Long-Term Low-Rate Biochar Application Enhances Soil Organic Carbon Without Affecting Sorghum Yield in a Calcaric Cambisol
Abstract
:1. Introduction
2. Methods and Materials
2.1. Site Description and Experimental Design
2.2. Sampling and Measurement
2.3. Genomic DNA Extraction, Amplicon Sequencing, and Bioinformatic Analyses
2.4. Statistical Analyses
3. Results
3.1. SOC and Sorghum Yield
3.2. Diversity and Composition of Bacterial Communities
3.3. Sorghum Plant N, P, and K Accumulation and Soil Chemical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SOC | soil organic carbon |
N | nitrogen |
P | phosphorus |
K | potassium |
PCoA | principal coordinates analysis |
References
- Lehmann, J.; Joseph, S. Biochar for Environmental Management Science and Technology; Earthscan: London, UK, 2009. [Google Scholar]
- Schmidt, H.P.; Pandit, B.H.; Martinsen, V.; Cornelissen, G.; Conte, P.; Kammann, C.I. Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture 2015, 5, 723. [Google Scholar] [CrossRef]
- Kammann, C.I.; Schmidt, H.P.; Messerschmidt, N.; Linsel, S.; Steffens, D.; Müller, C.; Koyro, H.W.; Conte, P.; Joseph, S. Plant growth improvement mediated bynitrate capture inco-composted biochar. Sci. Rep. 2015, 5, 11080. [Google Scholar]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 4, 379–420. [Google Scholar] [CrossRef]
- Bai, J.Z.; Song, J.J.; Chen, D.Y.; Zhang, Z.Z.; Yu, Q.; Ren, G.X.; Han, X.H.; Wang, X.J.; Ren, C.J.; Yang, G.H.; et al. Biochar combined with N fertilization and straw return in wheat-maize agroecosystem: Key practices to enhance crop yields and minimize carbon and nitrogen footprints. Agric. Ecosyst. Environ. 2023, 347, 108366. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Jacinthe, P.A.; Lal, R.; Lorenz, K.; Singh, M.P.; Demyan, S.M.; Ren, W.; Lindsey, L.E. Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions. J. Environ. Qual. 2023, 52, 769–798. [Google Scholar] [CrossRef]
- Xia, L.L.; Cao, L.; Yang, Y.; Ti, C.P.; Liu, Y.Z.; Smith, P.; van Groenigen, K.J.; Lehmann, J.; Lal, R.; Butterbach-Bahl, K.; et al. Integrated biochar solutions can achieve carbon-neutral staple crop production. Nat. Food 2023, 4, 236–246. [Google Scholar] [CrossRef]
- Liao, W.X.; Halim, M.A.; Kayes, I.; Drake, J.A.P.; Thomas, S.C. Biochar benefits green infrastructure: Global Meta-analysis and synthesis. Environ. Sci. Technol. 2023, 57, 15475–15486. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma 2013, 193, 122–130. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Deng, X.; Herbert, S.; Xing, B. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 2013, 206, 32–39. [Google Scholar] [CrossRef]
- Anyanwu, I.N.; Alo, M.N.; Onyekwere, A.M.; Crosse, J.D.; Nworie, O.; Chamba, E.B. Influence of biochar aged in acidic soil on ecosystem engineers and two tropical agricultural plants. Ecotoxicol. Environ. Saf. 2018, 153, 116–126. [Google Scholar] [CrossRef]
- Jin, Z.; Chen, C.; Chen, X.; Jiang, F.; Hopkins, I.; Zhang, X.; Han, Z.; Billy, G.; Benavides, J. Soil acidity, available phosphorus content, and optimal biochar and nitrogen fertilizer application rates: A five-year field trial in upland red soil, China. Field Crop. Res. 2019, 232, 77–87. [Google Scholar] [CrossRef]
