Predicting Sugarcane Yield Through Temporal Analysis of Satellite Imagery During the Growth Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental and Commercial Fields
2.1.1. Field Experiment Methodology
2.1.2. Data for Commercial Areas
2.2. Dataset Description
2.2.1. Vegetation Indices
2.2.2. Weather Data
2.2.3. Variables Definitions
- : Tons of cane per hectare (TCH, t ha−1);
- : Block (1, 2, 3, and 4). In this case, being a factor with more than two levels, three dummy variables are required ();
- : Varieties (V1, V2, V3, and V4). Here, being a factor with more than two levels, three dummy variables are defined ();
- : Cycle (cane plant and first ratoon);
- : Accumulated precipitation (during the growth phase);
- : Mean EVI (during the growth phase);
- : Mean EVI2 (during the growth phase);
- : Mean GNDVI (during the growth phase);
- : Mean HUE (during the growth phase);
- : Mean NDVI (during the growth phase);
- : Mean OSAVI (during the growth phase).
2.3. Statistical and Machine Learning Models
2.3.1. Evaluation of Variance Inflation Factor
2.3.2. Heteroskedastic GA Regression Model
- Gamma Probability Distribution
- Structure and Estimation
2.3.3. Covariate Selection with GAIC
2.3.4. Machine Learning Approaches: Random Forest and Neural Networks
- Random Forest
- n_estimators: Search space: [100, 200, 300, 400, 500]; Best found: 400.
- max_depth: Search space: [10, 20, 30, 40, 50]; Best found: 50.
- min_samples_split: Search space: [2, 5, 10]; Best found: 10.
- min_samples_leaf: Search space: [1, 2, 4]; Best found: 4.
- max_features: Search space: [‘auto’, ‘sqrt’, ‘log2’]; Best found: ‘log2’.
- Neural Network
- Weighting Step: Each input feature value () is multiplied by its associated weight (), resulting in a weighted input ().
- Summation Step: The weighted inputs are aggregated through summation, yielding
- Transfer Step: An activation function f, also referred to as a transfer function, is applied to the summed value S. This function transforms the linear combination of inputs into the perceptron’s final output y. The output can be mathematically expressed as follows:
- solver: Search space: [‘adam’, ‘lbfgs’, ‘sgd’]; Best found: ‘sgd’.
- momentum: Search space: [0.1, 0.3, 0.5, 0.7, 0.9]; Best found: 0.5.
- max_iter: Search space: [200, 500, 1000, 2000, 5000]; Best found: 500.
- learning_rate_init: Search space: [0.001, 0.01, 0.1]; Best found: 0.1.
- learning_rate: Search space: [‘constant’, ‘invscaling’, ‘adaptive’]; Best found: ‘invscaling’.
- hidden_layer_sizes: Search space: [(50,), (100,), (50, 50), (100, 50), (50, 100), (100, 100)]; Best found: (100,).
- alpha: Search space: [0.0001, 0.001, 0.01, 0.1]; Best found: 0.01.
- activation: Search space: [‘identity’, ‘logistic’, ‘tanh’, ‘relu’]; Best found: ‘tanh’.
3. Results and Discussion
3.1. Heteroskedastic GA Regression—Training Data from the Experimental Data
3.1.1. Statistical Model
3.1.2. Descriptive Statistics of the Field Experiment
3.1.3. Heteroskedastic GA Regression Results
3.1.4. Descriptive Statistics of the Commercial Area Data
3.2. Machine Learning Models Results
3.3. Model Performance Analysis for Field Experiment Data
3.4. Performance Evaluation of the Model Using Data from Commercial Sugarcane Fields
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Sugar Cane Production. 2024. Available online: https://ourworldindata.org/grapher/sugar-cane-production (accessed on 10 December 2024).
