The Influence of X-ray Radiation on the Morphological, Biochemical, and Molecular Changes in Copiapoa tenuissima Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and X-ray Treatment
2.2. Biochemical Analyses
2.3. Molecular Analyses
2.4. Statistical Analyses
3. Results
3.1. Assessment of Seedling Color and Morphological Characteristics of Seedlings Obtained from Seeds Exposed to X-ray Radiation
3.2. Biochemical Analyses of Plant Pigments of Seedlings Obtained from Seeds Depending on X-ray Radiation
3.3. Molecular Analysis of Seedlings Obtained from Seeds Following In Vitro Exposure to X-ray Irradiation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoa, A.; Le Roux, J.J.; Richardson, D.M.; Wilson, J.R.U. Level of environmental threat posed by horticultural trade in Cactaceae. Conserv. Biol. 2017, 31, 1066–1075. [Google Scholar] [CrossRef] [PubMed]
- Walter, H.; Mächler, W. An old acquaintance from the Guanillos Valley (Prov. de Atacama, Chile) is finally validated. CactusWorld 2006, 24, 185–192. [Google Scholar]
- Larridon, I.; Shaw, K.; Cisternas, M.A.; Paizanni Guillén, A.; Sharrock, S.; Oldfield, S.; Goetghebeur, P.; Samain, M.S. Is there a future for the Cactaceae genera Copiapoa, Eriosyce and Eulychnia? A status report of a prickly situation. Biodivers. Conserv. 2014, 23, 1249–1287. [Google Scholar] [CrossRef]
- Larridon, I.; Walter, H.E.; Guerrero, P.C.; Duarte, M.; Cisternas, M.A.; Hernández, C.P.; Bauters, K.; Asselman, P.; Goetghebeur, P.; Samain, M.S. An integrative approach to understanding the evolution and diversity of Copiapoa (Cactaceae), a threatened endemic Chilean genus from the Atacama Desert. Am. J. Bot. 2015, 102, 1506–1520. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.F. The Cactus Family; Timber Press: Portland, OR, USA, 2001. [Google Scholar]
- Cullen, J.; Knees, S.G.; Cubey, H.S. The European Garden Flora Flowering Plants: A Manual for the Identification of Plants Cultivated in Europe, Both Out-Of-Doors and under Glass; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Święcicki, W.K.; Surma, M.; Koziara, W.; Skrzypczak, G.; Szukała, J.; Bartkowiak-Broda, J.; Zimny, J.; Banaszak, Z.; Marciniak, K. Nowoczesne technologie w produkcji roślinnej—Przyjazne dla człowieka i środowiska. Pol. J. Agron. 2011, 7, 102–112. [Google Scholar]
- Botelho, F.B.; Rodrigues, C.S.; Bruzi, A.T. Ornamental Plant Breeding. Ornam. Food Sci. Ornam. Hortic. 2015, 21, 9–16. [Google Scholar] [CrossRef]
- Broertjes, C. Mutation breeding of chrysanthemums. Euphytica 1966, 15, 156–162. [Google Scholar] [CrossRef]
- Broertjes, C.; Koene, P.; Pronk, T.H. Radiation-induced low-temperature tolerant cultivars of Chrysanthemum morifolium Ram. Euphytica 1983, 32, 97–101. [Google Scholar] [CrossRef]
- Broertjes, C.; van Harten, A. Applied Mutation Breeding for Vegetatively Propagated Crops; Elsevier: Amsterdam, The Netherlands, 1988; pp. 29–59. [Google Scholar]
- Zalewska, M. In vitro adventitious bud techniques as a tool in creation of new chrysanthemum cultivars. In Floriculture. Role of Tissue Culture and Molecular Techniques; Datta, S.K., Chakrabarty, D., Eds.; Pointer Publishers: Jaipur, India, 2010; Volume 196. [Google Scholar]
- Adabi, R.; Rezaei, A. Influence of mild γ-irradiation on growth and paclitaxel biosynthesis in hazel (Corylus avellana L.) in vitro culture. Plant Cell Tissue Organ Cult. 2024, 156, 6. [Google Scholar] [CrossRef]