- Haefele, S.M.; Konboon, Y.; Wongboon, W.; Amarante, S.; Maarifat, A.A.; Pfeiffer, E.M.; Knoblauch, C. Effects and fate of biochar from rice residues in rice-based systems. Field Crop. Res. 2011, 121, 430–440. [Google Scholar] [CrossRef]
- Dong, X.; Li, G.; Lin, Q.; Zhao, X. Quantity and quality changes of biochar aged for 5 years in soil under field conditions. Catena 2017, 159, 136–143. [Google Scholar] [CrossRef]
- Wang, X.; Su, X.; Wang, L.; Li, S.; Chang, M.; Li, Y.; Guan, Y.; Wu, Q.; Zhang, W. Efect of a six-year biochar amendment on water productivity and nitrogen utilization of maize and comprehensive soil fertility. J. Soil Sci. Plant Nutr. 2024, 24, 5661–5679. [Google Scholar] [CrossRef]
- Joseph, S.; Cowie, A.L.; Zwieten, L.V.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Ganber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How biochar works, and when it doesn’t not: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Haider, G.; Steffens, D.; Moser, G.; Muller, C.; Kammann, C.I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- An, N.; Zhang, L.; Liu, Y.X.; Shen, S.; Li, N.; Wu, Z.C.; Yang, J.F.; Han, W.; Han, X.R. Biochar application with reduced chemical fertilizers improves soil pore structure and rice productivity. Chemosphere 2022, 298, 134304. [Google Scholar] [CrossRef]
- Robb, S.; Joseph, S.; Abdul Aziz, A.; Dargusch, P.; Tisdell, C. Biochar’s cost constraints are overcome in small-scale farming on tropical soils in lower-income countries. Land Degrad. Dev. 2020, 31, 1713–1726. [Google Scholar] [CrossRef]
- Nan, Q.; Tang, L.; Chi, W.; Waqas, M.; Wu, W. The implication from six years of feld experiment: The aging process induced lower rice production even with a high amount of biochar application. Biochar 2023, 5, 27. [Google Scholar] [CrossRef]
- Han, M.X.; Zhang, J.S.; Zhang, L.; Wang, Z.G. Effect of biochar addition on crop yield, water and nitrogen use efficiency: A meta-analysis. J. Clean. Prod. 2023, 420, 138425. [Google Scholar] [CrossRef]
- Xu, H.; Cai, A.D.; Wu, D.; Liang, G.P.; Xiao, J.; Xu, M.G.; Colinet, G.; Zhang, W.J. Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C: N ratio and soil pH: A global meta-analysis. Soil Till. Res. 2021, 213, 105125. [Google Scholar] [CrossRef]
- Bo, X.; Zhang, Z.; Wang, J.; Guo, S.; Li, Z.; Lin, H.; Huang, Y.; Han, Z.; Kuzyakov, Y.; Zou, J. Benefits and limitations of biochar for climate-smart agriculture: A review and case study from China. Biochar 2023, 5, 77. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, R.; Xu, G. Global analysis on potential effects of biochar on crop yields and soil quality. Soil Ecol. Lett. 2025, 7, 240267. [Google Scholar] [CrossRef]
- Li, B.Z.; Guo, Y.D.; Liang, F.; Liu, W.X.; Wang, Y.J.; Cao, W.C.; He, S.; Chen, J.S.; Guo, J.H. Global integrative meta-analysis of the responses in soil organic carbon stock to biochar amendment. J. Environ. Manag. 2024, 351, 119745. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Northup, B.K.; Rice, C.W.; Prasad, P.V.V. Biochar applications infuence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar 2022, 4, 8. [Google Scholar] [CrossRef]
