Tuber Growth and Nutritional Traits in Deficit Irrigated Potatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site, Climate and Soil
2.2. Experimental Design, Plant Material, and Management Practices
- I0 (dry control): irrigation only at plant emergence;
- I100 (irrigated control): irrigation supplying 100% of maximum evapotranspiration (ETm) from tuber initiation up to the end of tuber growth;
- I100-0: 100% ETm supplied from tuber initiation up to 50% tuber growth, and then no irrigation supplied up to the end of the tuber growth;
- I100-50: 100% ETm supplied from tuber initiation to 50% tuber growth and then 50% ETm supplied up to the end of the tuber growth;
- I100-75: 100% ETm supplied from tuber initiation to 50% tuber growth, then 75% ETm supplied up to the end of the tuber growth.
2.3. Irrigation Treatments
2.4. Data Collection
2.4.1. Tuber Growth
2.4.2. Nutritional Traits
2.5. Data Analysis
2.6. Temperature and Rainfall
3. Results
3.1. Tuber Weight and Nutritional Traits During Tuber Growth
Mean Tuber Weight (g) | Starch (g 100 g−1 FW) | Dry Matter (g 100 g−1 FW) | Protein (g 100 g−1 DW) | Reducing Sugars (g 100 g−1 FW) | Ash (g 100 g−1 DW) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | S1 | S2 | |
Irrigation | ||||||||||||
I0 | 45 d | 50 b | 17.0 a | 13.9 a | 21.1 a | 18.7 a | 8.0 c | 7.5 b | 0.22 a | 0.18 a | 4.7 c | 6.3 a |
I100 | 106 a | 72 a | 12.6 c | 12.3 b | 16.5 d | 15.7 b | 9.1 a | 8.4 a | 0.20 a | 0.19 a | 6.3 a | 6.7 a |
I100-0 | 82 c | 76 a | 14.3 b | 13.7 a | 17.7 b | 15.9 b | 8.6 b | 8.3 a | 0.18 a | 0.18 a | 5.6 b | 6.5 a |
I100-50 | 97 b | 79 a | 13.5 bc | 13.0 ab | 17.1 c | 15.8 b | 8.8 ab | 8.4 a | 0.19 a | 0.19 a | 5.9 ab | 6.7 a |
I100-75 | 103 a | 78 a | 13.1 bc | 12.7 b | 16.8 cd | 15.7 b | 8.9 ab | 8.2 a | 0.19 a | 0.19 a | 6.1 a | 6.7 a |
F | *** | *** | *** | *** | *** | *** | *** | *** | NS | NS | *** | NS |
Cultivar | ||||||||||||
Arinda | 98 a | 79 a | 13.7 b | 12.6 b | 17.0 b | 15.5 b | 8.9 a | 8.2 a | 0.18 b | 0.18 b | 5.8 a | 6.5 a |
Timate | 75 b | 63 b | 14.5 a | 13.6 a | 18.7 a | 17.2 a | 8.5 b | 8.2 a | 0.21 a | 0.19 a | 5.6 a | 6.5 a |
F | *** | *** | * | *** | *** | *** | ** | NS | * | * | NS | NS |
Sampling | ||||||||||||
I | 23 d | 35 d | 10.0 d | 9.9 d | 16.2 c | 12.7 d | 9.6 a | 9.0 a | 0.26 a | 0.24 a | 5.4 a | 7.1 a |
II | 84 c | 69 c | 12.9 c | 12.6 c | 17.3 b | 15.7 c | 8.4 b | 8.1 b | 0.22 a | 0.20 b | 5.7 a | 6.8 b |
III | 111 b | 84 b | 15.1 b | 14.1 b | 18.5 a | 18.2 b | 8.3 b | 7.6 c | 0.14 b | 0.13 c | 5.6 a | 6.4 c |
IV | 122 a | 93 a | 17.9 a | 15.5 a | 18.7 a | 18.5 a | 8.5 b | 7.6 c | 0.16 b | 0.16 c | 6.1 a | 5.8 d |
F | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | NS | *** |
3.2. Tuber Weight and Nutritional Traits at Final Harvest
Mean Tuber Weight (g) | Starch (g 100 g−1 FW) | Dry Matter (g 100 g−1 FW) | Protein (g 100 g−1 DW) | Reducing Sugars (g 100 g−1 FW) | Ash (g 100 g−1 DW) | |
---|---|---|---|---|---|---|
Irrigation | ||||||
I0 | 71 c | 18.4 a | 21.1 a | 7.6 b | 0.14 a | 5.0 b |
I100 | 129 a | 14.6 c | 17.6 c | 8.2 a | 0.15 a | 6.0 a |
I100-0 | 110 b | 17.9 a | 19.3 bc | 7.6 b | 0.15 a | 5.8 a |
