Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions
Abstract
:1. Introduction
2. Physical Properties of Biochar
3. Soil Physical Characteristics Affected by Biochar Amendment
Soil type | Biochar type | Study type (Scale) | Rate of biochar application | SA | Porosity | Reference |
---|---|---|---|---|---|---|
% (g g−1) | (m2 g−1) | (%) | ||||
Residue sand | Municipal green waste, 450 °C | Laboratory | 0 | - | 0.46 | [68] |
2.6 | - | 0.48 | ||||
5.2 | - | 0.51 | ||||
Clarion fine loamy | Mixed hardwoods (Oak: Quercus spp., Hickory: Carya spp.), 500 °C | Laboratory | 0 | 130 | - | [67] |
0.5 | 133 | - | ||||
1.0 | 138 | - | ||||
2.0 | 153 | - | ||||
Sandy soil | Jarrah woods (Eucalyptus marginata), 600 ° C | Greenhouse | 0 | 1.3 | 56.1 | [69] |
0.45 | 2.7 1 | 57.6 | ||||
2.27 | 8.4 1 | 62.1 | ||||
Silt loam | Birch (Betula pendula), 400 °C | Field | 0 | - | 50.9 | [70] |
1.2 | - | 52.8 |
Soil type | Biochar type | Study type (Scale) | Rate of biochar application | Bulk density | Reference |
---|---|---|---|---|---|
% (g g−1) | (g cm−3) | ||||
Norfolk loamy sand: E | Pecan (Carya illinoinensis) shells, 700 °C | Laboratory | 0 | 1.52 | [75] |
2.1 | 1.45 1, 1.52 2 | ||||
Norfolk loamy sand: E and Bt | 0 | 1.34 | |||
2.1 | 1.36 1, 1.34 2 | ||||
Hydroagric stagnic anthrosol | Wheat (Triticum spp.) straw, 350–550 °C | Field | 0 | 0.99, 0.94 3 | [73] |
1.1 | 0.96, 0.91 3 | ||||
2.2 | 0.91, 0.86 3 | ||||
4.4 | 0.89, 0.88 3 | ||||
Residue sand | Municipal green waste, 450 °C | Laboratory | 0 | 1.65 | [68] |
2.6 | 1.55 | ||||
5.2 | 1.44 | ||||
Clarion fine loamy | Mixed hardwoods, 500 °C | Laboratory | 0 | 1.21, 1.34 4 | [67] |
0.5 | 1.10, 1.24 4 | ||||
1.0 | 1.08, 1.24 4 | ||||
2.0 | 1.08, 1.24 4 | ||||
Norfolk loamy sand | Peanut (Archis hypogaea) hull, 400 °C | Laboratory | 0 | 1.41 5, 1.57 6 | [76] |
2.0 | 1.38 5, 1.55 6 | ||||
Peanut hull, 500 °C | 2.0 | 1.38 5, 1.61 6 | |||
Pecan (Carya illinoensis) shell, 350 °C | 2.0 | 1.39 5, 1.51 6 | |||
Pecan shell, 700 °C | 2.0 | 1.49 5, 1.56 6 | |||
Poultry (Gallus domesticus) litter, 350 °C | 2.0 | 1.38 5, 1.57 6 | |||
Poultry litter, 700 °C | 2.0 | 1.40 5, 1.63 6 | |||
Switchgrass (Panicum virgatum), 250 °C | 2.0 | 1.32 5, 1.43 6 | |||
Switchgrass, 500 °C | 2.0 | 1.26 5, 1.50 6 |
Soil type | Biochar type | Study type (Scale) | Rate of biochar application | Aggregation | Penetration resistance | Reference |
---|---|---|---|---|---|---|
% (g g−1) | (%) | (MPa) | ||||
Norfolk loamy sand: E | Pecan shells, 700 °C | Laboratory | 0 | 14.3 | 1.19 1, 0.80 2 | [75] |
2.1 | 12.9 | 1.27 1, 0.88 2 | ||||
Norfolk loamy sand: E and Bt | 0 | 27.3 | 0.71 1, 0.76 2 | |||
2.1 | 20.9 | 0.88 1, 0.94 2 | ||||
Norfolk loamy sand: Ap | Pecan shells, 700 °C | Laboratory | 0 | 9.95, 13.0 * | 1.04 1, 1.1 2 | [78] |
0.5 | 9.53, 12.7 * | 0.96 1, 1.15 2 | ||||
1.0 | 10.7, 12.3 * | 1.03 1, 1.02 2 | ||||
2.0 | 9.23, 11.8 * | 0.82 1, 0.87 2 | ||||
Albic Luvisol | Hydrochar, 220 °C | Laboratory | 0 | 49.8 | - | [77] |
5 | 69.0 | - | ||||
10 | 65.1 | - | ||||
Greenhouse | 0 | 10.3 | - | |||
5 | 20.8 | - | ||||
10 | 33.8 | - |
Soil type | Biochar type | Study type (Scale) | Rate of biochar application | Water holding capacity | Reference |
