Efficient Damage Assessment of Rice Bacterial Leaf Blight Disease in Agricultural Insurance Using UAV Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Characteristics of the Target Disease; Bacterial Leaf Blight Disease of Rice
2.3. Current Damage Assessment Method in Agricultural Insurance in Indonesia
2.4. Field Survey Data
2.5. UAV Image Data
2.6. Creation of Orthomosaic Image
2.7. UAV Image Normalization Process
2.8. Method for Identifying Survey Points and Extracting Reflectance Value on Images
2.9. Creation of BLB Damage Assessment Estimation Equation
3. Results and Discussion
3.1. Relationship between Normalized Reflectance for Each Band and Indices and BLB
3.2. BLB Damage Assessment Estimation Equations
3.3. Improvement of Efficiency and Objectivity of BLB Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC-Sixth Assessment Report. Available online: https://www.ipcc.ch/assessment-report/ar6/ (accessed on 23 February 2024).
- Gurdeep, S.M.; Manpreet, K.; Prashant, K. Impact of Climate Change on Agriculture and Its Mitigation Strategies. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Sameh, K.A.; Miriam, M.; Antonio, J.; Mariá, A.; Jonathan, D.P.; Laurence, J.; Zhenhua, Z.; Paulo, P.; Luuk, F.; Martine, P.; et al. Climate change impacts on agricultural suitability and yield reduction in a Mediterranean region. Geoderma 2020, 374, 114453. [Google Scholar] [CrossRef]
- Muhammad, H.; Ashfaq, A.; Ahsan, R.; Muhammad, U.H.; Hesham, F.A.; Yahya, M.A.; Atif, A.B.; Khalid, R.H.; Saeed, A.; Wajid, N.; et al. Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Plant Sci. 2022, 13, 925548. [Google Scholar] [CrossRef] [PubMed]
- FAOSAT, Food and Agriculture Organization of the United Nations. 2018. Available online: https://www.fao.org/faostat/en/#data/QC (accessed on 23 February 2024).
- Muhammad, Y.Y.; Rahmat, F.; Teuku, S.B.; Hafizh, M.; Juli, F. Design of Islamic Agricultural Insurance Model: Evidence from Indonesia. Int. J. Sustain. Dev. Plan. 2022, 17, 2375–2384. [Google Scholar] [CrossRef]
- Sahat, M.P. Developing rice farm insurance in Indonesia. Agric. Agric. Sci. Procedia 2010, 1, 33–41. [Google Scholar] [CrossRef]
- Nyoman, Y.; Luh, P.K.P.; Made, B. Effectiveness of Agricultural Insurance Program as A Sustainable Agricultural Development Effort. Sustain. Environ. Agric. Sci. 2022, 6, 134–143. [Google Scholar] [CrossRef]
- Abdul, H.; Rusli, R.; Dan, U.N. The Relationship between the Knowledge Level of Farmers and the Effectiveness of the Rice-Farming Business Insurance Program (AUTP) in Pinrang Regency, South Sulawesi, Indonesia. Int. J. Soc. Sci. Educ. Res. Stud. 2022, 2, 298–307. [Google Scholar]
- Sahat, M.P. Implementation of Indemnity-Based Rice Crop Insurance in Indonesia; Food and Fertilizer Technology Center for the Asian and Pacific Region: Taipei, Taiwan, 2016; Available online: https://ap.fftc.org.tw/article/1079 (accessed on 10 March 2024).