- Tanaka, A.; Shikazono, N.; Hase, Y. Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J. Radiat. Res. 2010, 51, 223–233. [Google Scholar] [CrossRef]
- Pathirana, R. Plant mutation breeding in agriculture. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2011, 6, 1–20. [Google Scholar] [CrossRef]
- Bala, M.; Singh, K.P. In vitro mutagenesis of rose (Rosa hybrida L.) explants using gamma-radiation to induce novel flower colour mutations. J. Hort. Sci. Biotechnol. 2013, 88, 462–468. [Google Scholar] [CrossRef]
- Melsen, K.; van de Wouw, M.; Contreras, R. Mutation Breeding in Ornamentals. HortScience 2021, 56, 1154–1165. [Google Scholar] [CrossRef]
- Schum, A. Mutation breeding in ornamentals: An efficient breeding method? Acta Hort. 2003, 612, 47–60. [Google Scholar] [CrossRef]
- Collard, B.C.Y.; Mackill, D.J. Start codon targeted (SCoT) polymorphism: A simple. novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep. 2009, 27, 86–93. [Google Scholar] [CrossRef]
- Satya, P.; Karan, M.; Jana, S.; Mitra, S.; Sharma, A.; Karmakar, P.G.; Ray, D.P. Start codon targeted (SCoT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie (Boehmeria nivea L. Gaudich.), a premium textile fiber producing species. Meta Gene 2015, 3, 62–70. [Google Scholar] [CrossRef]
- Zeng, B.; Yan, H.D.; Huang, L.K.; Wang, Y.C.; Wu, J.H.; Huang, X.; Zhang, A.L.; Wang, C.R.; Mu, Q. Orthogonal design in the optimization of a Start Codon Targeted (SCoT) PCR system in Roegneria kamoji Ohwi. Genet. Mol. Res. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- Amom, T.; Nongdam, P. The use of molecular marker methods in plants: A review. Int. J. Curr. Res. Rev. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Xutian, C.; Rui, D.; Wenxian, L.; Yanrong, W.; Zhipeng, L. Optimizing Sample Size to Assess the Genetic Diversity in Common Vetch (Vicia sativa L.) Populations Using Start Codon Targeted (SCoT) Markers. Molecules 2017, 22, 567. [Google Scholar] [CrossRef]
- Zeng, B.; Huang, X.; Huang, L.K.; Zhang, J.; Yan, H.D.; Luo, D.; Liang, H.; Yuan, Y. Optimization of SCoT-PCR reaction system in Dactylis glomerata by orthogonal design. Genet. Mol. Res. 2015, 14, 3052–3061. [Google Scholar] [CrossRef]
- Xiong, F.; Zhong, R.; Han, Z. Start Codon Targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol. Biol. Rep. 2011, 38, 3487–3494. [Google Scholar] [CrossRef]
- Lema-Rumińska, J.; Zalewska, M. Changes in flower colour among Lady group of chrysanthemum (Dendranthema grandiflora Tzvelev) as a result of mutation breeding. Folia Hort. 2005, 17, 61–72. [Google Scholar]
- Licznerski, P.; Lema-Rumińska, J.; Michałowska, E.; Tymoszuk, A.; Winiecki, J. Effect of X-rays on Seedling Pigment, Biochemical Profile, and Molecular Variability in Astrophytum spp. Agronomy 2023, 13, 2732. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- RHSCC; The Royal Horticultural Society: London, UK, 1966.
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterisazacion by UV-VIS Spectroscopy. In Current Protocols in Food Analytical Chemistry; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Wettstein, D. Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Exp. Cell Res. 1957, 12, 427–506. [Google Scholar] [CrossRef]
- Harborne, J.B. Comparative biochemistry of the flavonoids. Phytochemistry 1967, 6, 1569–1573. [Google Scholar] [CrossRef]