- Gao, C.; Montoya, L.; Xu, L.; Madera, M.; Hollingsworth, J.; Purdom, E.; Singan, V.; Vogel, J.; Hutmacher, R.B.; Dahlberg, J.A.; et al. Fungal community assembly in drought-stressed sorghum shows stochasticity, selection, and universal ecological dynamics. Nat. Commun. 2020, 11, 34. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Sparks, D.L.; Page, A.; Helmke, P.; Loeppert, R.; Soltanpour, P.; Tabatabai, M.; Johnston, C.; Sumner, M. Methods of soil analysis. Part 3. In Chemical Methods; Soil Science Society of America: Madison, WI, USA, 1996. [Google Scholar]
- Raison, R.J.; Connell, M.J.; Khanna, P.K. Methodology for studying fluxes of soil mineral-N in situ. Soil Biol. Biochem. 1987, 19, 521–530. [Google Scholar] [CrossRef]
- Tian, K.; Chang, F.L.; Mo, J.F.; Lu, M.; Yang, Y.X. Application of in-situ technique at field to study the N dynamics of soil. Plant Nutri. Ferti. Sci. 2004, 10, 143–147, (In Chinese with English Abstract). [Google Scholar]
- Kembel, S.W.; O’Connor, T.K.; Arnold, H.K.; Hubbell, S.P.; Wright, S.J.; Green, J.L. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. USA 2014, 111, 13715–13720. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial ampliconreads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron. 2010, 105, 47–82. [Google Scholar]
- Ding, X.Y.; Li, G.T.; Zhao, X.R.; Lin, Q.M.; Wang, X. Biochar application significantly increases soil organic carbon under conservation tillage: An 11-year field experiment. Biochar 2023, 5, 28. [Google Scholar] [CrossRef]
- Kalu, S.; Seppänen, A.; Mganga, K.Z.; Sietiö, O.M.; Glaser, B.; Karhu, K. Biochar reduced the mineralization of native and added soil organic carbon: Evidence of negative priming and enhanced microbial carbon use efficiency. Biochar 2024, 6, 7. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Woolf, D.; Fan, M.S.; Qiao, L.; Li, R.; Lehmann, J. Global crop production increase by soil organic carbon. Nat. Geosci. 2023, 16, 1159–1165. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhang, X.C. Effect of biochar on pH of alkaline soils in the loess plateau: Results from incubation experiments. Int. J. Agric. Biol. 2012, 14, 745–750. [Google Scholar]
- Serkalem, W.M. Effect of Prosopis juliflora biochar amendment on Some soil properties: The case of Salic Fluvisols from Melkawerer Research Station, Ethiopia. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Luo, X.; Liu, G.; Xia, Y.; Chen, L.; Jiang, Z.; Zheng, H.; Wang, Z. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. J. Soils Sediments 2017, 17, 780–789. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, Q.; Zheng, H.; Li, M.; Liu, Y.; Wang, X.; Peng, Y.; Luo, X.; Li, F.; Li, X.; et al. Biochar as a sustainable tool for improving the health of salt-affected soils. Soil Environ. Health 2023, 1, 100033. [Google Scholar] [CrossRef]
