Metabolic Profiling and Transcriptome Analysis Provide Insights into the Anthocyanin Types and Biosynthesis in Zingiber striolatum Diels Flower Buds in Three Planting Modes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Sampling
2.2. Targeted Metabolite Profiling Analysis
2.3. Qualitative and Quantitative Analysis of Metabolites
2.4. Data Processing and Evaluation
2.5. Total Anthocyanin Content Determination
2.6. Transcriptome Analysis and Genes Identification
2.7. RNA Extraction and Quantitative RT-PCR (qRT-PCR)
2.8. Statistical Analysis
3. Results
3.1. Flower Buds of Z. striolatum in Three Planting Modes
3.2. Types and Total Anthocyanin Content in Flower Buds among Three Planting Modes
3.3. Transcriptome Analysis and Gene Identification
3.4. Expression Level of Anthocyanin-Related Genes in Three Planting Modes of Z. striolatum
3.5. Correlation Analysis Anthocyanin of Content and Expression Levels of Anthocyanin-Synthesis-Related Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Z.B.; Xie, L.N.; Wang, H.W.; Zhong, J.B.; Li, Y.C.; Liu, J.L.; Ou, Z.R.; Liang, X.; Li, Y.S.; Huang, H.Y.; et al. Geographic distribution and impacts of climate change on the suitable habitats of Zingiber species in China. Ind. Crops Prod. 2019, 138, e111429. [Google Scholar] [CrossRef]
- Tian, S.M.; Jiang, D.Z.; Wan, Y.P.; Wang, X.; Liao, Q.H.; Li, Q.; Li, H.L.; Liao, L.Z. The complete chloroplast genome of Zingiber striolatum Diels (Zingiberaceae). Mitochondrial DNA Part B Resour. 2023, 8, 48–51. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.C.; He, Y.X.; He, H.Y.; Chen, X.Q.; Liu, T.F.; Zhu, B. Wild vs. cultivated Zingiber striolatum Diels: Nutritional and biological activity differences. Plants 2023, 12, e2180. [Google Scholar] [CrossRef]
- Huang, Z.B.; Xie, L.N.; Xu, Y.Y.; Zhao, K.; Li, X.T.; Zhong, J.B.; Lu, Y.J.; Xu, X.T.; Goodin, S.; Zhang, K.; et al. Essential oils from Zingiber striolatum Diels attenuate inflammatory response and oxidative stress through regulation of MAPK and NF-κB signaling pathways. Antioxidants 2021, 10, e2019. [Google Scholar] [CrossRef]
- Chen, T.; Cai, J.; Ni, J.; Yang, F. An UPLC-MS/MS application to investigate chemical compositions in the ethanol extract with hypoglycemic activity from Zingiber striolatum Diels. J. Chin. Pharm. Sci. 2016, 25, 116–121. [Google Scholar] [CrossRef]
- Kim, H.W.; Murakami, A.; Abe, M.; Ozawa, Y.; Morimitsu, Y.; Williams, M.V.; Ohigashi, H. Suppressive effects of mioga ginger and ginger constituents on reactive oxygen and nitrogen species generation, and the expression of inducible pro-inflammatory genes in macrophages. Antioxid. Redox Signal. 2005, 7, 1621–1629. [Google Scholar] [CrossRef]
- Tian, M.; Liu, T.; Wu, X.; Hong, Y.; Zhou, Y. Chemical composition, antioxidant, antimicrobial and anticancer activities of the essential oil from the rhizomes of Zingiber striolatum Diels. Nat. Prod. Res. 2020, 34, 2621–2625. [Google Scholar] [CrossRef]