- Huff, D.R.; Peakall, R.; Smouse, P.E. RAPD variation within and among natural populations of outcrossing buffalograss Buchloe dactyloides (Nutt) Engelm. Theoret. Appl. Genet. 1993, 86, 927–934. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Saini, H.; Thakur, R.; Gill, R.; Tyagi, K.; Goswami, M. CRISPR/Cas9-gene editing approaches in plant breeding. GM Crops Food 2023, 14, 1–17. [Google Scholar] [CrossRef]
- Holme, I.B.; Gregersen, P.L.; Brinch-Pedersen, H. Induced Genetic Variation in Crop Plants by Random or Targeted Mutagenesis: Convergence and Differences. Front. Plant Sci. 2019, 10, 1468. [Google Scholar] [CrossRef]
- Tymoszuk, A.; Kulus, D. Silver nanoparticles induce genetic, biochemical, and phenotype variation in chrysanthemum. Plant Cell Tissue Organ Cult. 2020, 143, 331–344. [Google Scholar] [CrossRef]
- Miler, N.; Jędrzejczyk, I.; Jakubowski, S.; Winiecki, J. Ovaries of Chrysanthemum Irradiated with High-Energy Photons and High-Energy Electrons Can Regenerate Plants with Novel Traits. Agronomy 2021, 11, 1111. [Google Scholar] [CrossRef]
- Nasri, F.; Zakizadeh, H.; Vafaee, Y.; Mozafari, A.A. In vitro mutagenesis of Chrysanthemum morifolium cultivars using ethylmethanesulphonate (EMS) and mutation assessment by ISSR and IRAP markers. Plant Cell Tissue Organ Cult. 2021, 149, 657–673. [Google Scholar] [CrossRef]
- Kulus, D.; Tymoszuk, A.; Jędrzejczyk, I.; Winiecki, J. Gold nanoparticles and electromagnetic irradiation in tissue culture systems of bleeding heart: Biochemical, physiological, and (cyto) genetic effects. Plant Cell Tissue Organ Cult. 2022, 149, 715–734. [Google Scholar] [CrossRef]
- Datta, S.K.D. Improvement of ornamental plants through induced mutation. In Recent Advances in Genetics and Cytogenetics; Farook, S.A., Khan, I.A., Eds.; Premier Publishing House: Hyderabad, India, 1988. [Google Scholar]
- Jerzy, M.; Lubomski, M. Adventitious shoot formation on ex vitro derived leaf explants of Gerbera jamesonii. Sci. Hort. 1991, 47, 115–124. [Google Scholar] [CrossRef]
- Ahloowalia, B.S.; Maluszyński, M. Induced mutations—A new paradigm in plant breeding. Euphytica 2001, 118, 167–173. [Google Scholar] [CrossRef]
- Sedaghathoor, S.; Sharifi, F.; Eslami, A. Effect of chemical mutagens and X-rays on morphological and physiological traits of tulips. Inter. J. Exp. Bot. 2017, 86, 252–257. [Google Scholar]
- Reznik, N.; Subedi, B.S.; Weizman, S.; Friesem, G.; Carmi, N.; Yedidia, I.; Sharon-Cohen, M. Use of X-ray mutagenesis to increase genetic diversity of Zantedeschia aethiopica for Early Flowering, Improved Tolerance to Bacterial Soft Rot, and Higher Yield. Agronomy 2021, 11, 2537. [Google Scholar] [CrossRef]
- Jankowicz-Cieślak, J.; Hofinger, B.J.; Jarc, L.; Junttila, S.; Galik, B.; Gyenesei, A.; Ingelbrecht, I.L.; Till, B.J. Spectrum and Density of Gamma and X-ray Induced Mutations in a Non-Model Rice Cultivar. Plants 2022, 11, 3232. [Google Scholar] [CrossRef]
- Al-Enezi, N.A.; Al-Khayri, J.M. Alterations of DNA, ions and photosynthetic pigments content in date palm seedlings induced by X-irradiation. Int. J. Agric. Biol. 2012, 14, 329–336. [Google Scholar]
- Al-Enezi, N.A.; Al-Khayri, J.M. Effect of X-irradiation on proline accumulation, growth, and water content of date palm (Phoenix dactylifera L.) seedlings. J. Biol. Sci. 2012, 12, 146–153. [Google Scholar] [CrossRef]
- Bush, S.R.; Earle, E.D.; Langhans, R.W. Plantlets from petal segments, petal epidermis, and shoot tips of the periclinal chimera Chrysanthemum morifolium ‘Indianapolis’. Am. J. Bot. 1976, 63, 729–737. [Google Scholar] [CrossRef]
