A Shooting Distance Adaptive Crop Yield Estimation Method Based on Multi-Modal Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Dataset Construction
2.3. RGB Image-Based Relative Area Transformation Estimation Model
2.4. RGB-H Input Layer Fusion Estimation Model
2.5. RGB-H Output Layer Fusion Estimation Model
2.6. RGB-D Input Layer Fusion and Output Layer Fusion Estimation Model
2.7. Model Training and Evaluation
3. Results and Discussion
3.1. Results Based on RGB Image Data
3.2. Results Based on RGB-D Data
3.3. Comparisons Between RGB and RGB-Avgd Models
3.4. Validation of the Crop Fresh Weight Estimation Platform
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, D.; Du, S.; van Willigenburg, G. Double closed-loop optimal control of greenhouse cultivation. Control Eng. Pract. 2019, 85, 90–99. [Google Scholar] [CrossRef]
- Murphy, K.M.; Ludwig, E.; Gutierrez, J.; Gehan, M.A. Deep learning in image-based plant phenotyping. Annu. Rev. Plant Biol. 2024, 75, 771–795. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Q.; Huang, D. A review of computer vision technologies for plant phenotyping. Comput. Electron. Agric. 2020, 176, 105672. [Google Scholar] [CrossRef]
- Han, H.; Liu, Z.; Li, J.; Zeng, Z. Challenges in remote sensing based climate and crop monitoring: Navigating the complexities using AI. J. Cloud Comput. 2024, 13, 34. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Y.; Zhang, Z.; Wang, Z.; Liu, B.; Liu, C.; Huang, C.; Dong, S.; Pu, X.; Wan, F.; et al. Plant image recognition with deep learning: A review. Comput. Electron. Agric. 2023, 212, 108072. [Google Scholar] [CrossRef]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Paudel, D.; Boogaard, H.; de Wit, A.; Janssen, S.; Osinga, S.; Pylianidis, C.; Athanasiadis, I.N. Machine learning for large-scale crop yield forecasting. Agric. Syst. 2021, 187, 103016. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Lipping, T. Crop yield prediction with deep convolutional neural networks. Comput. Electron. Agric. 2019, 163, 104859. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z.; Xu, D.; Ma, J.; Chen, Y.; Fu, Z. Growth monitoring of greenhouse lettuce based on a convolutional neural network. Hortic. Res. 2020, 7, 124. [Google Scholar] [CrossRef]
- Wang, J.; Wang, P.; Tian, H.; Tansey, K.; Liu, J.; Quan, W. A deep learning framework combining CNN and GRU for improving wheat yield estimates using time series remotely sensed multi-variables. Comput. Electron. Agric. 2023, 206, 107705. [Google Scholar] [CrossRef]
- Chen, Y.; Lee, W.S.; Gan, H.; Peres, N.; Fraisse, C.; Zhang, Y.; He, Y. Strawberry yield prediction based on a deep neural network using high-resolution aerial orthoimages. Remote Sens. 2019, 11, 1584. [Google Scholar] [CrossRef]
- Kim, J.S.G.; Moon, S.; Park, J.; Kim, T.; Chung, S. Development of a machine vision-based weight prediction system of butterhead lettuce (Lactuca sativa L.) using deep learning models for industrial plant factory. Front. Plant Sci. 2024, 15, 1365266. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wu, Y.; Liu, B.; Zhang, W.; Wang, B.; Chen, Z.; Guo, A. Wheat yield prediction using unmanned aerial vehicle RGB-imagery-based convolutional neural network and limited training samples. Remote Sens. 2023, 15, 5444. [Google Scholar] [CrossRef]
- Zheng, C.; Abd-Elrahman, A.; Whitaker, V.M.; Dalid, C. Deep learning for strawberry canopy delineation and biomass prediction from high-resolution images. Plant Phenomics 2022, 2022, 9850486. [Google Scholar] [CrossRef]
- Lee, D.H.; Park, J.H. Development of a UAS-Based Multi-Sensor Deep Learning Model for Predicting Napa Cabbage Fresh Weight and Determining Optimal Harvest Time. Remote Sens. 2024, 16, 3455. [Google Scholar] [CrossRef]
- Chaudhary, M.; Gastli, M.S.; Nassar, L.; Karray, F. Transfer learning application for berries yield forecasting using deep learning. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Virtual, 18–22 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8. [Google Scholar]