- Adhitya, M.; Sahara, A.D. Analysis of Implementation of Rice Farming Insurance: Case Study In Indonesia. Dev. Ctry. Stud. 2016, 6, 13–118. [Google Scholar]
- Chinna, G.S.; Hari, K.K.; Valli, K.V.; Alakananda, M.; Preethi, A. Deep learning for rice leaf disease detection: A systematic literature review.on emerging trends, methodologies and techniques. Inf. Process. Agric. 2024; in press. [Google Scholar] [CrossRef]
- Lin, S.; Yao, Y.; Li, J.; Li, X.; Ma, J.; Weng, H.; Cheng, Z.; Ye, D. Application of UAV-Based Imaging and Deep Learning in Assessment of Rice Blast Resistance. Rice Sci. 2023, 30, 652–660. [Google Scholar] [CrossRef]
- Sourav, K.B.; Krishna, P.K.; Rajermani, T. A Machine Intelligent Framework for Detection of Rice Leaf Diseases in Field Using IoT Based Unmanned Aerial Vehicle System. Sparkling Light Trans. Artif. Intell. Quantum Comput. (STAIQC) 2022, 2, 42–51. [Google Scholar]
- Shaodan, L.; Jiayi, L.; Deyao, H.; Zuxin, C.; Lirong, X.; Dapeng, Y.; Haiyong, W. Early Detection of Rice Blast Using a Semi-Supervised Contrastive Unpaired Translation Iterative Network Based on UAV Images. Plants 2023, 12, 3675. [Google Scholar] [CrossRef] [PubMed]
- Hongo, C.; Tsuzawa, T.; Tokui, K.; Tamura, E. Development of Damage Assessment Method of Rice Crop for Agricultural Insurance Using Satellite Data. J. Agric. Sci. 2015, 7, 59–71. [Google Scholar] [CrossRef]
- Hongo, C.; Gunardi, S.; Shikata, R.; Niwa, K.; Tamura, E. The Use of Remotely Sensed Data for Estimating of Rice Yield Considering Soil Characteristics. J. Agric. Sci. 2014, 6, 172–184. [Google Scholar] [CrossRef]
- Sofue, Y.; Hongo, C.; Manago, N.; Gunardi, S.; Homma, K.; Baba, B. Estimation of Normal Rice Yield Considering Heading Stage Based on Observation Data and Satellite Imagery. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 6439–6442. [Google Scholar] [CrossRef]
- Manago, N.; Hongo, C.; Sofue, Y.; Gunardi, S.; Budi, U. Transplanting date estimation using Sentinel-1 satellite data for paddy rice damage assessment in Indonesia. Agriculture 2020, 10, 625. [Google Scholar] [CrossRef]
- Iwahashi, Y.; Gunardi, S.; Budi, U.; Iskandar, L.; Ahmad, J.; Bambang, H.T.; IMade, A.S.W.; Maki, M.; Hongo, C.; Homma, K. Drought Damage Assessment for Crop Insurance Based on Vegetation Index by Unmanned Aerial Vehicle Multispectral Images of Paddy Fields in Indonesia. Agriculture 2023, 13, 113. [Google Scholar] [CrossRef]
- Inoue, T. Satellite- and drone-based remote sensing of crops and soils for smart farming—A review. Soil Sci. Plant Nutr. 2020, 66, 798–810. [Google Scholar] [CrossRef]
- Inoue, Y. Remote Sensing of Plant and Soil Information by High-resolution Op-tical Satellite Sensors and Its Applications to Smart Agriculture. J. Remote Sens. Soc. Jpn. 2017, 37, 213–223. [Google Scholar]
- Jean, R.F.M.; Yamashita, M.; Yoshimura, M.; Enrico, C.P. Leaf Spectral Analysis for Detection and Differentiation of Three Major Rice Diseases in the Philippines. Remote Sens. 2023, 15, 3058. [Google Scholar] [CrossRef]
- Singh, B.; Singh, M.; Singh, G.; Suri, K.; Pannu, P.P.S.; Bal, S.K. Hyper-Spectral Data for The Detection of Rice Bacterial Leaf Blight (BLB) Disease. Proc. AIPA 2012, 2012, 177–182. [Google Scholar]
- Wijaya, I.M.A.S.; Chandra, I.G.B.E.; Hongo, C. Assessment of bacterial leaf blight (BLB) diseases by unmanned aerial vehicle (UAV)-based vegetation index of paddy fields. In Proceedings of the 10th Asian-Australasian Conference on Precision Agriculture (ACPA10), Universiti Putra Malaysia, Seri Kembangan, Malaysia, 24–26 October 2023. [Google Scholar]
- Yuti, G.; Hongo, C.; Saito, D.; Caasi, O.; Susilawati, P.N.; Shishido, M.; Sudiarta, I.P.; Wijaya, I.M.A.S.; Homma, K. Evaluating Multispectral Imaging for Assessing Bacterial Leaf Blight Damage in Indonesian Agricultural Insurance. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 232. [Google Scholar]