I100-50 | 123 ab | 16.2 b | 18.5 b | 8.1 a | 0.15 a | 5.9 a |
I100-75 | 133 a | 15.4 bc | 18.0 c | 8.1 a | 0.15 a | 5.9 a |
F | *** | *** | *** | ** | NS | ** |
Cultivar | ||||||
Arinda | 125 a | 15.0 b | 18.3 b | 8.2 a | 0.14 b | 5.7 a |
Timate | 102 b | 18.0 a | 20.4 a | 7.6 b | 0.16 a | 5.8 a |
F | *** | *** | *** | *** | * | NS |
Season | ||||||
I | 129 a | 16.7 a | 19.0 a | 8.1 a | 0.15 a | 6.0 a |
II | 98 b | 16.3 b | 18.9 a | 7.7 b | 0.15 a | 5.4 b |
F | *** | *** | NS | *** | NS | * |
3.3. Multivariate Analysis
Variable | Common Principal Component Coefficients | |||
---|---|---|---|---|
Season I | Season II | |||
PC1 | PC2 | PC1 | PC2 | |
Mean tuber weight | −0.464 | 0.194 | 0.467 | −0.052 |
Starch | 0.423 | 0.024 | −0.437 | 0.165 |
Dry matter | 0.494 | 0.061 | −0.456 | 0.223 |
Protein | −0.425 | 0.012 | 0.394 | 0.438 |
Reducing sugars | 0.134 | 0.961 | 0.237 | −0.714 |
Ash | −0.405 | 0.183 | −0.414 | −0.468 |
Eigenvalue | 3.99 | 1.08 | 4.15 | 1.26 |
Variability | 66.6% | 16.4% | 69.2% | 21.1% |
Accumulated variability | 66.6% | 83.0% | 69.2% | 90.3% |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaheer, K.; Akhtar, M.H. Potato production, usage, and nutrition—A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Faostat Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 30 October 2023).
- Scavo, A.; Mauromicale, G.; Ierna, A. Genotype × environment interactions of potato tuber quality characteristics by AMMI and GGE biplot analysis. Sci. Hortic. 2023, 310, 111750. [Google Scholar] [CrossRef]
- Leo, L.; Leone, A.; Longo, C.; Lombardi, D.A.; Raimo, F.; Zacheo, G. Antioxidant compounds and antioxidant activity in ‘early potatoes’. J. Agric. Food Chem. 2008, 56, 4154–4163. [Google Scholar] [CrossRef]
- Kita, A. The influence of potato chemical composition on crisp texture. Food Chem. 2002, 76, 173–179. [Google Scholar] [CrossRef]
- Harris, P.M. Water. In The Potato Crop; Harris, P.M., Ed.; Springer: Boston, MA, USA, 1978; pp. 244–277. [Google Scholar]
- Ierna, A.; Mauromicale, G. Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime. Agric. Water Manag. 2012, 115, 276–284. [Google Scholar] [CrossRef]
- Fabeiro, C.; Martín De Santa Olalla, F.; De Juan, J.A. Yield and size of deficit irrigated potatoes. Agric. Water Manag. 2001, 48, 255–266. [Google Scholar] [CrossRef]
- Onder, S.; Caliskan, M.E.; Onder, D.; Caliskan, S. Different irrigation methods and water stress effects on potato yield and yield components. Agric. Water Manag. 2005, 73, 73–86. [Google Scholar] [CrossRef]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef]
- Karam, F.; Amacha, N.; Fahed, S.; EL Asmar, T.; Domínguez, A. Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications. Agric. Water Manag. 2014, 142, 144–151. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Agharezaee, M.; Kamgar-Haghighi, A.A.; Sepaskhah, A.R. Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars. Agric. Water Manag. 2014, 134, 126–136. [Google Scholar] [CrossRef]
- Badr, M.A.; El-Tohamy, W.A.; Salman, S.R.; Gruda, N. Yield and water use relationships of potato under different timing and severity of water stress. Agric. Water Manag. 2022, 271, 107793. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Eco-physiological and productive response of deficit irrigated potatoes. Agronomy 2023, 13, 591. [Google Scholar] [CrossRef]
