Effects of Different Planting Patterns on Growth and Yield Components of Foxtail Millet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Experimental Design
2.3. Determination Items and Methods
2.3.1. Plant Height
2.3.2. Leaf Area
2.3.3. Biomass
Aboveground Fresh Weight
Dry Weight of the Aboveground Parts
2.4. Photosynthetic Physiological Characteristics of Leaves
2.4.1. Blade Gas Exchange Parameters
2.4.2. Kinetic Parameters of Chlorophyll Fluorescence
2.5. Yield Components
2.6. Data Processing
3. Results
3.1. Effect of Different Planting Patterns on Agronomic Characters of Foxtail Millet
3.1.1. Effects of Different Planting Patterns on Plant Height
3.1.2. Effects of Different Planting Patterns on Leaf Area
3.1.3. Effects of Different Planting Patterns on Aboveground Biomass
3.2. Effects of Different Planting Patterns on Light and Characteristics of Foxtail Millet Leaves
3.2.1. Effects of Different Planting Patterns on the Net Photosynthetic Rate (Pn)
3.2.2. Effects of Different Planting Patterns on the Transpiration Rate (Tr)
3.2.3. Effects of Different Planting Patterns on Stomatal Conductance (Gs)
3.2.4. Effects of Different Planting Patterns on Intercellular Carbon Dioxide Concentration (Ci)
3.3. Effects of Different Planting Patterns on Chlorophyll Fluorescence Parameters
3.4. Effects of Different Planting Patterns on Yield Components
4. Discussion
4.1. Effects of Different Planting Patterns on Agronomic Characters of Foxtail Millet
4.2. Effects of Different Planting Patterns on Photosynthetic Physiological Characteristics of Foxtail Millet
4.3. Effects of Different Planting Patterns on Foxtail Millet Yield and Yield Components
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Natàlia, A.; Guillem, P. The Origins of Millet Cultivation (Panicum miliaceum and Setaria italica) Long Iberia’s Mediterranean Area from the 13th to the 2nd Century Bc. Agronomy 2023, 13, 584. [Google Scholar]
- Wang, Y.; Wang, X.; Sun, S.; Jin, C.; Su, J.; Wei, J.; Luo, X.; Wen, J.; Wei, T.; Sahu, S.; et al. GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet. Nat. Commun. 2022, 13, 5913. [Google Scholar] [PubMed]
- Hunt, H.V.; Przelomska, N.A.S.; Campana, M.G.; Cockram, J.; Bligh, H.F.J.; Kneale, C.J.; Romanova, O.I.; Malinovskaya, E.V.; Jones, M.K. Population genomic structure of Eurasian and African foxtail millet landrace accessions injected from genotyping-by-sequencing. Plant Genome 2021, 14, e20081. [Google Scholar]
- Sharma, S.; Saxena, D.C.; Riar, C.S. Characters of β-glucan extracted from raw and germinated foxtail (Setaria italica) and kodo (Paspalum scrobiculatum) millets. Int. J. Biol. Macromol. 2018, 118, 141–148. [Google Scholar]
- Bi, S.; Wang, A.; Wang, Y.; Xu, X.; Luo, D.; Shen, Q.; Wu, J. Effect of cooking on aroma profiles of Chinese foxtail millet (Setaria italica) and correlation with sensory quality. Food Chem. 2019, 289, 680–692. [Google Scholar] [CrossRef] [PubMed]
- Barton, L.; Newsome, S.D.; Chen, F.; Bettinger, R.L. Agricultural origins and the isotopic identity of domination in northern China. Proc. Natl. Acad. Sci. USA 2009, 106, 5523–5528. [Google Scholar]