- Kobayashi, T.; Sasahara, M.; Kanda, E.; Ishiguro, K.; Hase, S.; Torigoe, Y. Assessment of Rice Panicle Blast Disease Using Airborne Hyperspectral Imagery. Open Agric. J. 2016, 10, 28–34. [Google Scholar] [CrossRef]
- Zhao, D.; Cao, Y.; Li, J.; Cao, Q.; Li, J.; Guo, F.; Feng, S.; Xu, T. Early Detection of Rice Leaf Blast Disease Using Unmanned Aerial Vehicle Remote Sensing: A Novel Approach Integrating a New Spectral Vegetation Index and Machine Learning. Agronomy 2024, 14, 602. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Tanaka, Y.; Imachi, Y.; Yamashita, M.; Katsura, K. Feasibility of Combining Deep Learning and RGB Images Obtained by Unmanned Aerial Vehicle for Leaf Area Index Estimation in Rice. Remote Sens. 2021, 13, 84. [Google Scholar] [CrossRef]
- Ning, L.; Jie, Z.; Zixu, H.; Dong, L.; Qiang, C.; Xia, Y.; Yongchao, T.; Yan, Z.; Weixing, C.; Tao, C. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods 2019, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Huang, W.; Ye, H.; Ruan, C.; Xing, N.; Geng, Y.; Dong, Y.; Peng, D. Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets. Sensors 2018, 18, 1901. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, W.; Cui, X.; Shi, Y.; Liu, L. New Spectral Index for Detecting Wheat Yellow Rust Using Sentinel-2 Multispectral Imagery. Sensors 2018, 18, 868. [Google Scholar] [CrossRef] [PubMed]
- Prabir, K.D.; Laxman, B.; Kameswara, S.V.C.R.; Seshasai, M.V.R.; Dadhwal, V.K. Monitoring of bacterial leaf blight in rice using ground-based hyperspectral and LISS IV satellite data in Kurnool, Andhra Pradesh, India. Int. J. Pest Manag. 2015, 61, 359–368. [Google Scholar] [CrossRef]
- Caasi, O.; Hongo, C.; Suryaningsih, A.; Wiyono, S.; Homma, K.; Shishido, M. Relationships between bacterial leaf blight and other diseases based on field assessment in Indonesia. Trop. Agric. Dev. 2019, 63, 113–121. [Google Scholar] [CrossRef]
- Caasi, O.; Hongo, C.; Wiyono, S.; Giamerti, Y.; Saito, D.; Homma, K.; Shishido, M. The potential of using sentinel-2 satellite imagery in assessing bacterial leaf blight on rice in West Java, Indonesia. J. Int. Soc. Southeast Asia Agric. Sci. 2020, 26, 1–16. [Google Scholar]
- Hongo, C.; Takahashi, Y.; Gunardi, S.; Budi, U.; Tamura, E. Advanced Damage Assessment Method for Bacterial Leaf Blight Disease in Rice by Integrating Remote Sensing Data for Agricultural Insurance. J. Agric. Sci. 2022, 14, 1–18. [Google Scholar] [CrossRef]
- Syed, A.H.N.; Rashida, P.; Ummad, D.U.; Owais, M.; Ateequr, R.; Sajid, W.; Taha, M. Determination of antibacterial activity of various broad spectrum antibiotics against Xanthomonas oryzae pv. Oryzae, a cause of bacterial leaf blight of rice. Int. J. Microbiol. Mycol. 2014, 2, 12–19. [Google Scholar]
- Bai, X.; Zhou, Y.; Feng, X.; Tao, M.; Zhang, J.; Deng, S.; Lou, B.; Yang, G.; Wu, Q.; Yu, L.; et al. Evaluation of rice bacterial blight severity from lab to field with hyperspectral imaging technique. Plant Sci. 2022, 13, 1037774. [Google Scholar] [CrossRef]
- Chukwu, S.C.; Rafii, M.Y.; Ramlee, S.I.; Ismail, S.I.; Hasan, M.M.; Oladosu, Y.A.; Magaji, U.G.; Akos, I.; Olalekan, K.K. Bacterial leaf blight resistance in rice: A review of conventional breeding to molecular approach. Mol. Biol. Rep. 2019, 46, 1519–1532. [Google Scholar] [CrossRef]
- Mohammad, M.F.A.; Han, Y.L. Advanced diagnostic approaches developed for the global menace of rice diseases. Can. J. Plant Pathol. 2022, 44, 627–651. [Google Scholar] [CrossRef]
- Hashimoto, N.; Saito, Y.; Maki, M.; Homma, K. Simulation of reflectance and vegetation indices for unmanned aerial vehicle (UAV) monitoring of paddy fields. Remote Sens. 2019, 11, 2119. [Google Scholar] [CrossRef]
- Rice Knowledge Bank, IRRI. Available online: http://www.knowledgebank.irri.org/decision-tools/rice-doctor/rice-doctor-fact-sheets/item/bacterial-blight (accessed on 17 May 2024).