- Okada, M.; Barras, C.; Toda, Y.; Hamazaki, K.; Ohmori, Y.; Yamasaki, Y.; Iwata, H. High-throughput phenotyping of soybean biomass: Conventional trait estimation and novel latent feature extraction using UAV remote sensing and deep learning models. Plant Phenomics 2024, 6, 0244. [Google Scholar] [CrossRef]
- El Sakka, M.; Ivanovici, M.; Chaari, L.; Mothe, J. A Review of CNN Applications in Smart Agriculture Using Multimodal Data. Sensors 2025, 25, 472. [Google Scholar] [CrossRef]
- Mortensen, A.K.; Bender, A.; Whelan, B.; Barbour, M.M.; Sukkarieh, S.; Karstoft, H.; Gislum, R. Segmentation of lettuce in coloured 3D point clouds for fresh weight estimation. Comput. Electron. Agric. 2018, 154, 373–381. [Google Scholar] [CrossRef]
- Quan, L.; Li, H.; Li, H.; Jiang, W.; Lou, Z.; Chen, L. Two-stream dense feature fusion network based on RGB-D data for the real-time prediction of weed aboveground fresh weight in a field environment. Remote Sens. 2021, 13, 2288. [Google Scholar] [CrossRef]
- Xu, D.; Chen, J.; Li, B.; Ma, J. Improving lettuce fresh weight estimation accuracy through RGB-D fusion. Agronomy 2023, 13, 2617. [Google Scholar] [CrossRef]
- Petropoulou, A.S.; van Marrewijk, B.; de Zwart, F.; Elings, A.; Bijlaard, M.; van Daalen, T.; Hemming, S. Lettuce production in intelligent greenhouses—3D imaging and computer vision for plant spacing decisions. Sensors 2023, 23, 2929. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum, N.; Lieth, J.H.; Earles, M. Non-destructive plant biomass monitoring with high spatio-temporal resolution via proximal RGB-D imagery and end-to-end deep learning. Front. Plant Sci. 2022, 13, 758818. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Fu, R.; Ren, G.; Zhong, R.; Ying, Y.; Lin, T. Automatic monitoring of lettuce fresh weight by multi-modal fusion based deep learning. Front. Plant Sci. 2022, 13, 980581. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, X.; Wu, Y.; Li, X. TMSCNet: A three-stage multi-branch self-correcting trait estimation network for RGB and depth images of lettuce. Front. Plant Sci. 2022, 13, 982562. [Google Scholar] [CrossRef]
- Hou, L.; Zhu, Y.; Wang, M.; Wei, N.; Dong, J.; Tao, Y.; Zhang, J. Multimodal data fusion for precise lettuce phenotype estimation using deep learning algorithms. Plants 2024, 13, 3217. [Google Scholar] [CrossRef]
- Lin, F.; Guillot, K.; Crawford, S.; Zhang, Y.; Yuan, X.; Tzeng, N.F. An open and large-scale dataset for multi-modal climate change-aware crop yield predictions. arXiv 2024, arXiv:2406.06081. [Google Scholar]
- Togninalli, M.; Wang, X.; Kucera, T.; Shrestha, S.; Juliana, P.; Mondal, S.; Poland, J. Multi-modal deep learning improves grain yield prediction in wheat breeding by fusing genomics and phenomics. Bioinformatics 2023, 39, btad336. [Google Scholar] [CrossRef]
- Aviles Toledo, C.; Crawford, M.M.; Tuinstra, M.R. Integrating multi-modal remote sensing, deep learning, and attention mechanisms for yield prediction in plant breeding experiments. Front. Plant Sci. 2024, 15, 1408047. [Google Scholar] [CrossRef]
- Miranda, M.; Pathak, D.; Nuske, M.; Dengel, A. Multi-modal fusion methods with local neighborhood information for crop yield prediction at field and subfield levels. In Proceedings of the IGARSS 2024, Athens, Greece, 7–12 July 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 4307–4311. [Google Scholar]
- Mena, F.; Pathak, D.; Najjar, H.; Sanchez, C.; Helber, P.; Bischke, B.; Dengel, A. Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction. Remote Sens. Environ. 2025, 318, 114547. [Google Scholar] [CrossRef]
- Yewle, A.D.; Mirzayeva, L.; Karakuş, O. Multi-modal data fusion and deep ensemble learning for accurate crop yield prediction. arXiv 2025, arXiv:2502.06062. [Google Scholar]
- Liu, Y.; Feng, H.; Sun, Q.; Yang, F.; Yang, G. Estimation study of above ground biomass in potato based on UAV digital images with different resolutions. Spectrosc. Spectr. Anal. 2021, 41, 1470–1476. [Google Scholar]
- Zhang, J.; Xie, T.; Wei, X.; Wang, Z.; Liu, C.; Zhou, G.; Wang, B. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle. Acta Agron. Sin. 2021, 47, 1816–1823. [Google Scholar]