- Yang, Y.; Li, K.; Wei, S.; Guga, S.; Zhang, J.; Wang, C. Spatial-temporal distribution characteristics and hazard assessment of millet drought disaster in Northern China under climate change. Agric. Water Manag. 2022, 272, 107849. [Google Scholar]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and pattern for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar]
- Yang, N.; Sun, Z.; Feng, L.; Zheng, M.; Chi, D.; Meng, W.; Hou, Z.; Bai, W.; Li, K. Plastic Film Mulching for Water-Efficient Agricultural Applications and Degradable Films Materials Development Research. Mater. Manuf. Process. 2015, 30, 143–154. [Google Scholar]
- Fischer, R.A.; Moreno Ramos, O.H.; Ortiz Monasterio, I.; Sayre, K.D. Yield response to plant density, row spacing and raised beds in low latitude spring while with ample oil resources: An update. Field Crops Res. 2019, 232, 95–105. [Google Scholar]
- Zhang, G.; Hou, Y.; Zhang, H.; Fan, H.; Wen, X.; Han, J.; Liao, Y. Optimizing planting pattern and nitrogen application rate improved green yield and water use efficiency for rain-fed spring maize by promoting root growth and reducing redundant root growth. Soil Tillage Res. 2022, 220, 105385. [Google Scholar]
- Du, X.; Jin, W.; Chen, X.; Kong, L.; Wu, W.; Xi, M. Raised Bed Planting Pattern Impacts Root Growth and Nitrogen use efficiency of Post Rice Wheat. J. Soil Sci. Plant Nutr. 2024, 24, 4086–4098. [Google Scholar]
- Hörbe, T.A.N.; Amado, T.J.C.; Reimche, G.B.; Schwalbert, R.A.; Santi, A.L.; Nienow, C. Optimization of Within-Row Plant Spacing Increases NutritionalStatus and Corn Yield: A Comparative Study. Agronomy 2016, 108, 1759–2163. [Google Scholar] [CrossRef]
- Zhang, X.; Kamran, M.; Li, F.; Xue, X.; Jia, Z.; Han, Q. Optimizing fertilization under ridge-furrow rainfall harvesting system to improve foxtail millet yield and water use in a semiarid region, China. Agric. Water Manag. 2020, 227, 105852. [Google Scholar]
- Dai, Y.; Liao, Z.; Lai, Z.; Bai, Z.; Zhang, F.; Li, Z.; Fan, J. Interactive effects of planting pattern, supplementary irrigation and planting density on grain yield, water-nitrogen use efficiency and economic benefit of winter wheel in a semi-humid but through-prone region of northwest China. Agric. Water Manag. 2023, 287, 108438. [Google Scholar]
- Zhong, Y.; Zhang, T.; Qiao, W.; Liu, W.; Qiao, Y.; Li, Y.; Liu, M.; Ma, Y.; Dong, B. Optimizing canopy spacing configuration enhances foxtail millet green yield and water production by improving stalk lodging persistence in the North China Plain. Eur. J. Agron. 2024, 158, 127230. [Google Scholar]
- Greveniotis, V.; Zotis, S.; Sioki, E.; Ipsilandis, C. Field Population Density Effects on Field Yield and Morphological Characters of Maize. Agriculture 2019, 9, 160. [Google Scholar]
- Gonzalez, V.H.; Lee, E.A.; Lukens, L.N.; Swanton, C.J. The relationship between floret number and plant dry matter accumulation varies with early season stress in maize (Zea mays L.). Field Crops Res. 2019, 238, 129–138. [Google Scholar]
- Ge, J.; Xu, Y.; Zhao, M.; Zhan, M.; Cao, C.; Chen, C.; Zhou, B. Effect of Climatic Conditions Caused by Seasons on Maize Yield, Kernel Filling and Weight in Central China. Agronomy 2022, 12, 1816. [Google Scholar] [CrossRef]
