joelle, J.; Pelzer, E.; Piva, G. Interactions entre facteurs biotiques et fonctionnement des associations végétales. Innov. Agron. 2014, 40, 25–42. [Google Scholar]
- Fernandez-Aparicio, M.; Amri, M.; Kharrat, M.; Rubiales, D. Effect of crop mixtures on chocolate spot development on faba bean grown in Mediterranean climates. Crop Prot. 2011, 30, 1015–1023. [Google Scholar] [CrossRef]
- Staver, C.; Guharay, F.; Monterroso, D.; Muschler, R.G. Designing pest-suppressive multistrata perennial crop systems: Shade-grown coffee in Central America. Agrofor. Syst. 2001, 53, 151–170. [Google Scholar] [CrossRef]
- Hamilton, W.D. The evolution of altruistic behavior. Am. Nat. 1963, 97, 354–356. [Google Scholar] [CrossRef]
- López-Villavicencio, M.; Jonot, O.; Coantic, A.; Hood, M.E.; Enjalbert, J.; Giraud, T. Multiple infections by the Anther Smut Pathogen are frequent and involve related strains. PLoS Pathog. 2007, 3, e176. [Google Scholar] [CrossRef] [PubMed]
- Tack, A.J.M.; Laine, A.-L. Ecological and evolutionary implications of spatial heterogeneity during the off-season for a wild plant pathogen. New Phytol. 2014, 202, 297–308. [Google Scholar] [CrossRef]
- Schneider, D.J.; Collmer, A. Studying plant-pathogen interactions in the genomics era: Beyond molecular Koch’s postulates to systems biology. Annu. Rev. Phytopathol. 2010, 48, 457–479. [Google Scholar] [CrossRef]
- Fukami, T. Historical contingency in community assembly: Integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 1–23. [Google Scholar] [CrossRef]
- Fukami, T.; Mordecai, E.A.; Ostling, A. A framework for priority effects. J. Veg. Sci. 2016, 27, 655–657. [Google Scholar] [CrossRef]
- Karvonen, A.; Seppala, O.; Valtonen, E.T. Host immunization shapes interspecific associations in trematode parasites. J. Anim. Ecol. 2009, 78, 945–952. [Google Scholar] [CrossRef]
- Hoverman, J.T.; Hoye, B.J.; Johnson, P.T.J. Does time matter? How priority effects influence the outcome of parasite interactions within hosts. Oecologia 2013, 173, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Halliday, F.W.; Umbanhowar, J.; Mitchell, C.E. Interactions among symbionts operate across scales to influence parasite epidemics. Ecol. Lett. 2017, 20, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Barbetti, M.J.; Khan, T.N.; Pritchard, I.; Lamichhane, J.R.; Aubertot, J.N.; Corrales, D.C.; You, M.P. Challenges with managing disease complexes during application of different measures against foliar diseases of field pea. Plant Dis. 2021, 105, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Schenk, P.M.; Carvalhais, L.C.; Kazan, K. Unraveling plant–microbe interactions: Can multi-species transcriptomics help? Trends Biotechnol. 2012, 30, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Crandall, S.G.; Gold, K.M.; Jiménez-Gasco, M.D.M.; Filgueiras, C.C.; Willett, D.S. A multi-omics approach to solving problems in plant disease ecology. PLoS ONE 2020, 15, e0237975. [Google Scholar] [CrossRef] [PubMed]
- Massart, S.; Adams, I.; Al Rwahnih, M.; Baeyen, S.; Bilodeau, G.J.; Blouin, A.G.; Lebas, B.S. Guidelines for the reliable use of high throughput sequencing technologies to detect plant pathogens and pests. Peer Community J. 2022, 2, e62. [Google Scholar] [CrossRef]
- Montarry, J.; Cartolaro, P.; Delmotte, F.; Jolivet, J.; Willocquet, L. Genetic structure and aggressiveness of Erysiphe necator populations during grapevine powdery mildew epidemics. Appl. Environ. Microbiol. 2008, 74, 6327–6332. [Google Scholar] [CrossRef] [PubMed]
- Castel, M.K.; Mailleret, L.; Andrivon, D.; Ravigné, V.; Hamelin, F.M. Allee effects and the evolution of polymorphism in cyclical parthenogens. Am. Nat. 2013, 183, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Alizon, S.; de Roode, J.C.; Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 2013, 16, 556–567. [Google Scholar] [CrossRef]
- Dutt, A.; Andrivon, D.; Jumel, S.; Le Roy, G.; Baranger, A.; Leclerc, M.; Le May, C. Life history traits and trade-offs between two species of the ascochyta blight disease complex of pea. Plant Pathol. 2020, 69, 1108–1124. [Google Scholar] [CrossRef]
- Rynkiewicz, E.C.; Pedersen, A.B.; Fenton, A. An ecosystem approach to understanding and managing within-host parasite community dynamics. Trends Parasitol. 2015, 3, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Elena, S.F.; Bernet, G.P.; Carrasco, J.L. The games plant viruses play. Curr. Opin. Virol. 2014, 8, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Severns, P.M.; Sykes, E.M. Indicator Species Analysis: A useful tool for plant disease studies. Phytopathology 2020, 110, 1860–1862. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, J.R.; Venturi, V. Synergisms between microbial pathogens in plant disease complexes: A growing trend. Front. Plant Sci. 2015, 6, 385. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Affichard, M.; Jacquelin, M.; Khalil, T.; Andrivon, D.; Le May, C. Consideration of the Disease Complexes, the Missing Link to Correctly Analyze the Impact of Intercropping on Disease Development. Agronomy 2024, 14, 1210. https://doi.org/10.3390/agronomy14061210
Affichard M, Jacquelin M, Khalil T, Andrivon D, Le May C. Consideration of the Disease Complexes, the Missing Link to Correctly Analyze the Impact of Intercropping on Disease Development. Agronomy. 2024; 14(6):1210. https://doi.org/10.3390/agronomy14061210
Chicago/Turabian StyleAffichard, Manu, Marine Jacquelin, Tracy Khalil, Didier Andrivon, and Christophe Le May. 2024. "Consideration of the Disease Complexes, the Missing Link to Correctly Analyze the Impact of Intercropping on Disease Development" Agronomy 14, no. 6: 1210. https://doi.org/10.3390/agronomy14061210
APA StyleAffichard, M., Jacquelin, M., Khalil, T., Andrivon, D., & Le May, C. (2024). Consideration of the Disease Complexes, the Missing Link to Correctly Analyze the Impact of Intercropping on Disease Development. Agronomy, 14(6), 1210. https://doi.org/10.3390/agronomy14061210