- Bartley, G.E.; Scolnik, P.A. Plant carotenoids: Pigments for photoprotection, visual attractant and human health. Plant Cell 1995, 7, 1027–1038. [Google Scholar] [CrossRef]
- Demmig-Addams, B.; Gilmore, A.M.; Addams, W.W. Carotenoids 3: In vivo function of carotenoids in higher plants. FASEB J. 1996, 10, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Lefsrud, M.G.; Kopsell, D.A.; Kopsell, D.E.; Curran-Celentano, J. Air temperature affects biomass and carotenoid pigment accumulation in kale and spinach grown in a controlled environment. Hort. Sci. 2005, 40, 2026–2030. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Kopsell, D.E.; Curran-Celentano, J. Carotenoid pigments in kale are influenced by nitrogen concentration and form. J. Sci. Food Agricult. 2007, 87, 900–907. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sasaki, N.; Ohmiya, A. Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. Plant J. 2008, 54, 733–749. [Google Scholar] [CrossRef] [PubMed]
- Kondo, E.; Nakayama, M.; Kameari, N.; Tanikawa, N.; Morita, Y.; Akita, Y.; Hase, Y.; Tanaka, A.; Ishizaka, H. Red-purple flower due to delphinidin 3,5-diglucoside, a novel pigment for Cyclamen spp., generated by ion-beam irradiation. Plant Biotechnol. 2009, 26, 565–569. [Google Scholar] [CrossRef]
- Dhawi, F.; Al-Khayri, J.; Hassan, E. Static Magnetic Field Influence on Elements Composition in Date Palm (Phoenix dactylifera L.). Res. J. Agric. Biol. Sci. 2009, 5, 161–166. [Google Scholar]
- Pick Kiong Ling, A.; Chia, J.Y.; Hussein, S.; Harun, A.R. Physiological Responses of Citrus sinensis to Gamma Irradiation. World App. Sci. J. 2008, 5, 12–19. [Google Scholar]
- Abu, J.D.; Duodu, G.; Minnaar, A. Effects of γ-irradiation on some physicochemical and thermal properties of cowpea (Vigna unguiculata L. Walp) starch. Food Chem. 2006, 95, 386–393. [Google Scholar] [CrossRef]
- Lema-Rumińska, J.; Michałowska, E.; Licznerski, P.; Kulpa, D. Genetic diversity of important horticultural cacti species from the genus Astrophytum and Frailea established using ISSR and SCoT markers. Acta Sci. Pol. Agricult. 2022, 21, 3–14. [Google Scholar] [CrossRef]
Primer | Sequence 5′-3′ |
---|---|
S3 | CAACAATGGCTACCACCG |
S4 | CAACAATGGCTACCACCT |
S8 | CAACAATGGCTACCACGT |
S12 | ACGACATGGCGACCAACG |
S13 | ACGACATGGCGACCATCG |
S25 | ACCATGGCTACCACCGGG |
S33 | CCATGGCTACCACCGCAG |
No. of Samples | X-ray Dose [Gy] | Seedling’s Color/RHSCC Code |
---|---|---|
1 | 0 | brown/176 B |
2 | 0 | green/144 A |
3 | 15 | brown/176 B |
4 | 15 | green/144 A |
5 | 15 | yellow-cream/158 C |
6 | 20 | brown/176 B |
7 | 20 | green/144 C |
8 | 20 | yellow-cream/158 B |
9 | 25 | brown/176 B |
10 | 25 | green/144 A |
11 | 25 | orange-brown/163 A |
12 | 25 | yellow-cream/158 B |
13 | 50 | brown/176 B |
14 | 50 | green/144 A |
15 | 50 | orange-brown/163 A |
16 | 50 | yellow-cream/158 B |
X-ray Dose [Gy] | Seedlings | ||||
---|---|---|---|---|---|
Fresh Weight [mg] | Epicotyl and Hypocotyl Length [mm] | Epicotyl Width [mm] | Longest Root Length [mm] | GR [%] | |
0 (control) | 33.4 ± 2.99 b | 4.34 ± 1.08 a | 3.04 ± 1.47 a | 8.90 ± 3.86 a | 28.2 ± 1.28 b |
15 | 32.5 ± 4.73 b | 4.00 ± 1.80 b | 2.84 ± 1.39 ab | 7.38 ± 4.57 b | 28.4 ± 1.46 b |
20 | 16.0 ± 1.64 d | 3.52 ± 0.74 c | 2.20 ± 0.53 c | 6.14 ± 3.94 c | 27.0 ± 1.60 b |
25 | 41.7 ± 4.45 a | 4.42 ± 1.60 a | 3.04 ± 1.03 a | 9.92 ± 4.53 a | 43.2 ± 4.26 a |