- Liang, S.; Ren, C.; Wang, P.; Wang, X.; Li, Y.; Xu, F.; Wang, Y.; Dai, Y.; Zhang, L.; Li, X.; et al. Improvements of emergence and tuber yield of potato in a seasonal spring arid region using plastic film mulching only on the ridge. Field Crops Res. 2018, 223, 57–65. [Google Scholar]
- ElHendawy, S.; Alsamin, B.; Mohammed, N.; AlSuhaibani, N.; Refay, Y.; Alotaibi, M.; Tola, E.; Mattar, M.A. Combining Planting Patterns with Mulching Bolsters the Water Water Content, Growth, Yield, and Water Use Efficiency of Spring Wheat Under Limited Water Supply in Arid Regions. Agronomy 2022, 12, 1298. [Google Scholar] [CrossRef]
- Zhao, X.; Qin, X.; Li, T.; Cao, H.; Xie, Y. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China. Journal of Integrated. Agriculture 2023, 22, 1560–1573. [Google Scholar] [CrossRef]
- Wu, K.; Zhou, F.; Zhou, S.; Zhang, X.; Wu, B. Enhancing root lodging persistence of maize with twin plants in wide-narrow rows: A case study. Plant Prod. Sci. 2020, 23, 286–296. [Google Scholar] [CrossRef]
- Liu, S.; Jian, S.; Li, X.; Wang, Y. Wide-Narrow Row Planting Pattern Increases Root Lodging Resistance by Adjusting Root Architecture and Root Physiological Activity in Maize (Zea mays L.) in Northeast China. Agriculture 2021, 11, 517. [Google Scholar] [CrossRef]
- Liang, X.; Guo, F.; Feng, Y.; Zhang, J.; Yang, S.; Meng, J.; Li, X.; Wan, S. Single-seed sowing incremented pod yield at a reduced seeding rate by improving root physiological state of Arachis hypogaea. J. Integr. Agric. 2020, 19, 1019–1032. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, W.; Zhang, L.; He, X.; Fan, Y.; Alam, S.; Yuan, X. Effect of Pyrazosulfuron-Methyl on the photosynthetic characteristics and antioxidant systems of foxtail millet. Front. Plant Sci. 2021, 12, 696169. [Google Scholar] [CrossRef]
- Gao, P.; Abbas, H.; Li, F.; Tang, G.; Lv, J.; Zhou, X. Effect of planting methods and tillage practices on soil health and maize productivity. Front. Plant Sci. 2024, 15, 1436011. [Google Scholar] [CrossRef]
- Wang, L.; Yu, X.; Gao, J.; Ma, D.; Liu, H.; Hu, S. Regulation of tilage on grain matter accumulation in maize. Front. Plant Sci. 2024, 15, 1373624. [Google Scholar]
- Qiang, X.; Sun, Z.; Li, X.; Li, S.; Yu, Z.; He, J.; Li, Q.; Han, L.; He, L. The Impacts of Planting Patterns Combined with Irrigation Management Practices on Watermelon Growth, Photosynthesis, and Yield. Plants 2024, 13, 1402. [Google Scholar] [CrossRef]
- Huang, T.; Wu, Q.; Yuan, Y.; Zhang, X.; Sun, R.; Hao, R.; Yang, X.; Li, C.; Qin, X.; Song, F.; et al. Effects of plastic film mulching on yield, water use efficiency, and nitrogen use efficiency of different crops in China: A meta-analysis. Field Crops Res. 2024, 312, 109407. [Google Scholar] [CrossRef]
- Wu, F.; Qiu, Y.; Huang, W.; Guo, S.; Han, Y.; Wang, G.; Li, X.; Lei, Y.; Yang, B.; Xiong, S.; et al. Water and heat resource utilization of cotton under different cropping patterns and their effects on crop biomass and yield formation. Agric. For. Meteorol. 2022, 323, 109091. [Google Scholar]