- Molin, J.P.; Wei, M.C.F.; da Silva, E.R.O. Challenges of Digital Solutions in Sugarcane Crop Production: A Review. AgriEngineering 2024, 6, 925–946. [Google Scholar] [CrossRef]
- Amankulova, K.; Farmonov, N.; Akramova, P.; Tursunov, I.; Mucsi, L. Comparison of PlanetScope, Sentinel-2, and Landsat 8 Data in Soybean Yield Estimation Within-Field Variability with Random Forest Regression. Heliyon 2023, 9, e17432. [Google Scholar] [CrossRef] [PubMed]
- Prataviera, F.; Hashimoto, E.M.; Ortega, E.M.M.; Savian, T.V.; Cordeiro, G.M. Interval-Censored Regression with Non-Proportional Hazards with Applications. Stats 2023, 6, 643–656. [Google Scholar] [CrossRef]
- dos Santos, D.P.; Soares, A.; de Medeiros, G.; Christofoletti, D.; Arantes, C.S.; Vasconcelos, J.C.S.; Speranza, E.A.; Barbosa, L.A.F.; Antunes, J.F.G.; Cançado, G.M.A. Evaluation of Sugarcane Yield Response to a Phosphate-Solubilizing Microbial Inoculant: Using an Aerial Imagery-Based Model. Sugar Technol. 2024, 26, 143–159. [Google Scholar] [CrossRef]
- Vasconcelos, J.C.S.; Ortega, E.M.M.; Cordeiro, G.M.; Vasconcelos, J.S.; Biaggioni, M.A.M. Estimation and Diagnostic for a Partially Linear Regression Based on an Extension of the Rice Distribution. REVSTAT Stat. J. 2024, 22, 433–454. [Google Scholar] [CrossRef]
- Luciano, A.C.S.; Picoli, M.C.A.; Duft, D.G.; Rocha, J.V.; Leal, M.R.L.V.; le Maire, G. Empirical Model for Forecasting Sugarcane Yield on a Local Scale in Brazil Using Landsat Imagery and Random Forest Algorithm. Comput. Electron. Agric. 2021, 184, 106063. [Google Scholar] [CrossRef]
- Oliveira, R.P.; Barbosa, M.R., Jr.; Pinto, A.A.; Oliveira, J.L.P.; Zerbato, C.; Furlani, C.E.A. Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning. Agronomy 2022, 12, 1992. [Google Scholar] [CrossRef]
- Sunil, G.L.; Nagaveni, V.; Shruthi, U. A Review on Prediction of Crop Yield using Machine Learning Techniques. In Proceedings of the 2022 IEEE Region 10 Symposium (TENSYMP), Mumbai, India; 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Taud, H.; Mas, J. Multilayer Perceptron (MLP). In Geomatic Approaches for Modeling Land Change Scenarios; Olmedo, M.T.C., Paegelow, M., Mas, J.F., Escobar, F., Eds.; Springer: Cham, Switzerland, 2018; pp. 451–455. ISBN 978-3-319-60800-6. [Google Scholar]
- Kushwah, J.S.; Kumar, A.; Patel, S.; Soni, R.; Gawande, A.; Gupta, S. Comparative study of regressor and classifier with decision tree using modern tools. Mater. Today Proc. 2022, 56, 3571–3576. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Jeferson Lobato Fernandes, N.; Esquerdo, J. Sugarcane yield prediction in Brazil using NDVI time series and neural networks ensemble. Int. J. Remote Sens. 2017, 38, 4631–4644. [Google Scholar] [CrossRef]
- Tripathi, A.; Tiwari, R.; Tiwari, S. A deep learning multi-layer perceptron and remote sensing approach for soil health based crop yield estimation. Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102959. [Google Scholar] [CrossRef]
- Everingham, Y.; Sexton, J.; Skocaj, D.; Inman-Bamber, G. Accurate prediction of sugarcane yield using a random forest algorithm. Agron. Sustain. Dev. 2016, 36, 27. [Google Scholar] [CrossRef]
- Dimov, D.; Uhl, J.; Löw, F.; Seboka, G. Sugarcane yield estimation through remote sensing time series and phenology metrics. Smart Agric. Technol. 2022, 2, 100046. [Google Scholar] [CrossRef]
- Silva, N.; Chaves, M.; Luciano, A.; Sanches, I.; Almeida, C.; Adami, M. Sugarcane yield estimation using satellite remote sensing data in empirical or mechanistic modeling: A systematic review. Remote Sens. 2024, 16, 863. [Google Scholar] [CrossRef]
- Song, W.; Mu, X.; Ruan, G.; Gao, Z.; Li, L.; Yan, G. Estimating Fractional Vegetation Cover and the Vegetation Index of Bare Soil and Highly Dense Vegetation with a Physically Based Method. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 168–176. [Google Scholar] [CrossRef]