- Wang, S.; Gao, B.; Li, Y.; Mosa, A.; Zimmerman, A.R.; Ma, L.Q.; Harris, W.G.; Migliaccio, K.W. Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresour. Technol. 2015, 181, 13–17. [Google Scholar] [CrossRef]
- Hinsinger, P.; Plassard, C.; Tang, C.; Jaillard, B. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant Soil 2003, 248, 43–59. [Google Scholar] [CrossRef]
- Yuan, Q.; Gao, Y.; Ma, G.; Wu, H.; Li, Q.; Zhang, Y.; Liu, S.; Jie, X.; Zhang, D.; Wang, D. The long-term effect of biochar amendment on soil biochemistry and phosphorus availability of calcareous soils. Agriculture 2025, 15, 458. [Google Scholar] [CrossRef]
- Mia, S.; Dijkstra, F.A.; Singh, B. Long-term aging of biochar: A molecular understanding with agricultural and environmental implications. Adv. Agron. 2017, 141, 1–51. [Google Scholar]
- Wang, L.; O’Connor, D.; Rinklebe, J.; Ok, Y.S.; Tsang, D.C.; Shen, Z.; Hou, D. Biochar aging: Mechanisms, physicochemical changes, assessment, and implications for field applications. Environ. Sci. Technol. 2020, 54, 14797–14814. [Google Scholar] [CrossRef] [PubMed]
- Spokas, K.A.; Novak, J.M.; Venterea, R.T. Biochar’s role as an alternative N fertilizer: Ammonia capture. Plant Soil 2012, 350, 35–42. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.J.; Qiu, S.J. Biochar amendment benefits 15N fertilizer retention and rhizosphere N enrichment in a maize-soil system. Geoderma 2022, 412, 115713. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.G.; Liu, S.B.; Li, Z.W.; Tan, X.F.; Huang, X.X.; Zeng, G.G.; Zhou, L.; Zheng, B.H. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Zhao, H.; Song, Q.; Wu, X.; Yao, Q. Study on the transformation of inherent potassium during the fast-pyrolysis process of rice straw. Energy Fuels 2015, 29, 6404–6411. [Google Scholar] [CrossRef]
- Gao, S.; DeLuca, T.H.; Cleveland, C.C. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Sci. Total. Environ. 2019, 654, 463–472. [Google Scholar] [CrossRef]
- Cheng, Y.; Ma, D.; Zhao, J.; Zhang, Q.; Li, X.; Zhao, Y.; Zheng, W.; Zhang, B.; Liu, Z. Biochar application does not improve crop growth and yield in a semi-humid region in the HuangHuaiHai Plain of China: A 7-year consecutive field experiment. Soil Till. Res. 2025, 247, 106367. [Google Scholar] [CrossRef]
- Ghodszad, L.; Reyhanitabar, A.; Maghsoodi, M.R.; Lajayer, B.A.; Chang, S.X. Biochar affects the fate of phosphorus in soil and water: A critical review. Chemosphere 2021, 283, 131176. [Google Scholar] [CrossRef]
- Wang, J.S.; Jiao, X.Y.; Ding, Y.C.; Dong, E.W.; Bai, W.B.; Wang, L.G.; Wu, A.L. Response of nutrient uptake, yield and quality of grain sorghum to nutrition of nitrogen, phosphorus and potassium. Acta Agron. Sin. 2015, 41, 1269–1278, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
Factors | SOC | Sorghum Yield | N Accumulation | P Accumulation | K Accumulation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F Value | SS% | p Value | F Value | SS% | p Value | F Value | SS% | p Value | F Value | SS% | p Value | F Value | SS% | p Value | |
Biochar (B) | 914.45 | 95.19 | 0 *** | 1.45 | 0.53 | 0.248 ns | 2.51 | 0.18 | 0.135 ns | 0.96 | 0.92 | 0.344 ns | 16.06 | 4.32 | 0.001 ** |