- Zhang, J.; Guo, S.; Han, Y.; Lei, Y.; Xing, F.; Du, W.; Li, Y.; Feng, L. Estimation of cotton yield based on unmanned aerial vehicle RGB images. J. Agric. Sci. Technol. 2022, 24, 112–120. [Google Scholar]
- Tan, J.; Hou, J.; Xu, W.; Zheng, H.; Gu, S.; Zhou, Y.; Qi, L.; Ma, R. PosNet: Estimating lettuce fresh weight in plant factory based on oblique image. Comput. Electron. Agric. 2023, 213, 108263. [Google Scholar] [CrossRef]
- Xu, D.; Li, S.; Chen, J.; Cui, T.; Zhhang, Y.; Ma, J. Image recognition of lettuce fresh weight through group estimation. J. China Agric. Univ. 2024, 29, 173–183. [Google Scholar]
- Ma, J.; Liu, B.; Ji, L.; Zhu, Z.; Wu, Y.; Jiao, W. Field-scale yield prediction of winter wheat under different irrigation regimes based on dynamic fusion of multimodal UAV imagery. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103292. [Google Scholar] [CrossRef]
- Tian, H.; Wang, P.; Tansey, K.; Wang, J.; Quan, W.; Liu, J. Attention mechanism-based deep learning approach for wheat yield estimation and uncertainty analysis from remotely sensed variables. Agric. For. Meteorol. 2024, 356, 110183. [Google Scholar] [CrossRef]
Height | 70 cm | 75 cm | 80 cm | 85 cm | 90 cm | 100 cm | 105 cm | 110 cm | 115 cm |
---|---|---|---|---|---|---|---|---|---|
Training dataset (original and augmented) | 222 (46,620) | 222 (46,620) | 0 | 222 (46,620) | 222 (46,620) | 0 | 222 (46,620) | 222 (46,620) | 222 (46,620) |
Validation dataset (original and augmented) | 56 (11,760) | 56 (11,760) | 0 | 56 (11,760) | 56 (11,760) | 0 | 56 (11,760) | 56 (11,760) | 56 (11,760) |
Test dataset | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 |
Height | Model | R2 | NRMSE | MAPE |
---|---|---|---|---|
80 cm | RGB relative area transformation | 0.9155 | 0.0761 | 0.0665 |
RGB-H input layer fusion | 0.9145 | 0.0902 | 0.0716 | |
RGB-H output layer dual fusion | 0.9054 | 0.0953 | 0.0785 | |
RGB-H output layer blend fusion | 0.6629 | 0.1791 | 0.1341 | |
100 cm | RGB relative area transformation | 0.9304 | 0.0814 | 0.0660 |
RGB-H input layer fusion | 0.9326 | 0.0801 | 0.0691 | |
RGB-H output layer dual fusion | 0.9328 | 0.0816 | 0.0695 | |
RGB-H output layer blend fusion | 0.7116 | 0.1657 | 0.1018 |
Height | Model | R2 | NRMSE | MAPE |
---|---|---|---|---|
80 cm | RGB-D input layer fusion | −2.9297 | 0.6117 | 0.6640 |
RGB-D output layer dual fusion | −2.6640 | 0.5906 | 0.6506 | |
100 cm | RGB-D input layer fusion | −0.7466 | 0.4078 | 0.2777 |
RGB-D output layer dual fusion | −1.0919 | 0.4463 | 0.3363 |
Height | Model | R2 | NRMSE | MAPE |
---|---|---|---|---|
80 cm | RGB-avgD input layer fusion | 0.9475 | 0.0707 | 0.0591 |
RGB-avgD output layer dual fusion | 0.9227 | 0.0858 | 0.0655 | |
100 cm | RGB-avgD input layer fusion | 0.9384 | 0.0766 | 0.0610 |
RGB-avgD output layer dual fusion | 0.9257 | 0.0841 | 0.0658 |
Height | Model | R2 | NRMSE | MAPE |
---|---|---|---|---|
80 cm | RGB relative area transformation | 0.9155 | 0.0761 | 0.0665 |
RGB-avgD input layer fusion | 0.9475 | 0.0707 | 0.0591 | |
100 cm | RGB relative area transformation | 0.9304 | 0.0814 | 0.0660 |
RGB-avgD input layer fusion | 0.9384 | 0.0766 | 0.0610 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Li, B.; Xi, G.; Wang, S.; Xu, L.; Ma, J. A Shooting Distance Adaptive Crop Yield Estimation Method Based on Multi-Modal Fusion. Agronomy 2025, 15, 1036. https://doi.org/10.3390/agronomy15051036
Xu D, Li B, Xi G, Wang S, Xu L, Ma J. A Shooting Distance Adaptive Crop Yield Estimation Method Based on Multi-Modal Fusion. Agronomy. 2025; 15(5):1036. https://doi.org/10.3390/agronomy15051036
Chicago/Turabian StyleXu, Dan, Ba Li, Guanyun Xi, Shusheng Wang, Lei Xu, and Juncheng Ma. 2025. "A Shooting Distance Adaptive Crop Yield Estimation Method Based on Multi-Modal Fusion" Agronomy 15, no. 5: 1036. https://doi.org/10.3390/agronomy15051036
APA StyleXu, D., Li, B., Xi, G., Wang, S., Xu, L., & Ma, J. (2025). A Shooting Distance Adaptive Crop Yield Estimation Method Based on Multi-Modal Fusion. Agronomy, 15(5), 1036. https://doi.org/10.3390/agronomy15051036