---|---|---|---|---|---|
% (g g−1) | (g cm−3) | ||||
Residue sand | Municipal green waste, 450 °C | Laboratory | 0 | 0.11 | [68] |
2.6 | 0.16 | ||||
5.2 | 0.20 | ||||
Norfolk loamy sand: Ap | Pecan shells, 700 °C | Laboratory | 0 | 0.64 | [78] |
0.5 | 0.59 | ||||
1.0 | 0.60 | ||||
2.0 | 0.66 | ||||
Sandy loam | Ponderosa pine (Pinus ponderosa), 450 °C | Laboratory | 0 | 11.9 | [91] |
0.5 | 12.4 | ||||
1.0 | 13.0 | ||||
5.0 | 18.8 | ||||
Norfolk loamy sand | Peanut hull, 400 °C | Laboratory | 0 | 2.87 1, 7.68 2, 8.14 3, 7.71 4 | [76] |
2.0 | 3.97 1, 8.08 2, 8.59 3, 8.22 4 | ||||
Peanut hull, 500 °C | 2.0 | 4.26 1, 8.12 2, 8.64 3, 8.47 4 | |||
Pecan shell, 350 °C | 2.0 | 3.30 1, 7.78 2, 8.27 3, 8.03 4 | |||
Pecan shell, 700 °C | 2.0 | 3.61 1, 8.08 2, 8.30 3, 8.03 4 | |||
Poultry litter, 350 °C | 2.0 | 4.56 1, 8.23 2, 8.62 3, 8.31 4 | |||
Poultry litter, 700 °C | 2.0 | 4.51 1, 8.21 2, 8.64 3, 8.26 4 | |||
Switchgrass, 250 °C | 2.0 | 3.37 1, 7.73 2, 8.14 3, 7.70 4 | |||
Switchgrass, 500 °C | 2.0 | 4.29 1, 8.12 2, 8.35 3, 8.12 4 | |||
Declo silt loam | Switchgrass, 250 °C | 0 | 5.37 5, 11.99 6, 12.44 7, 12.50 8 | ||
2.0 | 5.54 5, 11.99 6, 12.28 7, 11.95 8 | ||||
Switchgrass, 500 °C | 2.0 | 5.58 5, 12.10 6, 12.25 7, 11.92 8 | |||
Warden silt loam | Switchgrass, 250 °C | 0 | 5.10 5, 12.14 6, 12.51 7, 12.26 8 | ||
2.0 | 5.38 5, 12.23 6, 12.29 7, 12.06 8 | ||||
Switchgrass, 500 °C | 2.0 | 5.48 5, 12.06 6, 12.11 7, 11.68 8 | |||
Compacted sandy loam | Hardwood, 400 °C | Laboratory | 0 | 1.73 | [92] |
1 | 1.71 | ||||
2 | 1.73 | ||||
5 | 1.69 | ||||
10 | 1.63 | ||||
Silt loam | Birch, 400 °C | Field | 0 | 0.49 | [70] |
1.2 | 0.54 |
4. Greenhouse Gas Emissions from Soil Affected by Biochar Amendment
5. A 2-Phase Complex Formation Hypothesis
Soil type | Biochar type | Study type (Scale) | Rate of biochar application | CO2 emission rate | CH4 emission rate | N2O emission rate | References |
---|---|---|---|---|---|---|---|
% (g g−1) | (kg ha−1 Year−1) | (kg ha−1 Year−1) | (kg ha−1 Year−1) | ||||
Hydroagric stagnic anthrosol | Wheat straw (350–550 °C) | Field | 0 | - | 200 | 2.9 | [146] |
0.8 | - | 330 | 2.1 | ||||
3.3 | - | 336 | 2.3 | ||||
Hydroagric stagnic anthrosol | Wheat straw (350–550 °C) | Field | 0 | 9,744 1, 13,409 2 | 222 1, 91 2 | 8 1, 17 2 | [74] |
0.7 | 10,380 1, 11,495 2 | 215 1, 78 2 | 4 1, 12 2 | ||||
1.3 | 9,456 1, 12,174 2 | 560 1, 140 2 | 3 1, 9 2 | ||||
2.7 | 9,318 1, 13,926 2 | 336 1, 125 2 | 4 1, 8 2 | ||||
Red Ferrosol | Cattle feedlot waste (550 °C) | Field | 0 | 21,803 | −0.85 | 4.3 | [104] |
1 | 21,745 | −0.79 | 4.9 | ||||
Sandy loam | Oak, cherry (400 °C) | Laboratory | 0 | 260 | - | 3.6 | [92] |
1 | 405 | - | 2.7 | ||||
2 | 404 | - | 2.7 | ||||
5 | 319 | - | 0.9 | ||||
10 | 239 | - | 0.1 | ||||
Fine loamy Clarion | Mixed hardwood (Oak, Hickory) (450–500 °C) | Laboratory | 0 | 12,634 | - | 1.4 | [72] |
0.005 | 15,381 | - | 0.3 | ||||
0.01 | 18,127 | - | 0.3 | ||||
0.02 | 20,325 | - | 0.2 |
6. Research Priorities
7. Conclusions
Acknowledgements
References
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009. [Google Scholar]
- Mukherjee, A. Physical and Chemical Properties of a Range of Laboratory-produced Fresh and Aged Biochars. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 2011. [Google Scholar]