- Chaves-Silva, S.; dos Santos, A.L.; Chalfun-Junior, A.; Zhao, J.; Peres, L.E.P.; Benedito, V.A. Understanding the genetic regulation of anthocyanin biosynthesis in plants—Tools for breeding purple varieties of fruits and vegetables. Phytochem. 2018, 153, 11–27. [Google Scholar] [CrossRef]
- Sharma, H.; Sharma, P.; Kumar, A.; Chawla, N.; Dhatt, A.S. Multifaceted regulation of anthocyanin biosynthesis in plants: A comprehensive review. J. Plant Growth Regul. 2024, 12, 1–15. [Google Scholar] [CrossRef]
- Ren, Y.; Huang, Z.Q.; Jiang, H.; Wang, Z.; Wu, F.S.; Xiong, Y.F.; Yao, J.L. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. J. Exp. Bot. 2021, 72, 2947–2964. [Google Scholar] [CrossRef]
- Cui, L.G.; Shan, J.X.; Shi, M.; Gao, J.P.; Lin, H.X. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J. 2014, 80, 1108–1117. [Google Scholar] [CrossRef]
- Hatier, J.H.B.; Clearwater, M.J.; Gould, K.S. The functional significance of black-pigmented leaves: Photosynthesis, photoprotection and productivity in Ophiopogon planiscapus ‘Nigrescens’. PLoS ONE 2013, 8, e67850. [Google Scholar] [CrossRef]
- Qi, F.T.; Liu, Y.T.; Luo, Y.L.; Cui, Y.M.; Lu, C.F.; Li, H.; Huang, H.; Dai, S.L. Functional analysis of the ScAG and SCAGL11 MADS-box transcription factors for anthocyanin biosynthesis and bicolour pattern formation in Senecio cruentus ray florets. Hortic. Res. 2022, 9, uhac071. [Google Scholar] [CrossRef]
- Baumann, K.; Perez-Rodriguez, M.; Bradley, D.; Venail, J.; Bailey, P.; Jin, H.; Koes, R.; Roberts, K.; Martin, C. Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development 2007, 134, 1691–1701. [Google Scholar] [CrossRef]
- Shen, H.; Han, J.; Liu, C.L.; Cao, F.; Huang, Y.J. Grape seed proanthocyanidins exert a radioprotective effect on the testes and intestines through antioxidant effects and inhibition of MAPK signal pathways. Front. Med. 2022, 8, e836528. [Google Scholar] [CrossRef]
- Zhou, P.Y.; Zhang, L.M.; Li, W.; Zhang, S.T.; Luo, L.X.; Wang, J.; Sun, B.S. In vitro evaluation of the anti-digestion and antioxidant effects of grape seed procyanidins according to their degrees of polymerization. J. Funct. Foods 2018, 49, 85–95. [Google Scholar] [CrossRef]
- Le, D.H.; Nishimura, K.; Takenaka, Y.; Mizushina, Y.; Tanahashi, T. Polyprenylated benzoylphloroglucinols with DNA polymerase inhibitory activity from the fruits of Garcinia schomburgkiana. J. Nat. Prod. 2016, 79, 1798–1807. [Google Scholar] [CrossRef]
- Yamagishi, M. High temperature enhances anthocyanin coloration in Asiatic hybrid lily flowers via upregulation of the MYB12 positive regulator. Hortic. Plant J. 2022, 8, 769–776. [Google Scholar] [CrossRef]
- Brugliera, F.; Tao, G.Q.; Tems, U.; Kalc, G.; Mouradova, E.; Price, K.; Stevenson, K.; Nakamura, N.; Stacey, I.; Katsumoto, Y.; et al. Violet/blue chrysanthemums: Metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiol. 2013, 54, 1696–1710. [Google Scholar] [CrossRef]