- Tabasia, A.; Vishal, G.; Aarushi, S.; Sheikh, S.K. Effect of Weather Parameters on the Severity of Bacterial Leaf Blight of Rice. Biol. Forum Int. J. 2022, 14, 123–133. [Google Scholar]
- Krishnan, N.; Gandhi, K.; Mohammed, F.P.; Muthuraj, R.; Kuppusamy, P.; Thiruvengadam, R. Management of Bacterial Leaf Blight Disease in Rice with Endophytic Bacteria. World Appl. Sci. J. 2013, 28, 2229–2241. [Google Scholar]
- Qiao, L.; Tang, W.; Gao, D.; Zhao, R.; An, L.; Li, M.; Sun, H.; Song, D. UAV-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages. Comput. Electron. Agric. 2022, 196, 106775. [Google Scholar] [CrossRef]
- Gu, Q.; Huang, F.; Lou, W.; Zhu, Y.; Hu, H.; Zhao, Y.; Zhou, H.; Zhang, X. Unmanned aerial vehicle-based assessment of rice leaf chlorophyll content dynamics across genotypes. Comput. Electron. Agric. 2024, 221, 108939. [Google Scholar] [CrossRef]
- Nikolas, P.; Dionissios, K.; Rigas, G. Spatial Analysis of Agronomic Data and UAV Imagery for Rice Yield Estimation. Agriculture 2021, 11, 809. [Google Scholar] [CrossRef]
- Nor, H.A.; Rohayu, H.N.; Tajul, R.R.; Siti, A.A.; Noorfatekah, T.; Zulkiflee, A.L.; Norhashila, H.; Khairulazhar, Z. Detection of Bacterial Leaf Blight Disease Using RGB-Based Vegetation Indices and Fuzzy Logic. In Proceedings of the 2023 19th IEEE International Colloquium on Signal Processing & Its Applications, Kedah, Malaysia, 3–4 March 2023. [Google Scholar] [CrossRef]
- Chwen, M.Y. Assessment of the severity of bacterial leaf blight in rice using canopy hyperspectral reflectance. Precis. Agric. 2010, 11, 61–81. [Google Scholar] [CrossRef]
- Taifeng, D.; Jiangui, L.; Budong, Q.; Liming, H.; Jane, L.; Rong, W.; Qi, J.; Catherine, C.; Heather, M.; Jarrett, P.; et al. Estimating crop biomass using leaf area index derived from Landsat 8 and Sentinel-2 data. J. Photogramm. Remote Sens. 2020, 168, 236–250. [Google Scholar] [CrossRef]
- Brenon, D.S.B.; Gabriel, A.S.F.; Lucas, C.; Yiannis, A.V.V.; Luana, M.S. UAV-based coffee yield prediction utilizing feature selection and deep learning. Smart Agric. Technol. 2021, 1, 100010. [Google Scholar] [CrossRef]
Field and UAV Data Acquisition Date | BLB Assessment Plot and Point | Digitization Footprint (Mb/ha) |
---|---|---|
25 February 2021 | 6, 60 | 2336.4 |
5 March 2021 | 3, 30 | 1845.6 |
19 July 2021 | 3, 30 | 3549.8 |
21 July 2021 | 3, 30 | 3106.2 |
22 July 2021 | 3, 30 | 3403.3 |
28 July 2021 | 1, 10 | 2570.0 |
29 July 2021 | 3, 30 | 3314.8 |
30 July 2021 | 3, 30 | 4015.8 |
7 August 2021 | 3, 30 | 3691.8 |
10 August 2021 | 3, 30 | 2835.5 |
11 August 2021 | 5, 50 | 3862.0 |
12 August 2021 | 3, 30 | 2857.5 |
22 November 2021 | 3, 30 | 3138.0 |
23 November 2021 | 6, 60 | 3860.1 |
30 November 2021 | 3, 30 | 3537.8 |
1 December 2021 | 3, 30 | 3299.5 |
2 December 2021 | 1, 10 | 3407.4 |
3 December 2021 | 2, 20 | 3280.1 |
5 March 2022 | 3, 30 | 3197.5 |
25 March 2022 | 3, 30 | 3356.9 |
28 March 2022 | 3, 30 | 2500.6 |
4 April 2022 | 6, 60 | 3160.7 |
5 April 2022 | 3, 30 | 3182.2 |
6 April 2022 | 5, 50 | 3393.6 |