Fertilizer (F) | 3.26 | 0.34 | 0.093 ns | 222.57 | 81.77 | 0 *** | 1346.58 | 97.03 | 0 *** | 67.18 | 64.31 | 0 *** | 207.70 | 55.84 | 0 *** |
Year (Y) | 12.34 | 1.28 | 0.003 ** | 28.31 | 10.40 | 0 *** | 14.66 | 1.06 | 0.002 ** | 18.37 | 17.59 | 0.001 ** | 75.26 | 20.24 | 0 *** |
Biochar×Fertilizer (B×F) | 8.22 | 0.86 | 0.012 * | 0.40 | 0.15 | 0.536 ns | 0.24 | 0.02 | 0.630 ns | 2.42 | 2.32 | 0.142 ns | 11.47 | 3.08 | 0.004 ** |
Biochar×Year (B×Y) | 4.93 | 0.51 | 0.043 * | 0.01 | 0.00 | 0.930 ns | 2.97 | 0.21 | 0.107 ns | 0.17 | 0.16 | 0.687 ns | 2.89 | 0.78 | 0.111 ns |
Fertilizer×Year (F×Y) | 0.58 | 0.06 | 0.460 ns | 0.65 | 0.24 | 0.435 ns | 0.02 | 0.00 | 0.888 ns | 0.04 | 0.04 | 0.849 ns | 40.67 | 10.93 | 0 *** |
Biochar×Fertilizer×Year (B×F×Y) | 0.94 | 0.10 | 0.349 ns | 0.94 | 0.34 | 0.350 ns | 4.07 | 0.29 | 0.063 ns | 0.00 | 0.00 | 0.966 ns | 1.62 | 0.44 | 0.223 ns |
Treatment | pH | Total N (%) | Available P (mg kg−1) | Available K (mg kg−1) | NO3−-N (mg kg−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | 8.22 a | 0.09 b | 2.97 b | 175.32 b | 7.49 b | ||||||||||
B | 8.06 b | 0.13 a | 4.87 a | 430.21 a | 8.49 b | ||||||||||
NPK | 8.21 a | 0.11 ab | 5.18 a | 181.24 b | 14.39 a | ||||||||||
NPKB | 8.09 ab | 0.13 ab | 5.92 a | 335.48 a | 5.03 b | ||||||||||
Two-way ANOVA analysis | |||||||||||||||
F value | SS% | p value | F value | SS% | p value | F value | SS% | p value | F value | SS% | p value | F value | SS% | p value | |
Biochar (B) | 13.38 | 61.22 | 0.011 * | 15.71 | 60.00 | 0.007 ** | 6.16 | 32.44 | 0.048 * | 44.31 | 74.33 | 0.001 ** | 8.40 | 24.60 | 0.027 * |
Fertilizer (F) | 0.09 | 0.00 | 0.773 ns | 1.12 | 0.00 | 0.331 ns | 4.00 | 21.08 | 0.092 ns | 2.09 | 3.50 | 0.199 ns | 1.10 | 3.22 | 0.335 ns |
Biochar×Fertilizer (B×F) | 0.31 | 1.02 | 0.596 ns | 1.82 | 0.00 | 0.226 ns | 1.02 | 10.73 | 0.416 ns | 2.68 | 4.50 | 0.153 ns | 17.26 | 50.56 | 0.006 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Wang, J.; Sun, A.; Dong, E.; Wang, Y.; Huang, X.; Hu, H.-W.; Jiao, X. Long-Term Low-Rate Biochar Application Enhances Soil Organic Carbon Without Affecting Sorghum Yield in a Calcaric Cambisol. Agronomy 2025, 15, 995. https://doi.org/10.3390/agronomy15040995
Liu Q, Wang J, Sun A, Dong E, Wang Y, Huang X, Hu H-W, Jiao X. Long-Term Low-Rate Biochar Application Enhances Soil Organic Carbon Without Affecting Sorghum Yield in a Calcaric Cambisol. Agronomy. 2025; 15(4):995. https://doi.org/10.3390/agronomy15040995
Chicago/Turabian StyleLiu, Qiuxia, Jinsong Wang, Anqi Sun, Erwei Dong, Yuan Wang, Xiaolei Huang, Hang-Wei Hu, and Xiaoyan Jiao. 2025. "Long-Term Low-Rate Biochar Application Enhances Soil Organic Carbon Without Affecting Sorghum Yield in a Calcaric Cambisol" Agronomy 15, no. 4: 995. https://doi.org/10.3390/agronomy15040995
APA StyleLiu, Q., Wang, J., Sun, A., Dong, E., Wang, Y., Huang, X., Hu, H.-W., & Jiao, X. (2025). Long-Term Low-Rate Biochar Application Enhances Soil Organic Carbon Without Affecting Sorghum Yield in a Calcaric Cambisol. Agronomy, 15(4), 995. https://doi.org/10.3390/agronomy15040995