- Feng, X.K.; Gao, G.; Yu, C.M.; Zhu, A.G.; Chen, J.K.; Chen, K.M.; Wang, X.F.; Abubakar, A.S.; Chen, P. Transcriptome and metabolome analysis reveals anthocyanin biosynthesis pathway associated with ramie (Boehmeria nivea (L.) Gaud. leaf color formation. BMC Genom. 2021, 22, e684. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Chu, G.H.; Hu, Z.L.; Gao, Q.; Cui, B.L.; Tian, S.B.; Wang, B.; Chen, G.P. Genetically engineered anthocyanin pathway for high health-promoting pigment production in eggplant. Mol. Breed. 2016, 36, 54. [Google Scholar] [CrossRef]
- Qi, X.W.; Shuai, Q.; Chen, H.; Fan, L.; Zeng, Q.W.; He, N.J. Cloning and expression analyses of the anthocyanin biosynthetic genes in mulberry plants. Mol. Genet. Genom. 2014, 289, 783–793. [Google Scholar] [CrossRef]
- Sunil, L.; Shetty, N.P. Biosynthesis and regulation of anthocyanin pathway genes. Appl. Microbiol. Biotechnol. 2022, 106, 1783–1798. [Google Scholar] [CrossRef]
- Bloor, S.J.; Abrahams, S. The structure of the major anthocyanin in Arabidopsis thaliana. Phytochemistry 2002, 59, 343–346. [Google Scholar] [CrossRef]
- Xu, Z.S.; Huang, Y.; Wang, F.; Song, X.; Wang, G.L.; Xiong, A.S. Transcript profiling of structural genes involved in cyanidin-based anthocyanin biosynthesis between purple and non-purple carrot (Daucus carota L.) cultivars reveals distinct patterns. BMC Plant Biol. 2014, 14, e262. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, M.; Li, T.T.; Chen, Y.J.; Zhang, L.J.; Zhao, G.F.; Zhuang, J.H.; Zhao, W.Y.; Gao, L.P.; Xia, T. Airborne fungus-induced biosynthesis of anthocyanins in Arabidopsis thaliana via jasmonic acid and salicylic acid signaling. Plant Sci. 2020, 300, e110635. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.Q.; Cui, Y.L.; Du, Q.S.; Tang, W.J.; Yang, W.L.; Kou, G.Q.; Tang, W.J.; Chen, H.X.; Gong, R.G. Potential regulatory genes of light induced anthocyanin accumulation in sweet cherry identified by combining transcriptome and metabolome analysis. Front. Plant Sci. 2023, 14, e1238624. [Google Scholar] [CrossRef]
- Jiao, Y.; Ma, R.J.; Shen, Z.J.; Yan, J.; Yu, M.L. Gene regulation of anthocyanin biosynthesis in two blood-flesh peach (Prunus persica (L.) Batsch) cultivars during fruit development. J. Zhejiang Univ. Sci. B 2014, 15, 809–819. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Hao, Z.J.; Tang, Y.H.; Zhao, D.Q. Anthocyanin accumulation and differential expression of the biosynthetic genes result in a discrepancy in the red color of herbaceous peony (Paeonia lactiflora Pall.) flowers. Horticulturae 2022, 8, e349. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: Anthocyanins, betalains and and carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef]
- Jin, X.H.; Huang, H.; Wang, L.; Sun, Y.; Dai, S.L. Transcriptomics and metabolite analysis reveals the molecular mechanism of anthocyanin biosynthesis branch pathway in different Senecio cruentus cultivars. Front. Plant Sci. 2016, 7, e1307. [Google Scholar] [CrossRef] [PubMed]