- Lv, Y.; Wang, J.; Yin, M.; Kang, Y.; Ma, Y.; Jia, Q.; Qi, G.; Jiang, Y.; Lu, Q.; Chen, X. Effects of Planting and Nitrogen Application Patterns on Alfalfa Yield, Quality, Water-Nitrogen Use Efficiency, and Economic Benefits in the Yellow River Irrigation Region of Gansu Province, China. Water 2023, 15, 251. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Yu, X. Effects of mulch and planting methods on Medicago ruthenica seed yield and soil physical-chemical properties. J. Arid Land 2022, 14, 894–909. [Google Scholar]
- Chang, L.; Liu, R.; Yan, J.; Zhang, S. Unperforated film-covered planting contributes to improved film recovery rates and foxtail millet grain yields in sandy soils. Agric. Water Manag. 2024, 294, 108737. [Google Scholar]
- Wang, H.; Zhang, X.; Zhang, G.; Yu, X.; Hou, H.; Fang, Y.; Ma, Y.; Lei, K. Mulching coordinated the seasonal soil hydrothermal relationships and promoted maize productivity in a semi-arid rainfed area on the Loess Plateau. Agric. Water Manag. 2022, 263, 107448. [Google Scholar]
- Wu, L.; Quan, H.; Wu, L.; Zhang, X.; Feng, H.; Ding, D.; Siddique, K. Responses of winter while yield and water production to sowing time and plastic mulching in the Loess Platform. Agric. Water Manag. 2023, 289, 108572. [Google Scholar] [CrossRef]
- Gao, F.; Khan, R.; Yang, L.; Chi, Y.; Wang, Y.; Zhou, X. Uncovering the potentials of long-term straw return and nitrogen supply on subtropical maize (Zea mays L.) photosynthesis and grain yield. Field Crops Res. 2023, 302, 109062. [Google Scholar]
- Yan, Y.; Duan, F.; Li, X.; Zhao, R.; Hou, P.; Zhao, M.; Li, S.; Wang, Y.; Dai, T.; Zhou, W. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density. Plant Physiol. 2024, 195, 2652–2667. [Google Scholar]
- Jiao, F.; Hong, S.; Liu, C.; Ma, Y.; Zhang, M.; Li, Q. Wide-precision planting pattern under different tillage methods affects photosynthesis and yield of winter wheat. Arch. Agron. Soil Sci. 2022, 68, 1352–1368. [Google Scholar] [CrossRef]
- Zhang, X.; Kamran, M.; Xue, X.; Zhao, J.; Cai, T.; Jia, Z.; Zhang, P.; Han, Q. Ridge-furrow mulching system drives the efficient utilization of key production resources and the improvement of maize production in the Loess Platform of China. Soil Tillage Res. 2019, 190, 10–21. [Google Scholar]
- Simkó, A.; Gáspár, G.S.; Kiss, L.; Makleit, P.; Veres, S. Evaluation of Nitrogen Nutrition in Diminishing Water Deficiency at Different Growth Stages of Maize by Chlorophyll Fluorescence Parameters. Plants 2020, 9, 676. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wang, J.; Cui, Y.; Guan, Z.; Yang, L.; Tang, Q.; Sun, Y.; Yang, H.; Wen, X.; Mei, N.; et al. Effects of Row Spacing and Planting Pattern on Photosynthesis, Chlorophyll Fluorescence, and Related Enzyme Activities of Maize Ear Leaf in Maize–Soybean Intercropping. Agronomy 2022, 12, 2503. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, J.; Zhao, J.; Ma, Y.; Li, Q. Effects of delayed irrigation during the jointing stage on the photosynthetic characteristics and yield of winter wheat under different planting patterns. Agric. Water Manag. 2019, 221, 371–376. [Google Scholar]