- Mukherjee, A.; Zimmerman, A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma 2012, 193–194, 122–130. [Google Scholar]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W.G. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Zimmerman, A.R. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1295–1301. [Google Scholar] [CrossRef]
- Zimmerman, A.R. Environmental stability of biochar. In Biochar and Soil Biota; Ladygina, N., Rineau, F., Eds.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Skjemstad, J.O.; Clarke, P.; Taylor, J.A.; Oades, J.M.; McClure, S.G. The chemistry and nature of protected carbon in soil. Aust. J. Soil Res. 1996, 34, 251–271. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Noack, A.G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 2000, 14, 777–793. [Google Scholar] [CrossRef]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The ‘terra preta’ phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef]
- Kuhlbusch, T.A.J. Black carbon and the carbon cycle. Science 1998, 280, 1903–1904. [Google Scholar] [CrossRef]
- Rumpel, C.; Alexis, M.; Chabbi, A.; Chaplot, V.; Rasse, D.P.; Valentin, C.; Mariotti, A. Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma 2006, 130, 35–46. [Google Scholar] [CrossRef]
- McCann, J.M.; Woods, W.I.; Meyer, D.W. Organic matter and Anthrosols in Amazonia: interpreting the Amerindian legacy. In Sustainable Management of Soil Organic Matter; Rees, R.M., Ball, B.C., Campbell, D.C., Watson, C.A., Eds.; CAB International: Wallingford, UK, 2001; pp. 180–189. [Google Scholar]
- Smith, N.J.H. Anthrosols and human carrying capacity in amazonia. Ann. Assoc. Am. Geogr. 1980, 70, 553–566. [Google Scholar] [CrossRef]
- Smith, N.J.H. The Amazon River Forest: A Natural History of Plants, Animals, and People; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Woods, W.I.; McCann, J.M. The Anthropogenic Origin and Persistence of Amazonian dark earths. In The Yearbook of the Conference of Latin American Geographers; University of Texas Press: Austin, TX, USA, 1999; Volume 25, pp. 7–14. [Google Scholar]
- Sombroek, W.G. Amazon Soils—A Reconnaissance of Soils of the Brazilian Amazon Region; Centre for Agricultural Publications and Documentation: Wageningen, The Netherlands, 1966; p. 292. [Google Scholar]
- Kampf, N.; Woods, W.; Sombroek, W.; Kern, D.; Cunha, T. Classification of Amazonian Dark Earths and other Ancient Anthropic Soils. In Amazonian Dark Earths; Lehmann, J., Kern, D.C., Glaser, B., Woods, W.I., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 77–102. [Google Scholar]
- Costa, M.L.D.; Kern, D.C.; Pinto, A.H.E.; Souza, J.R.d.T. The ceramic artifacts in archaeological black earth (terra preta) from Lower Amazon region, Brazil: Mineralogy. Acta Amazonica 2004, 34, 165–178. [Google Scholar] [CrossRef]
- Solomon, D.; Lehmann, J.; Thies, J.; Schafer, T.; Liang, B.; Kinyangi, J.; Neves, E.; Petersen, J.; Luizao, F.; Skjemstad, J. Molecular signature and sources of biochemical recalcitrance of organic C in Amazonian Dark Earths. Geochimica et Cosmochimica Acta 2007, 71, 2285–2298. [Google Scholar] [CrossRef]