- Chai, Z.; Herrera-Balandrano, D.D.; Yu, H.; Beta, T.; Zeng, Q.L.; Zhang, X.X.; Tian, L.L.; Niu, L.Y.; Huang, W.Y. A comparative analysis on the anthocyanin composition of 74 blueberry cultivars from China. J. Food Compos. Anal. 2021, 102, e104051. [Google Scholar] [CrossRef]
- Katsumoto, Y.; Fukuchi-mizutani, M.; Fukui, Y.; Brugliera, F.; Holton, T.; Karan, M.; Nakamura, N.; Yonekura-Sakakibara, K.; Togami, J.; Pigeaire, A.; et al. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol. 2007, 48, e1589. [Google Scholar] [CrossRef]
- Noda, N. Recent advances in the research and development of blue flowers. Breed. Sci. 2018, 68, 79–87. [Google Scholar] [CrossRef]
- Wang, Q.S.; Sun, D.B.; Hao, H.; Zhao, X.J.; Hao, W.P.; Liu, Q. Photosynthetically active radiation determining yields for an intercrop of maize with cabbage. Eur. J. Agron. 2015, 69, 32–40. [Google Scholar] [CrossRef]
- Chi, B.J.; Liu, J.; Dai, J.L.; Li, Z.H.; Zhang, D.M.; Xu, S.Z.; Nie, J.J.; Wan, S.M.; Li, C.D.; Dong, H.Z. Alternate intercropping of cotton and peanut increases productivity by increasing canopy photosynthesis and nutrient uptake under the influence of rhizobacteria. Field Crop. Res. 2023, 302, e109059. [Google Scholar] [CrossRef]
- Deng, K.P.; Deng, R.J.; Fan, J.X.; Chen, E.F. Transcriptome analysis and development of simple sequence repeat (SSR) markers in Zingiber striolatum Diels. Physiol. Mol. Biol. Plants 2018, 24, 125–134. [Google Scholar] [CrossRef]
- Cai, D.B.; Li, X.S.; Chen, J.L.; Jiang, X.W.; Ma, X.Q.; Sun, J.X.; Tian, L.M.; Vidyarthi, S.K.; Xu, J.W.; Pan, Z.L.; et al. A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controling environmental factors. Food Chem. 2022, 366, e130611. [Google Scholar] [CrossRef]
- Jin, W.P.; Xiang, L.; Peng, D.F.; Liu, G.; He, J.R.; Cheng, S.Y.; Li, B.; Huang, Q.R. Study on the coupling progress of thermo-induced anthocyanins degradation and polysaccharides gelation. Food Hydrocoll. 2020, 105, e105822. [Google Scholar] [CrossRef]
- Liu, Y.; Tikunov, Y.; Schouten, R.E.; Marcelis, L.F.M.; Visser, R.G.F.; Bovy, A. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: A review. Front. Chem. 2018, 6, e52. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.H.; Dai, M.Y.; Zheng, G.; Chang, P.J.; Xuan, L.J.; Liu, Z.G.; Wang, Y.L.; Cheng, S.Y.; Wang, Z.; Wang, H.; et al. Flavonold components and gene expression analysis reveal flower pigmentation difference between Magnolia biondi and its variety M. biondi var. purpurascens. Trees 2022, 36, 583–591. [Google Scholar] [CrossRef]
- Rubin, G.; Tohge, T.; Matsuda, F.; Saito, K.; Scheible, W.R. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 2009, 21, 3567–3584. [Google Scholar] [CrossRef]