- Wiegand, C.L.; Richardson, A.J.; Escobar, D.E.; Gerbermann, A.H. Vegetation Indices in Crop Assessments. Remote Sens. Environ. 2001, 35, 105–119. [Google Scholar] [CrossRef]
- Jackson, R.D.; Huete, A.R. Interpreting Vegetation Indices. Prev. Vet. Med. 1991, 11, 185–200. [Google Scholar] [CrossRef]
- Frazier, A.E.; Hemingway, B.L. A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sens. 2021, 13, 3930. [Google Scholar] [CrossRef]
- Evett, I.; Jackson, G.; Lambert, J.; McCrossan, S. The impact of the principles of evidence interpretation on the structure and content of statements. Sci. Justice 2000, 40, 233–239. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation From EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Escadafal, R. Soil Spectral Properties and Their Relationships with Environmental Parameters-Examples from Arid Regions. In Imaging Spectrometry—A Tool for Environmental Observations; Hill, J., Mégier, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 71–87. ISBN 0-7923-2965-1. [Google Scholar]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Abstracts of the 3rd ERTS Symposium, Washington, DC, USA, 1973; NASA/Goddard Space Flight Center: Greenbelt, MD, USA, 1973; pp. 309–317. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Bégué, A.; Lebourgeois, V.; Bappel, E.; Todoroff, P.; Pellegrino, A.; Baillarin, F.; Siegmund, B. Spatio-temporal variability of sugarcane fields and recommendations for yield forecast using NDVI. Int. J. Remote Sens. 2010, 31, 5391–5407. [Google Scholar]
- Mulianga, B.; Bégué, A.; Simoes, M.; Todoroff, P. Forecasting regional sugarcane yield based on time integral and spatial aggregation of MODIS NDVI. Remote Sens. 2013, 5, 2184–2199. [Google Scholar] [CrossRef]
- Siqueira, D.; Vaz, C.; Silva, F.; Ferreira, E.; Speranza, E.; Franchini, J.; Galbieri, R.; Belot, J.; Souza, M.; Perina, F.; et al. Estimating Cotton Yield in the Brazilian Cerrado Using Linear Regression Models from MODIS Vegetation Index Time Series. AgriEngineering 2024, 6, 947–961. [Google Scholar] [CrossRef]
- Zúñiga Espinoza, C.; Khot, L.; Sankaran, S.; Jacoby, P. High resolution multispectral and thermal remote sensing-based water stress assessment in subsurface irrigated grapevines. Remote Sens. 2017, 9, 961. [Google Scholar] [CrossRef]
- Haseeb, M.; Tahir, Z.; Mahmood, S.; Tariq, A. Winter wheat yield prediction using linear and nonlinear machine learning algorithms based on climatological and remote sensing data. Inf. Process. Agric. 2025. [Google Scholar] [CrossRef]
- Fu, H.; Lu, J.; Li, J.; Zou, W.; Tang, X.; Ning, X.; Sun, Y. Winter Wheat Yield Prediction Using Satellite Remote Sensing Data and Deep Learning Models. Agronomy 2025, 15, 205. [Google Scholar] [CrossRef]
- Lim, H.; Kim, S. Applications of Machine Learning Technologies for Feedstock Yield Estimation of Ethanol Production. Energies 2024, 17, 7. [Google Scholar] [CrossRef]
- Hamzeh, S.; Naseri, A.; Alavipanah, S.; Mojaradi, B.; Bartholomeus, H.; Clevers, J.; Behzad, M. Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 282–290. [Google Scholar]
- Chang, C.; Lin, J.; Chang, J.; Huang, Y.; Lai, M.; Chang, Y. Hybrid Deep Neural Networks with Multi-Tasking for Rice Yield Prediction Using Remote Sensing Data. Agriculture 2024, 14, 513. [Google Scholar] [CrossRef]
- Sarkar, S.; Osorio Leyton, J.; Noa-Yarasca, E.; Adhikari, K.; Hajda, C.; Smith, D. Integrating Remote Sensing and Soil Features for Enhanced Machine Learning-Based Corn Yield Prediction in the Southern US. Sensors 2025, 25, 543. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, L.A.; Sentelhas, P.C.; Pedra, G.U. Assessment of NASA/POWER satellite-based weather system for Brazilian conditions and its impact on sugarcane yield simulation. Int. J. Climatol. 2018, 38, 1571–1581. [Google Scholar] [CrossRef]
- NASA. Power Dav. 2022. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 30 October 2024).
- Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; John Wiley & Sons: New York, NY, USA, 1980; ISBN 978-0-4710-5856-4. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Publisher: Chapman & Hall: London, UK, 1989; ISBN 978-0-412-31760-6. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; Wiley: New York, NY, USA, 1994; Volume 1, ISBN 978-0-471-58495-7. [Google Scholar]
- Stasinopoulos, D.M.; Rigby, R.A. Generalized Additive Models for Location Scale and Shape (Gamlss) in R. J. Stat. Softw. 2008, 23, 18637. [Google Scholar] [CrossRef]
- Nelder, J.A.; Wedderburn, R.W. Generalized Linear Models. J. R. Stat. Soc. Ser. Stat. Soc. 1972, 135, 370–384. [Google Scholar] [CrossRef]
- Stasinopoulos, M.D.; Rigby, R.A.; Heller, G.Z.; Voudouris, V.; De Bastiani, F. Flexible Regression and Smoothing: Using Gamlss in R; CRC Press: New York, NY, USA, 2017; ISBN 978-1-138-19790-9. [Google Scholar]
- Ripley, B.; Venables, B.; Bates, D.M.; Hornik, K.; Gebhardt, A.; Firth, D.; Ripley, M.B. Package ‘Mass’. Cran R 2013, 538, 113–120. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Breiman, L.; Friedman, J.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Chapman and Hall/CRC: New York, NY, USA, 1984; ISBN 978-1-3151-3947-0. [Google Scholar] [CrossRef]
- Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufman: Amsterdam, The Netherlands, 1993; ISBN 1-55860-238-0. [Google Scholar]
- Bishop, C.M. Neural Networks for Pattern Recognition; Clarendon Press: Oxford, UK, 1995; ISBN 978-0-1985-3864-6. [Google Scholar]
- van Buuren, S.; Fredriks, M. Worm plot: Simple diagnostic device for modelling growth reference curves. Stat. Med. 2001, 20, 1259–1277. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Q. A Survey on Multi-Task Learning. IEEE Trans. Knowl. Data Eng. 2022, 34, 5586–5609. [Google Scholar] [CrossRef]
- Noa-Yarasca, E.; Osorio Leyton, J.M.; Angerer, J.P. Deep Learning Model Effectiveness in Forecasting Limited-Size Aboveground Vegetation Biomass Time Series: Kenyan Grasslands Case Study. Agronomy 2024, 14, 349. [Google Scholar] [CrossRef]
- Jayaprakash, A. A Comparison of Deep Learning Methods for Time Series Forecasting with Limited Data. Master’s Thesis, Freie Universität Berlin, Berlin, Germany, 2023. [Google Scholar]
- Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine learning algorithm validation with a limited sample size. PLoS ONE 2019, 14, e0224365. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; pp. 110–115. [Google Scholar]
- Domingos, P. A few useful things to know about machine learning. Commun. ACM 2012, 55, 78–87. [Google Scholar] [CrossRef]
- Hestness, J.; Narang, S.; Ardalani, N.; Diamos, G.F.; Jun, H.; Kianinejad, H.; Wang, H. Deep learning scaling is predictable, empirically. arXiv 2017, arXiv:1712.00409. [Google Scholar] [CrossRef]
- Manning, W.G.; Mullahy, J. Estimating log models: To transform or not to transform? J. Health Econ. 2001, 20, 461–494. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, UK, 2014; pp. 7–8. [Google Scholar]
Sugarcane Varieties | Maturity Timing |
---|---|
CTC1007 (V1) | Normal |
RB966928 (V2) | Short |
CV0618 (V3) | Medium |
CV7870 (V4) | Normal |