50 | 20.0 ± 2.65 c | 3.44 ± 1.23 c | 2.46 ± 0.86 c | 10.46 ± 4.91 a * | 28.6 ± 2.33 b |
X-ray Dose (Gy) | Color of Seedling (RHSCC Code) | Concentration of Pigments [mg dm−3] | |||
---|---|---|---|---|---|
Anthocyanins | Carotenoids | Chlorophyll a | Chlorophyll b | ||
0 | 176 B, C | 26.22 ± 0.02 c * | 5.28 ± 0.00 k | 7.32 ± 0.01 m | 3.30 ± 0.03 k |
144 A, C | 2.83 ± 0.01 l | 52.40 ± 0.08 a | 87.32 ± 0.25 a | 29.73 ± 0.16 d | |
15 | 176 B, C | 17.75 ± 0.08 h | 23.10 ± 0.04 e | 31.23 ± 0.02 f | 16.32 ± 0.02 g |
144 A, C | 46.76 ± 0.23 a | 39.38 ± 0.07 b | 36.74 ± 0.00 d | 36.97 ± 0.00 a | |
158 B, C | 24.18 ± 0.92 d | 21.20 ± 0.00 f | 17.47 ± 0.11 j | 24.00 ± 0.69 e | |
20 | 176 B, C | 14.36 ± 0.07 j | 13.22 ± 0.02 i | 20.38 ± 0.03 h | 26.84 ± 0.16 a |
144 A, C | 6.06 ± 0.02 k | 37.87 ± 0.05 c | 43.81 ± 0.05 b | 35.04 ± 0.04 b | |
158 B, C | 11.29 ± 0.00 i | 22.78 ± 0.48 e | 19.85 ± 0.17 i | 23.84 ± 0.15 e | |
25 | 176 B, C | 21.72 ± 0.04 f | 19.06 ± 0.04 g | 29.95 ± 0.03 g | 13.23 ± 0.05 h |
144 A, C | 22.46 ± 0.10 e | 32.84 ± 0.08 d | 36.36 ± 0.17 e | 30.09 ± 0.28 d | |
158 B, C | 7.61 ± 0.00 i | 18.00 ± 0.00 f | 16.60 ± 0.12 k | 20.83 ± 0.00 f | |
50 | 176 B,C | 29.20 ± 0.10 b | 13.64 ± 0.06 h | 15.99 ± 0.11 l | 7.61 ± 0.15 j |
144 A, C | 19.27 ± 0.07 g | 33.21 ± 0.27 d | 40.03 ± 0.42 c | 33.63 ± 0.82 c | |
163 A | 0.44 ± 0.00 ł | 8.45 ± 0.07 j | 8.37 ± 0.19 ł | 10.53 ± 0.43 i |
Primer | No. of Products | Band Size Range (bp) | No. of loci | Total loci | Polymorphism (%) | ||
---|---|---|---|---|---|---|---|
Monomorphic | Polymorphic | Specific | |||||
S3 | 143 | 366–2806 | 1 | 14 | 4 | 19 | 94.74 |
S4 | 78 | 455–2787 | 1 | 11 | 0 | 12 | 91.67 |
S8 | 49 | 956–2123 | 0 | 7 | 2 | 9 | 100.0 |
S12 | 158 | 319–3009 | 1 | 15 | 3 | 19 | 94.74 |
S13 | 177 | 365–1949 | 7 | 8 | 0 | 15 | 53.33 |
S25 | 175 | 362–3733 | 2 | 21 | 6 | 29 | 93.10 |
S33 | 146 | 873–2546 | 2 | 14 | 3 | 19 | 89.47 |
Total | 926 | - | 14 | 90 | 18 | 122 | - |
Summary AMOVA | |||||
---|---|---|---|---|---|
Source of Variation | df | SS | MS | Est. Var. | % |
Among Populations | 15 | 850.69 | 56.71 | 18.90 | 100% |
Within Populations | 32 | 0.00 | 0.00 | 0.00 | 0% |
Total | 47 | 850.69 | 18.90 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licznerski, P.; Michałowska, E.; Tymoszuk, A.; Winiecki, J.; Lema-Rumińska, J. The Influence of X-ray Radiation on the Morphological, Biochemical, and Molecular Changes in Copiapoa tenuissima Seedlings. Agronomy 2024, 14, 2155. https://doi.org/10.3390/agronomy14092155
Licznerski P, Michałowska E, Tymoszuk A, Winiecki J, Lema-Rumińska J. The Influence of X-ray Radiation on the Morphological, Biochemical, and Molecular Changes in Copiapoa tenuissima Seedlings. Agronomy. 2024; 14(9):2155. https://doi.org/10.3390/agronomy14092155
Chicago/Turabian StyleLicznerski, Piotr, Emilia Michałowska, Alicja Tymoszuk, Janusz Winiecki, and Justyna Lema-Rumińska. 2024. "The Influence of X-ray Radiation on the Morphological, Biochemical, and Molecular Changes in Copiapoa tenuissima Seedlings" Agronomy 14, no. 9: 2155. https://doi.org/10.3390/agronomy14092155
APA StyleLicznerski, P., Michałowska, E., Tymoszuk, A., Winiecki, J., & Lema-Rumińska, J. (2024). The Influence of X-ray Radiation on the Morphological, Biochemical, and Molecular Changes in Copiapoa tenuissima Seedlings. Agronomy, 14(9), 2155. https://doi.org/10.3390/agronomy14092155