MSPB-YOLO: High-Precision Detection Algorithm of Multi-Site Pepper Blight Disease Based on Improved YOLOv8
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of Pepper Blight Dataset
2.1.1. Data Collection
2.1.2. Image Augmentation
2.2. Methods
2.2.1. YOLOv8 Model
2.2.2. Backbone Network Optimization RVB-EMA Module
2.2.3. Multi-Scale Feature Fusion Network RepGFPN
2.2.4. DIOU
2.2.5. MSPB-YOLO
3. Results
3.1. The Indicators of Evaluation
3.2. Experimental Parameter Configuration
3.3. Training Curve
3.4. Visualization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Idrees, S.; Hanif, M.A.; Ayub, M.A.; Hanif, A.; Ansari, T.M. Chapter 9—Chili Pepper. In Medicinal Plants of South Asia; Hanif, M.A., Nawaz, H., Khan, M.M., Byrne, H.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 113–124. [Google Scholar] [CrossRef]
- Moreira-Morrillo, A.A.; Monteros-Altamirano, Á.; Reis, A.; Garcés-Fiallos, F.R. Phytophthora capsici on Capsicum Plants: A Destructive Pathogen in Chili and Pepper Crops. In Capsicum; Yllano, O.B., Ed.; IntechOpen: Rijeka, Croatia, 2022; Chapter 4. [Google Scholar] [CrossRef]
- Gevens, A.; Donahoo, R.; Lamour, K.; Hausbeck, M. Characterization of Phytophthora capsici from Michigan surface irrigation water. Phytopathology 2007, 97, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Granke, L.L.; Quesada-Ocampo, L.; Lamour, K.; Hausbeck, M.K. Advances in research on Phytophthora capsici on vegetable crops in the United States. Plant Dis. 2012, 96, 1588–1600. [Google Scholar] [PubMed]
- Chen, W.; Gao, H.; Ding, D.; Dong, X.; Luo, X. Chili pepper pests recognition based on HSV color space and convolutional neural networks. In Proceedings of the 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 26–28 May 2023; pp. 241–245. [Google Scholar]
- Bhagat, M.; Kumar, D.; Kumar, S. Bell pepper leaf disease classification with LBP and VGG-16 based fused features and RF classifier. Int. J. Inf. Technol. 2023, 15, 465–475. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar]
- Dai, G.; Hu, L.; Fan, J. DA-ActNN-YOLOV5: Hybrid YOLO v5 Model with Data Augmentation and Activation of Compression Mechanism for Potato Disease Identification. Comput. Intell. Neurosci. 2022, 2022, 6114061. [Google Scholar]
- Srivastava, A.; Rawat, B.S.; Bajpai, P.; Dhondiyal, S.A. Potato Leaf Disease Detection Method Based on the YOLO Model. In Proceedings of the 2024 4th International Conference on Data Engineering and Communication Systems (ICDECS), Bangalore, India, 15–16 March 2024; pp. 1–5. [Google Scholar]
- Huang, Y.; Zhong, Y.; Zhong, D.; Yang, C.; Wei, L.; Zou, Z.; Chen, R. Pepper-YOLO: An lightweight model for green pepper detection and picking point localization in complex environments. Front. Plant Sci. 2024, 15, 1508258. [Google Scholar]
- Mathew, M.P.; Mahesh, T.Y. Leaf-based disease detection in bell pepper plant using YOLO v5. Signal Image Video Process. 2022, 16, 123–130. [Google Scholar]