Variable | VIF |
---|---|
Block | 1.340 |
Varieties | 1.311 |
Cycle (cane plant and first ratoon) | 6.325 |
Accumulated precipitation (growth phase) | 7.626 |
Mean EVI (growth phase) | 1931.188 |
Mean EVI 2 (growth phase) | 51,741.630 |
Mean GNDVI (growth phase) | 45.490 |
Mean HUE (growth phase) | 17.241 |
Mean NDVI (growth phase) | 68,859.164 |
Mean OSAVI (growth phase) | 207,649.379 |
Variable | VIF |
---|---|
Varieties | 1.014 |
Cycle (cane plant and first ratoon) | 1.226 |
Accumulated precipitation (growth phase) | 1.521 |
Mean GNDVI (growth phase) | 1.344 |
Category | Mean | Standard Deviation | |
---|---|---|---|
Varieties() | V1 | 111.30 | 26.10 |
V2 | 120.80 | 27.89 | |
V3 | 122.21 | 23.16 | |
V4 | 115.53 | 30.28 | |
Cycle () | Cane Plant | 106.93 | 27.60 |
First ratoon | 127.98 | 22.37 |
Parameter | Effects | Parameter | Estimate | SE | p-Value |
---|---|---|---|---|---|
Intercept | 2.1760 | 0.1472 | <0.0001 * | ||
0.0670 | 0.0232 | 0.0039 * | |||
0.0846 | 0.0242 | 0.0005 * | |||
0.0060 | 0.0238 | 0.8000 | |||
0.2214 | 0.0169 | <0.0001 * | |||
4.1985 | 0.2546 | <0.0001 * | |||
Intercept | −3.5966 | 0.7345 | <0.0001 * | ||
−0.0008 | 0.0003 | 0.0033 * | |||
3.4889 | 1.3358 | 0.0095 * |
Category | Mean | Standard Deviation | |
---|---|---|---|
Varieties () | V2 | 105.17 | 21.34 |
V3 | 104.45 | 15.86 | |
Cycle () | Cane Plant | 119.46 | 4.36 |
First ratoon | 89.92 | 9.11 |
Model | (Train) | MAE (Train) | RMSE (Train) | (Test) | MAE (Test) | RMSE (Test) |
---|---|---|---|---|---|---|
Heteroskedastic GA Regression Model | 0.61 | 13.7743 | 15.6185 | 0.62 | 14.0355 | 14.7355 |
Random Forest | 0.74 | 10.5100 | 13.9100 | 0.69 | 12.0100 | 16.0500 |
Neural Network | 0.71 | 11.3200 | 14.7800 | 0.67 | 12.4300 | 16.3900 |
Model | MAE | RMSE | |
---|---|---|---|
Heteroskedastic GA Regression Model | 0.89 | 3.9037 | 5.0870 |
Random Forest | 0.67 | 43.4500 | 44.9900 |
Neural Network | 0.04 | 110.7900 | 112.4900 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcelos, J.C.S.; Arantes, C.S.; Speranza, E.A.; Antunes, J.F.G.; Barbosa, L.A.F.; Cançado, G.M.d.A. Predicting Sugarcane Yield Through Temporal Analysis of Satellite Imagery During the Growth Phase. Agronomy 2025, 15, 793. https://doi.org/10.3390/agronomy15040793
Vasconcelos JCS, Arantes CS, Speranza EA, Antunes JFG, Barbosa LAF, Cançado GMdA. Predicting Sugarcane Yield Through Temporal Analysis of Satellite Imagery During the Growth Phase. Agronomy. 2025; 15(4):793. https://doi.org/10.3390/agronomy15040793
Chicago/Turabian StyleVasconcelos, Julio Cezar Souza, Caio Simplicio Arantes, Eduardo Antonio Speranza, João Francisco Gonçalves Antunes, Luiz Antonio Falaguasta Barbosa, and Geraldo Magela de Almeida Cançado. 2025. "Predicting Sugarcane Yield Through Temporal Analysis of Satellite Imagery During the Growth Phase" Agronomy 15, no. 4: 793. https://doi.org/10.3390/agronomy15040793
APA StyleVasconcelos, J. C. S., Arantes, C. S., Speranza, E. A., Antunes, J. F. G., Barbosa, L. A. F., & Cançado, G. M. d. A. (2025). Predicting Sugarcane Yield Through Temporal Analysis of Satellite Imagery During the Growth Phase. Agronomy, 15(4), 793. https://doi.org/10.3390/agronomy15040793