- Alenazi, M.; Wahb-Allah, M.A.; Abdel-Razzak, H.S.; Ibrahim, A.A.; Alsadon, A. Water regimes and humic acid application influences potato growth, yield, tuber quality and water use efficiency. Am. J. Potato Res. 2016, 93, 463–473. [Google Scholar] [CrossRef]
- Wegener, C.B.; Jürgens, H.U.; Jansen, G. Drought stress affects nutritional and bioactive compounds in potatoes (Solanum tuberosum L.) relevant to human health. Funct. Foods Health Dis. 2017, 7, 17–35. [Google Scholar] [CrossRef]
- Muttucumaru, N.; Powers, S.J.; Elmore, J.S.; Mottram, D.S.; Halford, N.G. Effects of water availability on free amino acids, sugars, and acrylamide-forming potential in potato. J. Agric. Food Chem. 2015, 63, 2566–2575. [Google Scholar] [CrossRef]
- Ahmadi, S.H.; Agharezaee, M.; Kamgar-Haghighi, A.A.; Sepaskhah, A.R. Water-saving irrigation strategies affect tuber water relations and nitrogen content of potatoes. Int. J. Plant Prod. 2016, 10, 275–288. [Google Scholar] [CrossRef]
- Carli, C.; Yuldashev, F.; Khalikov, D.; Condori, B.; Mares, V.; Monneveux, P. Effect of different irrigation regimes on yield, water use efficiency and quality of potato (Solanum tuberosum L.) in the lowlands of Tashkent, Uzbekistan: A field and modeling perspective. Field Crops Res. 2014, 163, 90–99. [Google Scholar] [CrossRef]
- Crosby, T.W.; Wang, Y. Effects of different irrigation management practices on potato (Solanum tuberosum L.). Sustainability 2021, 13, 10187. [Google Scholar] [CrossRef]
- Günel, E.; Karadoǧan, T. Effect of irrigation applied at different growth stages and length of irrigation period on quality characters of potato tubers. Potato Res. 1998, 41, 9–19. [Google Scholar] [CrossRef]
- Li, F.; Deng, H.; Wang, Y.; Li, X.; Chen, X.; Liu, L.; Zhang, H. Potato growth, photosynthesis, yield, and quality response to regulated deficit drip irrigation under film mulching in a cold and arid environment. Sci. Rep. 2021, 11, 15888. [Google Scholar] [CrossRef]
- Li, S.; Kupriyanovich, Y.; Wagg, C.; Zheng, F.; Hann, S. Water deficit duration affects potato plant growth, yield and tuber quality. Agriculture 2023, 13, 2007. [Google Scholar] [CrossRef]
- Wagg, C.; Hann, S.; Kupriyanovich, Y.; Li, S. Timing of short period water stress determines potato plant growth, yield and tuber quality. Agric. Water Manag. 2021, 247, 106731. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.; Xue, D.; Zhang, W.; Li, F.; Teng, A.; Zhang, C.; Lei, L.; Ba, Y. Dry matter accumulation, water productivity and quality of potato in response to regulated deficit irrigation in a desert oasis region. Plants 2024, 13, 1927. [Google Scholar] [CrossRef] [PubMed]
- Elhani, S.; Haddadi, M.; Csákvári, E.; Zantar, S.; Hamim, A.; Villányi, V.; Douaik, A.; Bánfalvi, Z. Effects of partial root-zone drying and deficit irrigation on yield, irrigation water-use efficiency and some potato (Solanum tuberosum L.) quality traits under glasshouse conditions. Agric. Water Manag. 2019, 224, 105745. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. How irrigation water saving strategy can affect tuber growth and nutritional composition of potato. Sci. Hortic. 2022, 299, 111034. [Google Scholar] [CrossRef]