Year | Total N (g/kg) | Total P (g/kg) | Total K (g/kg) | Organic Matter (g/kg) | Alkaline- Hydrolytic N (mg/kg) | Available P (mg/kg) | Available K (mg/kg) | PH Value |
---|---|---|---|---|---|---|---|---|
2023 | 0.599 | 0.65 | 5.9 | 9.61 | 47.5 | 43.6 | 92 | 8.67 |
2024 | 0.740 | 0.56 | 17.8 | 12.84 | 59.9 | 26.3 | 121.7 | 8.35 |
Planting Pattern | Abbreviation |
---|---|
Hole seeding with film mulching and drip irrigation | HFD |
Hole seeding with naked land and no drip irrigation | HNN |
Hole seeding with film mulching and no drip irrigation | HFN |
Hole seeding with naked land and drip irrigation | HND |
Drill seeding with film mulching and drip irrigation | DFD |
Drill seeding with naked land and no drip irrigation | DNN |
Drill seeding with film mulching and no drip irrigation | DFN |
Drill seeding with naked land and drip irrigation | DND |
Planting Pattern | Leaf Area (cm2) | |||
---|---|---|---|---|
Seedling Stage | Jointing Stage | Booting Stage | Filling Stage | |
HFD | 23.24 ± 4.03 a | 91.62 ± 4.89 a | 103.60 ± 7.26 a | 126.81 ± 9.16 a |
HNN | 9.72 ± 0.94 b | 58.42 ± 4.31 b | 89.78 ± 3.51 a | 100.19 ± 2.77 b |
HFN | 9.48 ± 0.56 b | 67.61 ± 9.54 b | 101.66 ± 5.24 a | 123.10 ± 4.04 a |
HND | 12.12 ± 1.60 b | 87.21 ± 3.43 a | 100.10 ± 6.91 a | 116.23 ± 3.54 ab |
DFD | 16.14 ± 0.48 a | 88.68 ± 6.85 a | 94.67 ± 3.14 a | 131.61 ± 6.01 a |
DNN | 11.98 ± 1.35 b | 62.01 ± 2.23 b | 69.46 ± 3.11 b | 95.64 ± 3.84 b |
DFN | 14.76 ± 1.38 ab | 79.22 ± 5.35 a | 84.06 ± 6.81 ab | 97.67 ± 4.52 b |
DND | 16.89 ± 1.56 a | 81.86 ± 0.34 a | 99.40 ± 9.11 a | 98.29 ± 1.23 b |
Planting Pattern | Leaf Area (cm2) | |||
---|---|---|---|---|
Seedling Stage | Jointing Stage | Booting Stage | Filling Stage | |
HFD | 39.20 ± 0.52 a | 115.15 ± 0.63 a | 96.39 ± 0.69 a | 111.38 ± 0.87 a |
HNN | 27.06 ± 0.70 d | 72.39 ± 0.73 d | 79.31 ± 0.56 d | 91.59 ± 1.51 d |
HFN | 30.71 ± 0.46 c | 100.06 ± 0.83 c | 85.63 ± 0.53 c | 95.02 ± 0.92 c |
HND | 34.40 ± 0.38 b | 108.28 ± 0.66 b | 88.95 ± 0.66 b | 104.83 ± 1.03 b |
DFD | 32.34 ± 0.53 a | 113.97 ± 0.99 a | 99.74 ± 0.81 a | 114.87 ± 0.96 a |
DNN | 20.35 ± 0.30 d | 75.98 ± 0.74 d | 78.49 ± 0.90 d | 81.58 ± 0.78 d |
DFN | 23.70 ± 0.36 c | 82.88 ± 0.87 c | 85.44 ± 0.80 c | 88.95 ± 0.48 c |
DND | 28.56 ± 0.68 b | 89.90 ± 0.64 b | 93.21 ± 0.66 b | 97.99 ± 0.59 b |
Planting Pattern | Fresh Weight of Aboveground Parts (g) | |||
---|---|---|---|---|
Seedling Stage | Jointing Stage | Booting Stage | Filling Stage | |
HFD | 2.31 ± 0.49 a | 32.09 ± 1.42 a | 67.82 ± 2.98 a | 126.69 ± 1.93 a |
HNN | 0.82 ± 0.14 b | 10.89 ± 0.82 c | 43.40 ± 1.43 c | 81.11 ± 2.11 c |
HFN | 0.88 ± 0.16 b | 14.55 ± 1.08 b | 59.03 ± 2.29 b | 86.68 ± 3.24 c |
HND | 1.18 ± 0.12 b | 16.36 ± 1.01 b | 58.41 ± 1.53 b | 107.47 ± 2.50 b |
DFD | 1.56 ± 0.17 a | 30.38 ± 0.76 a | 64.00 ± 2.20 a | 108.97 ± 1.81 a |
DNN | 1.10 ± 0.24 a | 13.78 ± 0.52 c | 31.40 ± 1.55 d | 71.83 ± 1.41 c |
DFN | 1.41 ± 0.16 a | 22.85 ± 0.97 b | 56.17 ± 2.14 c | 74.66 ± 1.37 c |
DND | 1.69 ± 0.25 a | 24.99 ± 0.81 b | 76.67 ± 2.20 b | 98.03 ± 2.10 b |
Planting Pattern | Fresh Weight of Aboveground Parts (g) | |||
---|---|---|---|---|
Seedling Stage | Jointing Stage | Booting Stage | Filling Stage | |