- Dey, B.; Haque, M.M.U.; Khatun, R.; Ahmed, R. Comparative performance of four CNN-based deep learning variants in detecting Hispa pest, two fungal diseases, and NPK deficiency symptoms of rice (Oryza sativa). Comput. Electron. Agric. 2022, 202, 107340. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y.; Michael, K.; Fang, J.; Wong, C.; Yifu, Z.; Montes, D.; et al. ultralytics/yolov5: V6. 2-yolov5 classification models, apple m1, reproducibility, clearml and deci. ai integrations. Zenodo 2022. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Pang, J.; Chen, K.; Shi, J.; Feng, H.; Ouyang, W.; Lin, D. Libra r-cnn: Towards balanced learning for object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 821–830. [Google Scholar]
- Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6154–6162. [Google Scholar]
- Sharma, R.; Kukreja, V.; Bordoloi, D. Deep learning meets agriculture: A faster RCNN based approach to pepper leaf blight disease detection and multi-classification. In Proceedings of the 2023 4th International Conference for Emerging Technology (INCET), Belgaum, India, 26–28 May 2023; pp. 1–5. [Google Scholar]
- Zhang, K.; Wu, Q.; Chen, Y. Detecting soybean leaf disease from synthetic image using multi-feature fusion faster R-CNN. Comput. Electron. Agric. 2021, 183, 106064. [Google Scholar] [CrossRef]
- Alhwaiti, Y.; Khan, M.; Asim, M.; Siddiqi, M.H.; Ishaq, M.; Alruwaili, M. Leveraging YOLO deep learning models to enhance plant disease identification. Sci. Rep. 2025, 15, 7969. [Google Scholar] [CrossRef] [PubMed]
- Bezabh, Y.A.; Salau, A.O.; Abuhayi, B.M.; Mussa, A.A.; Ayalew, A.M. CPD-CCNN: Classification of pepper disease using a concatenation of convolutional neural network models. Sci. Rep. 2023, 13, 15581. [Google Scholar] [CrossRef] [PubMed]
- Kundu, N.; Rani, G.; Dhaka, V.S.; Gupta, K.; Nayaka, S.C.; Vocaturo, E.; Zumpano, E. Disease detection, severity prediction, and crop loss estimation in MaizeCrop using deep learning. Artif. Intell. Agric. 2022, 6, 276–291. [Google Scholar] [CrossRef]
- Maurmo, D.; Gagliardi, M.; Ruga, T.; Zumpano, E.; Vocaturo, E. Boosting Agricultural Diagnostics: Cassava Disease Detection with Transfer Learning and Explainable AI. In Proceedings of the 2024 IEEE International Conference on Big Data (BigData), Los Alamitos, CA, USA, 15–18 December 2024; pp. 4702–4710. [Google Scholar] [CrossRef]
- Gangwar, A.; Dhaka, V.S.; Rani, G.; Khandelwal, S.; Zumpano, E.; Vocaturo, E. Time and Space Efficient Multi-Model Convolution Vision Transformer for Tomato Disease Detection from Leaf Images with Varied Backgrounds. Comput. Mater. Contin. 2024, 79, 117–142. [Google Scholar] [CrossRef]
- Wan, L.; Zhu, W.; Dai, Y.; Zhou, G.; Chen, G.; Jiang, Y.; Zhu, M.; He, M. Identification of Pepper Leaf Diseases Based on TPSAO-AMWNet. Plants 2024, 13, 1581. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X. Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model. Plant Methods 2020, 16, 123–130. [Google Scholar] [CrossRef]
- Yang, S.; Yao, J.; Teng, G. Corn leaf spot disease recognition based on improved YOLOv8. Agriculture 2024, 14, 666. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, H.; Qin, F.; Chen, Y.; Zou, J.; Liu, B.; Li, Z.; Liu, C.; Wan, F.; Qian, W.; et al. YOLO-IAPs: A Rapid Detection Method for Invasive Alien Plants in the Wild Based on Improved YOLOv9. Agriculture 2024, 14, 2201. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Z.; Zhao, H.; Tang, C.; Liu, B.; Li, Z.; Wan, F.; Qian, W.; Qiao, X. YOLO-YSTs: An Improved YOLOv10n-Based Method for Real-Time Field Pest Detection. Agronomy 2025, 15, 575. [Google Scholar] [CrossRef]