- Zhou, L.L.; Shi, M.Z.; Xie, D.Y. Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1- programmed red cells of Arabidopsis thaliana. Planta 2012, 236, 825–837. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Yang, J.; Ma, C.L.; Zhang, Y.; Ge, T.; Qi, Z.; Kang, Y. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation. J. Integr. Plant Biol. 2015, 57, 708–721. [Google Scholar] [CrossRef]
- Grützner, R.; König, K.; Horn, C.; Engler, C.; Laub, A.; Vogt, T.; Marillonnet, S. A transient expression tool box for anthocyanin biosynthesis in Nicotiana benthamiana. Plant Biotechnol. J. 2023, 143, 1238–1250. [Google Scholar] [CrossRef]
- Song, B.; Xu, H.; Chen, L.Z.; Fan, X.X.; Jing, Z.G.; Chen, S.; Xu, Z.G. Study of the relationship between leaf color formation and anthocyanin metabolism among different purple pakchoi lines. Molecules 2020, 25, e4809. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, Y.T.; Wang, H.; Tian, Z.D.; Xin, S.Y.; Zhu, P.F. The dihydroflavonol 4-reductase BoDFR1 drives anthocyanin accumulation in pink-leaved ornamental kale. Theor. Appl. Genet. 2021, 134, 159–169. [Google Scholar] [CrossRef]
- Jaakola, L. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci. 2013, 18, 477–483. [Google Scholar] [CrossRef]
- Matsuba, Y.; Sasaki, N.; Tera, M.; Okamura, M.; Abe, Y.; Okamoto, E.; Nakamura, H.; Funabashi, H.; Takatsu, M.; Saito, M.; et al. A novel glucosylation reaction on anthocyanin catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium. Plant Cell 2010, 22, 3374–3389. [Google Scholar] [CrossRef]
- Huang, H.; Hu, K.; Han, K.T.; Xiang, Q.Y.; Dai, S.L. Flower colour modification of chrysanthemum by suppression of F3′H and overexpression of the exogenous Senecio cruentus F3′5′H gene. PLoS ONE 2013, 8, e74395. [Google Scholar] [CrossRef]
- Wu, M.Q.; Liao, Y.; Lu, S.J.; Yin, H.T.; Yu, W.G.; Li, C.H. Metabolomics analysis of anthocyanin in different flower colors of phalaenopsis-type Dendrobium (in Chinese with abstract). Chin. J. Trop. Crops 2023, 44, 2167–2178. [Google Scholar] [CrossRef]
- Wang, J.Q.; Zhang, Y.H.; Yi, W.Y.; Gong, Z.G.; Xu, H.B.; Li, Y.Y. Study on genes related to anthocyanin biosynthesis at the color turning stages in red okra fruit based on transcriptome sequencing. N. Hortic. 2022, 14, 9–16. [Google Scholar]
- Wang, L.; Albert, N.W.; Zhang, H.B.; Arathoon, S.; Boase, M.R.; Ngo, H.; Schwinn, K.E.; Davies, K.M.; Lewis, D.H. Temporal and spatial regulation of anthocyanin biosynthesis provide diverse flower colour intensities and patterning in Cymbidium orchid. Planta 2014, 240, 983–1002. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wu, W.S.; Sun, Y.; Shen, Y.Y.; Mao, L.Z.; Dai, Y.H.; Yang, B.Z.; Liu, Z.B. Integrated transcriptome and metabolome analysis reveals anthocyanin biosynthesis mechanisms in pepper (Capsicum annuum L.) leaves under continuous blue light irradiation. BMC Plant Biol. 2024, 24, e10. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Wang, X.; Liu, T.; Liu, H.; Peng, Y.; Tang, X.; Ye, X.; Sun, K.; Yue, Y.; Xu, D.; et al. Epigenetic regulation of high light-induced anthocyanin biosynthesis by histone demethylase IBM1 in Arabidopsis. New Phytol. 2024, 242, 2570–2585. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhong, X.L.; Cai, X.; Zhu, S.H.; Meng, P.H.; Zhang, J.; Tan, G.F. Comparative physiological analysis of lignification, anthocyanin metabolism and correlated gene expression in red Toona sinensis buds during cold storage. Agronomy 2023, 13, e119. [Google Scholar] [CrossRef]
No | The Number of Flower Buds in Single Plant | Single Flower Bud Weight (g) | The Flower Buds Size (Length × Width, cm) | Anthocyanidin Content (mg·g−1, FW) | Yield (kg/667 m2) |
---|---|---|---|---|---|
CK | 7.87 ± 1.99 c | 25.12 ± 3.15 c | 4.51 × 2.11 b | 0.16 ± 0.04 b | 1094.66 ± 32.67 b |
ZP | 11.62 ± 2.78 a | 35.08 ± 3.23 a | 6.12 × 2.69 a | 0.26 ± 0.06 a | 1384.13 ± 41.45 a |
SP | 9.08 ± 2.57 b | 28.33 ± 2.18 b | 5.23 × 2.34 b | 0.09 ± 0.03 c | 1179.22 ± 35.78 b |
No | Compounds | Formula | RT (min) | Molecular Weigh | CK (μg·g−1, DW) | ZP (μg·g−1, DW) | SP (μg·g−1, DW) | Type |
---|---|---|---|---|---|---|---|---|
1 | Petunidin-3-O-(6-O-p-coumaroyl)-glucoside | C31H29O14 | 11.95 | 625.156 | 0.0175 | 0.0172 | 0.0178 | Petunidin |
2 | Petunidin-3-O-(6-O-malonyl-beta-D-glucoside) | C25H25O15 | 12.16 | 565.119 | 0.0055 | 0.0072 | 0.0039 | |
3 | Petunidin-3-O-5-O-(6-O-coumaroyl)-diglucoside | C37H39O19 | 9.62 | 787.209 | 0.0026 | 0.0028 | 0.0025 | |
4 | Petunidin-3-O-glucoside | C22H23O12 | 8.23 | 479.119 | 6.7087 | 11.6088 | 1.8086 | |
5 | Petunidin-3-O-rutinoside | C28H33O16 | 8.76 | 625.177 | 8.2097 | 13.0901 | 3.3293 | |
6 | Delphinidin-3-O-(6-O-malonyl-beta-D-glucoside) | C24H23O15 | 11.08 | 551.104 | 0.0028 | 0.0000 | 0.0056 | Delphinidin |
7 | Delphinidin-3-O-(6-O-malonyl)-glucoside-3′-glucoside | C30H33O20 | 11.14 | 713.157 | 0.0050 | 0.0000 | 0.0100 | |
8 | Delphinidin-3-O-(6″-O-coumaroyl)rhamnoside-5-O-glucoside | C36H37O18 | 9.80 | 757.198 | 0.0196 | 0.0234 | 0.0158 | |
9 | Delphinidin-3-O-(6″-O-tartaryl) glucoside | C25H25O17 | 10.02 | 597.109 | 0.0040 | 0.0081 | 0.0000 | |
10 | Delphinidin-3-O-(coumaroyl) glucoside-5-O-galactoside | C36H37O19 | 8.06 | 773.193 | 0.0168 | 0.0181 | 0.0155 | |
11 | Delphinidin-3-O-sophoroside | C27H31O17 | 6.08 | 627.156 | 0.0268 | 0.0438 | 0.0097 | |
12 | Delphinidin-3-O-glucoside | C21H21O12 | 6.59 | 465.103 | 29.0060 | 48.4435 | 9.5686 | |
13 | Delphinidin-3-O-rutinoside | C27H31O16 | 7.18 | 611.161 | 19.0167 | 29.9917 | 8.0418 | |
14 | Delphinidin-caffeoyl-rutinoside | C36H37O19 | 5.55 | 773.193 | 0.0140 | 0.0281 | 0.0000 | |
15 | Malvidin-3-O-(6″-O-acetyl) galactoside | C25H27O13 | 10.12 | 535.145 | 0.0079 | 0.0157 | 0.0000 | Malvidin |
16 | Malvidin-3-O-(6″-O-acetyl) glucoside | C25H27O13 | 11.70 | 535.145 | 0.0120 | 0.0079 | 0.0160 | |
17 | Malvidin-3-O-(glucosyl) glucuronide | C29H33O18 | 9.92 | 669.167 | 0.0497 | 0.0774 | 0.0220 | |