HFD | 3.34 ± 0.06 a | 42.89 ± 1.03 a | 64.35 ± 0.74 a | 119.51 ± 0.79 a |
HNN | 2.23 ± 0.03 d | 28.83 ± 0.70 d | 48.49 ± 0.45 d | 95.17 ± 0.92 d |
HFN | 2.45 ± 0.07 c | 33.46 ± 0.58 c | 51.73 ± 0.69 c | 102.45 ± 1.30 c |
HND | 3.00 ± 0.07 b | 37.11 ± 0.49 b | 55.58 ± 0.61 b | 112.75 ± 1.06 b |
DFD | 3.02 ± 0.05 a | 34.01 ± 0.97 a | 63.43 ± 0.60 a | 130.45 ± 1.12 a |
DNN | 2.26 ± 0.05 d | 23.26 ± 0.69 d | 42.14 ± 0.64 d | 106.26 ± 0.95 d |
DFN | 2.45 ± 0.04 c | 26.92 ± 0.73 c | 45.42 ± 0.48 c | 113.19 ± 0.60 c |
DND | 2.76 ± 0.03 b | 29.49 ± 0.59 b | 58.21 ± 0.56 b | 118.19 ± 0.81 b |
Planting Pattern | Shoot Dry Weight (g) | |||
---|---|---|---|---|
Seedling Stage | Jointing Stage | Booting Stage | Filling Stage | |
HFD | 0.60 ± 0.12 a | 6.52 ± 0.76 a | 15.56 ± 1.04 a | 44.05 ± 1.28 a |
HNN | 0.22 ± 0.02 b | 3.83 ± 0.88 b | 9.21 ± 0.89 b | 25.80 ± 0.64 c |
HFN | 0.24 ± 0.02 b | 5.04 ± 0.48 ab | 12.06 ± 1.13 b | 29.12 ± 1.84 c |
HND | 0.31 ± 0.05 b | 4.45 ± 0.79 ab | 11.24 ± 1.05 b | 33.12 ± 1.11 b |
DFD | 0.39 ± 0.03 a | 6.48 ± 0.43 a | 13.11 ± 0.71 a | 35.91 ± 0.99 a |
DNN | 0.28 ± 0.06 a | 3.11 ± 0.19 c | 5.59 ± 0.79 c | 27.43 ± 1.03 b |
DFN | 0.29 ± 0.02 a | 5.24 ± 0.41 b | 12.74 ± 1.09 b | 27.68 ± 1.11 b |
DND | 0.38 ± 0.04 a | 5.38 ± 0.24 b | 15.53 ± 0.73 ab | 33.27 ± 0.78 a |
Planting Pattern | Shoot Dry Weight (g) | |||
---|---|---|---|---|
Seedling Stage | Jointing Stage | Booting Stage | Filling Stage | |
HFD | 0.60 ± 0.03 a | 9.95 ± 1.05 a | 16.15 ± 0.49 a | 43.47 ± 0.64 a |
HNN | 0.40 ± 0.03 c | 6.58 ± 0.37 c | 10.65 ± 0.49 d | 31.24 ± 0.65 d |
HFN | 0.44 ± 0.02 bc | 7.59 ± 0.46 bc | 12.10 ± 0.22 c | 36.11 ± 0.58 c |
HND | 0.51 ± 0.02 b | 9.11 ± 0.31 ab | 14.25 ± 0.43 b | 39.39 ± 0.39 b |
DFD | 0.58 ± 0.04 a | 9.37 ± 0.16 a | 17.77 ± 0.33 a | 44.93 ± 0.43 a |
DNN | 0.34 ± 0.05 c | 5.31 ± 0.41 d | 10.75 ± 0.14 d | 29.14 ± 0.40 d |
DFN | 0.42 ± 0.05 b c | 6.44 ± 0.30 c | 11.64 ± 0.21 c | 33.01 ± 0.48 c |
DND | 0.49 ± 0.02 ab | 7.53 ± 0.12 b | 14.15 ± 0.13 b | 36.36 ± 1.00 b |
Planting Pattern | Pn (μmol·m−2·s−1) | ||
---|---|---|---|
Jointing Stage | Booting Stage | Filling Stage | |
HFD | 27.30 ± 0.44 a | 28.49 ± 0.53 a | 21.87 ± 1.27 a |
HNN | 11.55 ± 1.19 d | 20.06 ± 0.64 d | 8.64 ± 0.37 c |
HFN | 18.55 ± 0.77 c | 23.60 ± 0.46 c | 11.04 ± 0.34 b |
HND | 22.55 ± 0.86 b | 25.24 ± 0.25 b | 12.62 ± 0.45 b |
DFD | 25.83 ± 0.73 a | 32.07 ± 1.49 a | 16.05 ± 1.21 a |
DNN | 15.13 ± 0.91 d | 19.11 ± 1.65 c | 10.10 ± 0.56 c |
DFN | 19.34 ± 0.48 c | 24.08 ± 0.63 b | 11.51 ± 0.14 bc |
DND | 21.59 ± 0.62 b | 25.64 ± 0.19 b | 12.98 ± 0.41 b |
Planting Pattern | Pn (μmol·m−2·s−1) | ||
---|---|---|---|
Jointing Stage | Booting Stage | Filling Stage | |
HFD | 35.40 ± 0.41 a | 27.56 ± 0.43 a | 31.25 ± 0.42 a |
HNN | 27.87 ± 0.48 d | 22.03 ± 0.51 d | 18.99 ± 0.32 d |
HFN | 29.84 ± 0.34 c | 23.53 ± 0.33 c | 23.41 ± 0.35 c |
HND | 31.66 ± 0.53 b | 24.83 ± 0.38 b | 25.63 ± 0.46 b |
DFD | 32.26 ± 1.21 a | 26.93 ± 0.39 a | 37.42 ± 0.39 a |
DNN | 19.30 ± 1.32 d | 17.25 ± 0.99 d | 19.56 ± 0.43 d |
DFN | 24.87 ± 0.81 c | 21.68 ± 0.69 c | 27.01 ± 0.56 c |
DND | 28.63 ± 1.06 b | 24.08 ± 0.65 b | 29.11 ± 0.33 b |