- Liao, Y.; Li, L.; Xiao, H.; Xu, F.; Shan, B.; Yin, H. YOLO-MECD: Citrus Detection Algorithm Based on YOLOv11. Agronomy 2025, 15, 687. [Google Scholar] [CrossRef]
- Zhang, C.; Yun, L.; Yang, C.; Chen, Z.; Cheng, F. LRNTRM-YOLO: Research on Real-Time Recognition of Non-Tobacco-Related Materials. Agronomy 2025, 15, 489. [Google Scholar] [CrossRef]
- Sun, W.; Xu, M.; Xu, K.; Chen, D.; Wang, J.; Yang, R.; Chen, Q.; Yang, S. CSGD-YOLO: A Corn Seed Germination Status Detection Model Based on YOLOv8n. Agronomy 2025, 15, 128. [Google Scholar] [CrossRef]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021; pp. 13713–13722. [Google Scholar]
- Gao, X.; Ding, J.; Zhang, R.; Xi, X. YOLOv8n-CA: Improved YOLOv8n Model for Tomato Fruit Recognition at Different Stages of Ripeness. Agronomy 2025, 15, 188. [Google Scholar] [CrossRef]
- Zhong, M.; Li, Y.; Gao, Y. Research on Small-Target Detection of Flax Pests and Diseases in Natural Environment by Integrating Similarity-Aware Activation Module and Bidirectional Feature Pyramid Network Module Features. Agronomy 2025, 15, 187. [Google Scholar] [CrossRef]
- Guo, F.; Li, J.; Liu, X.; Chen, S.; Zhang, H.; Cao, Y.; Wei, S. Improved YOLOv7-Tiny for the Detection of Common Rice Leaf Diseases in Smart Agriculture. Agronomy 2024, 14, 2796. [Google Scholar] [CrossRef]
- Duan, Y.; Han, W.; Guo, P.; Wei, X. YOLOv8-GDCI: Research on the Phytophthora Blight Detection Method of Different Parts of Chili Based on Improved YOLOv8 Model. Agronomy 2024, 14, 2734. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Lin, Z.; Han, J.; Ding, G. Repvit: Revisiting mobile cnn from vit perspective. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–21 June 2024; pp. 15909–15920. [Google Scholar]
- Ouyang, D.; He, S.; Zhang, G.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient multi-scale attention module with cross-spatial learning. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Liu, Y.; Wang, Q.; Zheng, Q.; Liu, Y. YOLO-Wheat: A More Accurate Real-Time Detection Algorithm for Wheat Pests. Agriculture 2024, 14, 2244. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, Y.; Chen, W.; Huang, Y.; Zhang, Y.; Sun, X. Damo-yolo: A report on real-time object detection design. arXiv 2022, arXiv:2211.15444. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- Wan, D.; Lu, R.; Shen, S.; Xu, T.; Lang, X.; Ren, Z. Mixed local channel attention for object detection. Eng. Appl. Artif. Intell. 2023, 123, 106442. [Google Scholar]
- Yang, L.; Zhang, R.Y.; Li, L.; Xie, X. Simam: A simple, parameter-free attention module for convolutional neural networks. In Proceedings of the International Conference on Machine Learning. PMLR, Virtual, 18–24 July 2021; pp. 11863–11874. [Google Scholar]
- Xu, W.; Wan, Y. ELA: Efficient Local Attention for Deep Convolutional Neural Networks. arXiv 2024, arXiv:2403.01123. [Google Scholar]
- Union, G.I.O. A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar]