- USDA (United States Department of Agriculture). Soil Taxonomy—A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Natural Resources Conservation Service, Ed.; Superintendent of Documents, U.S. Government Printing Office: Washington, DC, USA, 1999. [Google Scholar]
- Violante, P. (Ed) Metodi di Analisi Chimica del Suolo; Franco Angeli Editore: Milano, Italy, 2000; ISBN 8846422406. [Google Scholar]
- Hack, H.; Gal, H.; Klemke, T.H.; Klose, R.; Meier, U.; Stauss, R.; Witzenberger, A. The BBCH scale for phenological growth stages of potato (Solanum tuberosum L.). In Growth Stages of Mono-and Dicotyledonous Plants BBCH Monograph; Meier, U., Ed.; Federal Biological Research Centre for Agriculture and Forestry: Berlin, Germany, 2001; pp. 7–16. ISBN 2738004997. [Google Scholar]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water; FAO Irrigation and Drainage Paper No. 33; Food and Agriculture Organization of the United Nations: Rome, Italy, 1979; ISBN 92-5-100744-6. [Google Scholar]
- AOAC Official Methods of Analysis, 22nd Edition (2023)—AOAC INTERNATIONAL. Available online: https://www.aoac.org/official-methods-of-analysis/ (accessed on 4 March 2025).
- Jain, A.; Jain, R.; Jain, S. Quantitative analysis of reducing sugars by 3, 5-dinitrosalicylic acid (DNSA method). In Basic Techniques in Biochemistry, Microbiology and Molecular Biology; Humana: New York, NY, USA, 2020; pp. 181–183. ISBN 978-1-4939-9861-6. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling; Olkin, I., Ed.; Stanford University Press: Palo Alto, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods; Wiley-Blackwell: Hoboken, NJ, USA, 2021; ISBN 9780128230435. [Google Scholar]
- Jefferies, R.A. Responses of potato genotypes to drought. I. Expansion of individual leaves and osmotic adjustment. Ann. Appl. Biol. 1993, 122, 93–104. [Google Scholar] [CrossRef]
- Muller, C.; Pretorius, B.; Schönfeldt, H.C. Evaluating the effect of external conditions on the quality attributes of potatoes. Potato Res. 2023, 66, 525–542. [Google Scholar] [CrossRef]
- Mustonen, L. Yield formation and quality characteristics of early potatoes during a short growing period. Agric. Food Sci. 2004, 13, 390–398. [Google Scholar] [CrossRef]
- Yari, A.; Gilbert, L.; Madramootoo, C.A.; Woods, S.A.; Adamchuk, V.I. Optimum irrigation strategy to maximize yield and quality of potato: A case study in southern Alberta, Canada. Irrig. Drain. 2021, 70, 609–621. [Google Scholar] [CrossRef]
- Jefferies, R.A.; Mackerron, D.K.L. Responses of potato genotypes to drought. II. Leaf area index, growth and yield. Ann. Appl. Biol. 1993, 122, 105–112. [Google Scholar] [CrossRef]
- Ávila-Valdés, A.; Quinet, M.; Lutts, S.; Martínez, J.P.; Lizana, X.C. Tuber yield and quality responses of potato to moderate temperature increase during Tuber bulking under two water availability scenarios. Field Crops Res. 2020, 251, 107786. [Google Scholar] [CrossRef]