18 | Malvidin-3-O-arabinoside | C22H23O11 | 9.96 | 463.124 | 0.2362 | 0.4005 | 0.0718 | |
19 | Malvidin-3-O-glucoside | C23H25O12 | 9.50 | 495.135 | 5.1609 | 9.3082 | 1.0136 | |
20 | Malvidin-3-O-rhamnoside | C23H25O11 | 10.67 | 477.140 | 0.0049 | 0.0000 | 0.0097 | |
21 | Peonidin-3,5-O-diglucoside | C28H33O16 | 6.88 | 625.177 | 0.0367 | 0.0734 | 0.0000 | Peonidin |
22 | Peonidin-3-O-(6″-O-acetyl-malonyl) glucoside | C27H27O15 | 4.36 | 591.135 | 0.0008 | 0.0016 | 0.0000 | |
23 | Peonidin-3-O-arabinoside | C21H21O10 | 9.55 | 433.113 | 0.3435 | 0.6870 | 0.0000 | |
24 | Peonidin-3-O-glucoside | C22H23O11 | 9.14 | 463.124 | 38.4653 | 71.1945 | 5.7360 | |
25 | Peonidin-3-O-sambubioside | C27H31O15 | 9.18 | 595.166 | 6.6964 | 12.5555 | 0.8373 | |
26 | Peonidin-3-O-sambubioside-5-O-glucoside | C33H41O20 | 6.91 | 757.219 | 0.0104 | 0.0208 | 0.0000 | |
27 | Peonidin-hydroxyben-malonyl-glucoside-xyloside | C37H37O20 | 9.80 | 801.188 | 0.0020 | 0.0039 | 0.0000 | |
28 | Cyanidin-3-O-(6-O-p-coumaroyl)-glucoside | C30H27O13 | 12.34 | 595.145 | 0.7768 | 0.8236 | 0.7301 | Cyanidin |
29 | Cyanidin-3,5-O-diglucoside | C27H31O16 | 5.56 | 611.161 | 0.0593 | 0.1185 | 0.0000 | |
30 | Cyanidin-3-O-(6″-O-ferulyl-xylosyl) glucoside | C36H37O18 | 9.16 | 757.198 | 0.0062 | 0.0073 | 0.0052 | |
31 | Cyanidin-3-O-(6-O-malonyl-beta-D-glucoside) | C24H23O14 | 10.38 | 535.109 | 0.8690 | 1.5534 | 0.1846 | |
32 | Cyanidin-3-O-(6″-O-acetyl-2″-O-xylosyl) glucoside | C28H31O16 | 8.79 | 623.161 | 0.0043 | 0.0086 | 0.0000 | |
33 | Cyanidin-3-O-(6″-O-coumaryl) galactoside | C30H27O13 | 11.72 | 595.145 | 0.2080 | 0.2524 | 0.1635 | |
34 | Cyanidin-3-O-(tartaryl)rhamnoside-5-O-glucoside | C31H35O20 | 8.23 | 727.172 | 0.0092 | 0.0184 | 0.0000 | |
35 | Cyanidin-3-[6″-(rhamnosyl) glucoside] | C27H31O15 | 7.24 | 595.166 | 0.2542 | 0.4179 | 0.0906 | |
36 | Cyanidin-3-[6″-(acetyl)xylosyl]-xyloside | C27H29O15 | 8.75 | 593.151 | 0.1188 | 0.2198 | 0.0179 | |
37 | Cyanidin-3-O-arabinoside | C20H19O10 | 8.04 | 419.098 | 0.6138 | 1.1575 | 0.0702 | |
38 | Cyanidin-3-O-sophoroside | C27H31O16 | 7.03 | 611.161 | 1.9012 | 3.4138 | 0.3886 | |
39 | Cyanidin-3-gentiobioside | C27H31O16 | 6.50 | 611.161 | 0.0140 | 0.0244 | 0.0036 | |
40 | Cyanidin-3-O-xyloside | C20H19O10 | 9.81 | 419.098 | 0.7835 | 1.4511 | 0.1159 | |
41 | Cyanidin-3-O-glucoside | C21H21O11 | 7.60 | 449.109 | 641.2958 | 1091.5414 | 191.0501 | |
42 | Cyanidin-3-O-sambubioside | C26H29O15 | 7.71 | 581.151 | 1.9455 | 3.5407 | 0.3502 | |
43 | Cyanidin-3-O-rhamnoside | C21H21O10 | 10.76 | 433.113 | 0.0018 | 0.0000 | 0.0036 | |
44 | Cyanidin-rutinoside-rhamnoside | C33H41O19 | 11.12 | 741.224 | 0.0009 | 0.0000 | 0.0018 | |
45 | Pelargonidin-3-O-(6″-O-acetyl) galactoside | C23H23O11 | 10.26 | 475.124 | 0.0035 | 0.0000 | 0.0071 | Pelargonidin |
46 | Pelargonidin-3-O-galactoside | C21H21O10 | 7.86 | 433.113 | 0.0047 | 0.0000 | 0.0093 | |