16 August 2022 | 6, 60 | 3044.3 |
17 August 2022 | 3, 30 | 3418.4 |
29 August 2022 | 6, 60 | 3276.5 |
30 August 2022 | 6, 60 | 3447.0 |
31 August 2022 | 3, 30 | 3230.4 |
10 September 2022 | 2, 20 | 3886.7 |
11 September 2022 | 3, 30 | 3610.8 |
Ngreen | Nred | Nred Edge | NNIR | NDVI | GNDVI | NRGI | |
---|---|---|---|---|---|---|---|
Correlation coefficient | 0.261 ** | 0.516 ** | −0.068 | −0.478 ** | −0.509 ** | −0.354 ** | 0.235 ** |
Ngreen | Nred | Nred Edge | NNIR | NDVI | GNDVI | NRGI | |
---|---|---|---|---|---|---|---|
Correlation coefficient | 0.481 ** | 0.337 ** | −0.426 | −0.283 ** | −0.321 ** | −0.443 ** | 0.435 ** |
Ngreen | Nred | Nred Edge | NNIR | NDVI | GNDVI | NRGI | |
---|---|---|---|---|---|---|---|
Correlation coefficient | 0.271 ** | 0.458 ** | −0.049 | −0.440 ** | −0.456 ** | −0.349 ** | 0.265 ** |
Ngreen | Nred | Nred Edge | NNIR | NDVI | GNDVI | NRGI | |
---|---|---|---|---|---|---|---|
Correlation coefficient | 0.329 ** | 0.558 ** | −0.074 | −0.537 ** | −0.556 ** | −0.425 ** | 0.316 ** |
Ngreen | Nred | Nred Edge | NNIR | NDVI | GNDVI | NRGI | |
---|---|---|---|---|---|---|---|
Correlation coefficient | 0.418 ** | 0.895 ** | −0.211 | −0.876 ** | −0.897 ** | −0.605 ** | 0.389 ** |
Irrigation Block Name | No. of Plots | Area (ha) | Time Required to Assess All Plots Using the Current Method | Time Required to Assess All Plots Using the Integrated Method with UAV Data | Percentage of Time Saved (%) |
---|---|---|---|---|---|
Block 1b | 60 | 3.1 | 5 days | 2 days and 3 h | 57.5 |
Block 2a | 43 | 2.2 | 4 days | 2 days and 3 h | 46.9 |
Block 3a | 62 | 2.9 | 6 days | 2 days and 3 h | 64.6 |
Block 5 | 38 | 2.6 | 4 days | 2 days and 2.5 h | 47.4 |
Blcok 7a | 54 | 2.7 | 5 days | 2 days and 2.5 h | 57.5 |
Block 9b | 56 | 3.4 | 5 days | 2 days and 3 h | 57.5 |
Block 11a | 67 | 2.6 | 6 days | 2 days and 3 h | 64.6 |
Block 11b | 104 | 2.8 | 9 days | 2 days and 3 h | 76.4 |
Block 12a | 68 | 2.9 | 6 days | 2 days and 3 h | 64.6 |
Block 14a | 84 | 2.9 | 7 days | 2 days and 3 h | 69.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hongo, C.; Isono, S.; Sigit, G.; Tamura, E. Efficient Damage Assessment of Rice Bacterial Leaf Blight Disease in Agricultural Insurance Using UAV Data. Agronomy 2024, 14, 1328. https://doi.org/10.3390/agronomy14061328
Hongo C, Isono S, Sigit G, Tamura E. Efficient Damage Assessment of Rice Bacterial Leaf Blight Disease in Agricultural Insurance Using UAV Data. Agronomy. 2024; 14(6):1328. https://doi.org/10.3390/agronomy14061328
Chicago/Turabian StyleHongo, Chiharu, Shun Isono, Gunardi Sigit, and Eisaku Tamura. 2024. "Efficient Damage Assessment of Rice Bacterial Leaf Blight Disease in Agricultural Insurance Using UAV Data" Agronomy 14, no. 6: 1328. https://doi.org/10.3390/agronomy14061328
APA StyleHongo, C., Isono, S., Sigit, G., & Tamura, E. (2024). Efficient Damage Assessment of Rice Bacterial Leaf Blight Disease in Agricultural Insurance Using UAV Data. Agronomy, 14(6), 1328. https://doi.org/10.3390/agronomy14061328