Planting Pattern | Tr (mmol·m−2·s−1) | ||
---|---|---|---|
Jointing Stage | Booting Stage | Filling Stage | |
HFD | 5.74 ± 0.20 a | 4.97 ± 0.16 a | 4.13 ± 0.38 a |
HNN | 2.31 ± 0.23 d | 3.56 ± 0.18 d | 2.23 ± 0.08 c |
HFN | 4.26 ± 0.28 c | 4.05 ± 0.10 c | 2.60 ± 0.07 bc |
HND | 5.07 ± 0.13 b | 4.50 ± 0.10 b | 2.89 ± 0.08 b |
DFD | 5.07 ± 0.28 a | 5.46 ± 0.26 a | 3.34 ± 0.23 a |
DNN | 2.22 ± 0.16 c | 3.53 ± 0.23 c | 2.14 ± 0.05 c |
DFN | 3.27 ± 0.12 b | 4.39 ± 0.08 c | 2.54 ± 0.10 bc |
DND | 3.76 ± 0.11 b | 4.68 ± 0.13 b | 2.65 ± 0.11 b |
Planting Pattern | Tr (mmol·m−2·s−1) | ||
---|---|---|---|
Jointing Stage | Booting Stage | Filling Stage | |
HFD | 5.62 ± 0.11 a | 4.79 ± 0.05 a | 5.32 ± 0.03 a |
HNN | 4.19 ± 0.06 d | 3.89 ± 0.02 d | 4.36 ± 0.03 d |
HFN | 4.66 ± 0.05 c | 4.04 ± 0.06 c | 4.56 ± 0.08 c |
HND | 5.14 ± 0.04 b | 4.30 ± 0.01 b | 4.81 ± 0.07 b |
DFD | 4.11 ± 0.08 a | 4.21 ± 0.08 a | 6.78 ± 0.04 a |
DNN | 2.64 ± 0.07 d | 3.13 ± 0.06 d | 3.86 ± 0.05 d |
DFN | 3.28 ± 0.04 c | 3.39 ± 0.06 c | 5.09 ± 0.03 c |
DND | 3.65 ± 0.06 b | 3.79 ± 0.04 b | 5.60 ± 0.04 b |
Planting Pattern | Gs (mmol·m−2·s−1) | ||
---|---|---|---|
Jointing Stage | Booting Stage | Filling Stage | |
HFD | 116.32 ± 1.25 a | 184.64 ± 1.15 a | 83.53 ± 1.63 a |
HNN | 63.41 ± 1.08 d | 115.91 ± 1.50 d | 49.06 ± 1.56 d |
HFN | 77.21 ± 1.12 c | 143.89 ± 1.16 c | 58.77 ± 1.42 c |
HND | 92.34 ± 1.28 b | 163.98 ± 1.60 b | 64.77 ± 1.65 b |
DFD | 114.58 ± 1.74 a | 225.95 ± 1.36 a | 70.42 ± 1.90 a |
DNN | 63.91 ± 1.17 d | 140.90 ± 1.39 d | 41.69 ± 0.92 d |
DFN | 82.86 ± 1.07 c | 149.25 ± 1.65 c | 48.11 ± 0.58 c |
DND | 99.85 ± 1.74 b | 181.72 ± 1.18 b | 55.48 ± 1.64 b |
Planting Pattern | Gs (mmol·m−2·s−1) | ||
---|---|---|---|
Jointing Stage | Booting Stage | Filling Stage | |
HFD | 189.10 ± 3.24 a | 143.51 ± 1.09 a | 128.77 ± 1.86 a |
HNN | 136.93 ± 1.16 d | 102.56 ± 0.81 d | 82.68 ± 3.31 d |
HFN | 154.82 ± 2.86 c | 113.59 ± 1.32 c | 94.19 ± 0.82 c |
HND | 164.52 ± 1.43 b | 136.36 ± 1.70 b | 107.37 ± 1.23 b |
DFD | 157.43 ± 3.78 a | 134.23 ± 1.16 a | 195.11 ± 2.89 a |
DNN | 75.72 ± 1.33 d | 84.24 ± 0.53 d | 105.94 ± 1.25 d |
DFN | 105.98 ± 0.88 c | 96.81 ± 1.75 c | 120.15 ± 0.89 c |
DND | 124.65 ± 2.18 b | 104.20 ± 1.96 b | 138.32 ± 2.73 b |
Planting Pattern | Ci (μmol·m−2·s−1) | ||
---|---|---|---|
Jointing Stage | Booting Stage | Filling Stage | |
HFD | 234.67 ± 0.42 d | 219.17 ± 0.50 d | 255.04 ± 1.22 c |
HNN | 249.79 ± 1.14 a | 227.27 ± 0.61 a | 267.73 ± 0.35 a |
HFN | 243.07 ± 0.74 b | 223.87 ± 0.44 b | 265.43 ± 0.32 b |
HND | 239.23 ± 0.82 c | 222.29 ± 0.24 c | 263.92 ± 0.43 b |
DFD | 236.08 ± 0.70 d | 215.74 ± 1.43 c | 260.62 ± 1.16 c |
DNN | 246.35 ± 0.88 a | 228.18 ± 1.59 a | 266.33 ± 0.53 a |
DFN | 242.31 ± 0.46 b | 223.41 ± 0.61 b | 264.98 ± 0.13 ab |
DND | 240.16 ± 0.60 c | 221.91 ± 0.19 b | 263.57 ± 0.39 b |
Planting Pattern | Ci (μmol·m−2·s−1) | ||
---|---|---|---|
Jointing Stage | Booting Stage | Filling Stage | |
HFD | 249.37 ± 0.11 d | 254.99 ± 0.71 d | 274.14 ± 0.61 d |
HNN | 255.83 ± 0.66 a | 263.28 ± 0.57 a | 280.63 ± 0.89 a |
HFN | 253.12 ± 0.30 b | 260.02 ± 0.56 b | 278.04 ± 0.24 b |
HND | 251.36 ± 0.20 c | 257.69 ± 0.48 c | 276.23 ± 0.35 c |