47 | Pelargonidin-3-O-glucoside | C21H21O10 | 8.55 | 433.113 | 5.9417 | 10.7787 | 1.1047 | |
48 | Pelargonidin-3-O-sambubioside | C26H29O14 | 8.66 | 565.156 | 0.0048 | 0.0095 | 0.0000 |
No | Gene Name | Transcriptome Number | Length of ORF (bp) | Length of Amino Acid (aa) | Complete or Incomplete Sequence | NCBI Accession of Z. officinale | Length of Z. officinale Amino Acid (aa) | Query Cover (%) | E-Value |
---|---|---|---|---|---|---|---|---|---|
1 | ZsPAL | Unigene7157 | 2163 | 720 | Complete | XP_042378359.1 | 719 | 99 | 0 |
2 | ZsC4H-1 | Unigene8556 | 1512 | 503 | Complete | XP_042449483.1 | 503 | 96 | 0 |
3 | ZsC4H-2 | Unigene40519 | 1512 | 503 | Complete | XP_042465304.1 | 503 | 99 | 0 |
4 | ZsCHS-1 | Unigene17217 | 1188 | 395 | Complete | XP_042470361.1 | 395 | 99 | 0 |
5 | ZsCHS-2 | Unigene18623 | 1176 | 391 | Complete | XP_042434725.1 | 391 | 99 | 0 |
6 | ZsCHI | Unigene3000 | 642 | 213 | Complete | XP_042397410.1 | 213 | 99 | 2 × 10−131 |
7 | ZsF3H | Unigene17179 | 1164 | 387 | Complete | XP_042448017.1 | 376 | 94 | 0 |
8 | ZsF3′H | DN165_c2_g1 | 1560 | 519 | Complete | XP_042383089.1 | 519 | 96 | 0 |
9 | ZsF3′5′H-1 | Unigene14062 | 1536 | 511 | Complete | XP_042414732.1 | 513 | 99 | 0 |
10 | ZsF3′5′H-2 | Unigene14166 | 1536 | 511 | Complete | XP_042431580.1 | 511 | 99 | 0 |
11 | ZsF3′5′H-3 | DN4439_c0_g1 | 1542 | 513 | Complete | XP_042381450.1 | 513 | 88 | 0 |
12 | ZsF3′5′H-4 | Unigene13527 | 1536 | 511 | Complete | XP_042399460.1 | 515 | 99 | 0 |
13 | ZsDFR | DN13806_c2_g1 | 1077 | 358 | Complete | XP_042421830.1 | 357 | 99 | 0 |
14 | ZsANS | Unigene16060 | 1098 | 365 | Complete | XP_042431763.1 | 365 | 95 | 0 |
15 | Zs3GT | Unigene13244 | 1419 | 472 | Complete | XP_042420251.1 | 472 | 99 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, D.; Wang, T.; Zhao, Q.; Tan, G. Metabolic Profiling and Transcriptome Analysis Provide Insights into the Anthocyanin Types and Biosynthesis in Zingiber striolatum Diels Flower Buds in Three Planting Modes. Agronomy 2024, 14, 1414. https://doi.org/10.3390/agronomy14071414
Zhou D, Wang T, Zhao Q, Tan G. Metabolic Profiling and Transcriptome Analysis Provide Insights into the Anthocyanin Types and Biosynthesis in Zingiber striolatum Diels Flower Buds in Three Planting Modes. Agronomy. 2024; 14(7):1414. https://doi.org/10.3390/agronomy14071414
Chicago/Turabian StyleZhou, Dan, Tianhong Wang, Qian Zhao, and Guofei Tan. 2024. "Metabolic Profiling and Transcriptome Analysis Provide Insights into the Anthocyanin Types and Biosynthesis in Zingiber striolatum Diels Flower Buds in Three Planting Modes" Agronomy 14, no. 7: 1414. https://doi.org/10.3390/agronomy14071414
APA StyleZhou, D., Wang, T., Zhao, Q., & Tan, G. (2024). Metabolic Profiling and Transcriptome Analysis Provide Insights into the Anthocyanin Types and Biosynthesis in Zingiber striolatum Diels Flower Buds in Three Planting Modes. Agronomy, 14(7), 1414. https://doi.org/10.3390/agronomy14071414