- Zhang, Y.F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 2022, 506, 146–157. [Google Scholar]
- Gevorgyan, Z. SIoU loss: More powerful learning for bounding box regression. arXiv 2022, arXiv:2205.12740. [Google Scholar]
- Vocaturo, E.; Rani, G.; Dhaka, V.S.; Zumpano, E. AI-driven agriculture: Opportunities and challenges. In Proceedings of the 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023; pp. 3530–3537. [Google Scholar]
Target | Leaf | Fruit | Stem |
---|---|---|---|
Totals | 1184 | 812 | 824 |
Item | Specification |
---|---|
Deep Learning Framework | PyTorch 1.13.1 |
Data Processing Environment | Python 3.8.19 |
Operating System | Windows 11 |
GPU Parallel Computing Library | CUDA 11.1 |
GPU | NVIDIA RTX 3070 Laptop GPU |
CPU | AMD Ryzen 7 5800H |
Model | Params(M) | GFLOPs | P(%) | R(%) | mAP@0.5(%) |
---|---|---|---|---|---|
Faster-RCNN | 41.39 | 208 | 78.2 | 83.5 | 80.7 |
Cascade-RCNN | 69.29 | 236 | 81.6 | 85.1 | 82.8 |
Yolov5n | 2.5 | 7.1 | 85.9 | 89.3 | 87.7 |
Yolov7n-Tiny | 6.0 | 13.2 | 84.2 | 88.7 | 86.6 |
Yolov10n | 2.7 | 8.4 | 91.2 | 87.2 | 93.8 |
Yolov11n | 2.8 | 6.3 | 91 | 82.9 | 92.9 |
Ours | 2.9 | 7.3 | 93.1 | 92.6 | 96.4 |
RVB | RVB-EMA | GFPN | DIoU | Params(M) | GFLOPs | P(%) | R(%) | mAP@0.5(%) |
---|---|---|---|---|---|---|---|---|
- | - | - | - | 3.0 | 8.1 | 90.9 | 88.9 | 94.2 |
✓ | - | - | - | 2.3 | 6.4 | 92.7 | 90 | 94.4 |
- | ✓ | - | - | 2.6 | 7.1 | 93.1 | 89 | 94.9 |
- | ✓ | ✓ | - | 2.9 | 7.3 | 94.1 | 91 | 95.9 |
- | ✓ | ✓ | ✓ | 2.9 | 7.3 | 93.1 | 92.6 | 96.4 |
Yolov8 | MLCA | SimAM | SE | ELA | EMA | P(%) | R(%) | mAP@0.5(%) |
---|---|---|---|---|---|---|---|---|
✓ | - | - | - | - | - | 92.7 | 93.1 | 95.8 |
✓ | ✓ | - | - | - | - | 93.5 | 89.9 | 95.2 |
✓ | - | ✓ | - | - | - | 94.4 | 90.5 | 95.3 |
✓ | - | - | ✓ | - | - | 90.5 | 91.7 | 94.5 |
✓ | - | - | - | ✓ | - | 92.7 | 89.3 | 94.6 |
✓ | - | - | - | - | ✓ | 94.1 | 91.0 | 95.9 |
CIoU | GIoU | EIoU | SIoU | DIoU | P(%) | R(%) | mAP@0.5(%) |
---|---|---|---|---|---|---|---|
✓ | - | - | - | - | 94.1 | 91 | 95.9 |
- | ✓ | - | - | - | 93.3 | 91.3 | 95.8 |
- | - | ✓ | - | - | 86.5 | 83.3 | 89.7 |
- | - | - | ✓ | - | 94.4 | 91.1 | 95.8 |
- | - | - | - | ✓ | 93.1 | 92.6 | 96.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Shao, Z.; Chen, Y.; Zeng, H.; Chen, J. MSPB-YOLO: High-Precision Detection Algorithm of Multi-Site Pepper Blight Disease Based on Improved YOLOv8. Agronomy 2025, 15, 839. https://doi.org/10.3390/agronomy15040839
Zheng X, Shao Z, Chen Y, Zeng H, Chen J. MSPB-YOLO: High-Precision Detection Algorithm of Multi-Site Pepper Blight Disease Based on Improved YOLOv8. Agronomy. 2025; 15(4):839. https://doi.org/10.3390/agronomy15040839
Chicago/Turabian StyleZheng, Xiaodong, Zichun Shao, Yile Chen, Hui Zeng, and Junming Chen. 2025. "MSPB-YOLO: High-Precision Detection Algorithm of Multi-Site Pepper Blight Disease Based on Improved YOLOv8" Agronomy 15, no. 4: 839. https://doi.org/10.3390/agronomy15040839
APA StyleZheng, X., Shao, Z., Chen, Y., Zeng, H., & Chen, J. (2025). MSPB-YOLO: High-Precision Detection Algorithm of Multi-Site Pepper Blight Disease Based on Improved YOLOv8. Agronomy, 15(4), 839. https://doi.org/10.3390/agronomy15040839