DFD | 252.83 ± 0.67 c | 257.00 ± 0.20 d | 270.15 ± 0.70 d |
DNN | 258.70 ± 0.89 a | 266.47 ± 0.54 a | 280.93 ± 0.51 a |
DFN | 256.44 ± 0.38 b | 263.13 ± 0.80 b | 276.82 ± 0.36 b |
DND | 254.45 ± 0.55 bc | 259.95 ± 0.38 c | 274.09 ± 0.32 c |
Planting Pattern | Panicle Length (cm) | Panicle Diameter (cm) | Panicle Weight (g) | Grain Weight Per Panicle (g) | Yield (kg/ha) |
---|---|---|---|---|---|
HFD | 25.70 ± 0.43 a | 3.26 ± 0.06 a | 24.41 ± 0.65 a | 19.47 ± 0.74 a | 3565.74 ± 78.93 a |
HNN | 22.32 ± 0.22 d | 2.36 ± 0.08 d | 16.99 ± 0.33 d | 11.00 ± 0.49 d | 1359.32 ± 50.95 c |
HFN | 23.22 ± 0.11 c | 2.66 ± 0.05 c | 19.65 ± 0.60 c | 14.39 ± 0.59 c | 1508.42 ± 99.90 c |
HND | 24.28 ± 0.12 b | 2.96 ± 0.04 b | 22.17 ± 0.54 b | 16.61 ± 0.41 b | 2129.66 ± 94.74 b |
DFD | 25.76 ± 0.45 a | 3.18 ± 0.09 a | 26.14 ± 0.64 a | 20.78 ± 0.56 a | 3444.71 ± 92.62 a |
DNN | 21.24 ± 0.40 d | 2.36 ± 0.04 c | 13.00 ± 0.26 c | 7.90 ± 0.47 c | 953.18 ± 26.97 d |
DFN | 22.88 ± 0.26 c | 2.60 ± 0.03 b | 13.99 ± 0.56 c | 9.52 ± 0.62 c | 1122.26 ± 49.96 c |
DND | 24.22 ± 0.20 b | 2.78 ± 0.07 b | 22.94 ± 0.52 b | 16.92 ± 0.59 b | 2290.08 ± 55.60 b |
Planting Pattern | Panicle Length (cm) | Panicle Diameter (cm) | Panicle Weight (g) | Grain Weight Per Panicle (g) | Yield (kg/ha) |
---|---|---|---|---|---|
HFD | 25.48 ± 0.30 a | 3.32 ± 0.08 a | 29.03 ± 0.56 a | 23.28 ± 0.50 a | 4627.55 ± 59.24 a |
HNN | 20.32 ± 0.23 d | 2.44 ± 0.09 d | 21.17 ± 0.37 d | 16.47 ± 0.43 d | 3401.62 ± 32.33 d |
HFN | 21.90 ± 0.26 c | 2.72 ± 0.07 c | 24.65 ± 0.47 c | 19.52 ± 0.67 c | 4030.31 ± 45.70 c |
HND | 23.08 ± 0.24 b | 3.02 ± 0.06 b | 26.37 ± 0.65 b | 21.31 ± 0.40 b | 4240.25 ± 32.99 b |
DFD | 25.46 ± 0.17 a | 3.14 ± 0.05 a | 26.48 ± 0.69 a | 21.12 ± 0.38 a | 4430.22 ± 47.37 a |
DNN | 20.94 ± 0.16 d | 2.50 ± 0.05 d | 19.97 ± 0.46 d | 15.95 ± 0.30 d | 3263.25 ± 42.00 d |
DFN | 22.22 ± 0.29 c | 2.72 ± 0.02 c | 21.60 ± 0.40 c | 17.53 ± 0.32 c | 3648.83 ± 66.77 c |
DND | 23.32 ± 0.42 b | 2.92 ± 0.07 b | 24.00 ± 0.58 b | 19.54 ± 0.30 b | 4195.26 ± 24.46 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, J.; Li, G.; Liu, M.; Zhang, T.; Wen, Y.; Wang, J.; Ren, J.; Du, H.; Hu, C.; Dong, S. Effects of Different Planting Patterns on Growth and Yield Components of Foxtail Millet. Agronomy 2025, 15, 840. https://doi.org/10.3390/agronomy15040840
Qiao J, Li G, Liu M, Zhang T, Wen Y, Wang J, Ren J, Du H, Hu C, Dong S. Effects of Different Planting Patterns on Growth and Yield Components of Foxtail Millet. Agronomy. 2025; 15(4):840. https://doi.org/10.3390/agronomy15040840
Chicago/Turabian StyleQiao, Jiaxin, Gaofeng Li, Mengyao Liu, Ting Zhang, Yinyuan Wen, Jiagang Wang, Jianhong Ren, Huiling Du, Chunyan Hu, and Shuqi Dong. 2025. "Effects of Different Planting Patterns on Growth and Yield Components of Foxtail Millet" Agronomy 15, no. 4: 840. https://doi.org/10.3390/agronomy15040840
APA StyleQiao, J., Li, G., Liu, M., Zhang, T., Wen, Y., Wang, J., Ren, J., Du, H., Hu, C., & Dong, S. (2025). Effects of Different Planting Patterns on Growth and Yield Components of Foxtail Millet. Agronomy, 15(4), 840. https://doi.org/10.3390/agronomy15040840