- Chang, D.C.; Jin, Y.I.; Nam, J.H.; Cheon, C.G.; Cho, J.H.; Kim, S.J.; Yu, H.S. Early drought effect on canopy development and tuber growth of potato cultivars with different maturities. Field Crops Res. 2018, 215, 156–162. [Google Scholar] [CrossRef]
- Shock, C.C.; Holmes, Z.A.; Stieber, T.D.; Eldredge, E.P.; Zhang, P. The effect of timed water stress on quality, total solids and reducing sugar content of potatoes. Am. Potato. J. 1993, 70, 227–241. [Google Scholar] [CrossRef]
- Wang, F.X.; Wu, X.X.; Shock, C.C.; Chu, L.Y.; Gu, X.X.; Xue, X. Effects of drip irrigation regimes on potato tuber yield and quality under plastic mulch in arid Northwestern China. Field Crops Res. 2011, 122, 78–84. [Google Scholar] [CrossRef]
- He, M.; Dijkstra, F.A. Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytol. 2014, 204, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Eldredge, E.P.; Holmes, Z.A.; Mosley, A.R.; Shock, C.C.; Stieber, T.D. Effects of transitory water stress on potato tuber stem-end reducing sugar and fry color. Am. Potato J. 1996, 73, 517–530. [Google Scholar] [CrossRef]
- Abbas, H.; Ranjan, R.S. Effect of soil moisture deficit on marketable yield and quality of potatoes. Can. Biosyst. Eng. 2015, 57, 1.25–1.37. [Google Scholar] [CrossRef]
Code | Irrigation Regime | Season I | Season II | ||
---|---|---|---|---|---|
WA 1 | N 2 | WA | N | ||
I0 | Irrigation only at plant emergence | 30 | 1 | 30 | 1 |
I100 | Irrigation supplying 100% of ETm from tuber initiation up to the end of tuber growth | 272 | 10 | 228 | 9 |
I100-0 | The supply of 100% ETm from tuber initiation up to 50% tuber growth, then no irrigation up to the end of the tuber growth | 102 | 6 | 100 | 6 |
I100-50 | ETm supplied from tuber initiation to 50% tuber growth and then 50% ETm supplied up to end of the tuber growth | 178 | 10 | 158 | 9 |
I100-75 | ETm supplied from tuber initiation to 50% tuber growth and then 75% ETm supplied up to end of the tuber growth | 224 | 10 | 193 | 9 |
Season | January | February | March | April | May | June | |
---|---|---|---|---|---|---|---|
Tmax | I | 16.2 | 15.4 | 20.7 | 21.2 | 25.3 | 27.9 |
II | 15.2 | 11.3 | 16.3 | 18.0 | 25.1 | 31.9 | |
Long-term | 15.8 | 15.9 | 17.6 | 20.4 | 24.4 | 29.2 | |
Tmin | I | 9.7 | 7.2 | 11.0 | 11.6 | 15.0 | 18.7 |
II | 7.3 | 6.6 | 9.1 | 10.7 | 15.4 | 20.8 | |
Long-term | 8.5 | 8.4 | 9.4 | 12.0 | 15.3 | 19.5 | |
Rainfall | I | 62 | 33 | 11 | 9 | 17 | 0 |
II | 116 | 134 | 3 | 161 | 10 | 0 | |
Long-term | 85 | 77 | 73 | 32 | 24 | 10 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauro, R.P.; Ierna, A. Tuber Growth and Nutritional Traits in Deficit Irrigated Potatoes. Agronomy 2025, 15, 1019. https://doi.org/10.3390/agronomy15051019
Mauro RP, Ierna A. Tuber Growth and Nutritional Traits in Deficit Irrigated Potatoes. Agronomy. 2025; 15(5):1019. https://doi.org/10.3390/agronomy15051019
Chicago/Turabian StyleMauro, Rosario Paolo, and Anita Ierna. 2025. "Tuber Growth and Nutritional Traits in Deficit Irrigated Potatoes" Agronomy 15, no. 5: 1019. https://doi.org/10.3390/agronomy15051019
APA StyleMauro, R. P., & Ierna, A. (2025). Tuber Growth and Nutritional Traits in Deficit Irrigated Potatoes. Agronomy, 15(5), 1019. https://doi.org/10.3390/agronomy15051019