- Glaser, B.; Birk, J.J. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochimica et Cosmochimica Acta 2012, 82, 39–51. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Fowles, M. Black carbon sequestration as an alternative to bioenergy. Biomass Bioenerg. 2007, 31, 426–432. [Google Scholar]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char sequestration in terrestrial ecosystems—A review. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 395–419. [Google Scholar] [CrossRef]
- Berglund, O.; Berglund, K. Influence of water table level and soil properties on emissions of greenhouse gases from cultivated peat soil. Soil Biol. Biochem. 2011, 43, 923–931. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar]
- Hammes, K.; Schmidt, M. Changes in Biochar in Soil. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 169–182. [Google Scholar]
- Rondon, M.; Ramirez, J.; Lehmann, J. Charcoal Additions Reduce Net Emissions of Greenhouse Gases to the Atmosphere. In Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration, Baltimore, MD, USA, 21–24 March 2005; p. 208.
- Spokas, K.A.; Koskinen, W.C.; Baker, J.M.; Reicosky, D.C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a minnesota soil. Chemosphere 2009, 77, 574–581. [Google Scholar] [CrossRef]
- Spokas, K.A.; Reicosky, D.C. Impacts of sixteen different biochars on soil greenhouse gas production. Ann. Environ. Sci. 2009, 3, 179–193. [Google Scholar]
- Van Zwieten, L.; Singh, B.; Joseph, S.; Kimber, S.; Cowie, A.; Yin Chan, K. Biochar and Emissions of Non-CO2 Greenhouse Gases from Soil. In Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Earthscan: London Sterling, VA, USA, 2009. [Google Scholar]
- Di Blasi, C.; Signorelli, G.; Di Russo, C.; Rea, G. Product distribution from pyrolysis of wood and agricultural residues. Ind. Eng. Chem. Res. 1999, 38, 2216–2224. [Google Scholar] [CrossRef]
- Manya, J.J. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 2012, 46, 7939–7954. [Google Scholar] [CrossRef]
- Zimmerman, A.R.; Gao, B.; Ahn, M.Y. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol. Biochem. 2011, 43, 1169–1179. [Google Scholar] [CrossRef]
- Braida, W.J.; Pignatello, J.J.; Lu, Y.; Ravikovitch, P.I.; Neimark, A.V.; Xing, B. Sorption hysteresis of benzene in charcoal particles. Environ. Sci. Technol. 2003, 37, 409–417. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Brown, R.A.; Ball, W.P. An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment. Org. Geochem. 2004, 35, 217–234. [Google Scholar] [CrossRef]
- Rutherford, D.W.; Wershaw, R.L.; Cox, L.G. Changes in Composition and Porosity Occurring during the Thermal Degradation of Wood and Wood Components; 2004-5292; U.S. Department of the Interior, U.S. Geological Survey: Denver, CO, USA, 2004; p. 88. [Google Scholar]
- Sweatman, M.B.; Quirke, N. Characterization of porous materials by gas adsorption: Comparison of nitrogen at 77 k and carbon dioxide at 298 k for activated carbon. Langmuir 2001, 17, 5011–5020. [Google Scholar] [CrossRef]
- Jagiello, J.; Thommes, M. Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 2004, 42, 1227–1232. [Google Scholar] [CrossRef]
- Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.M.; Pernicone, N.J.D.; Ramsay, F.; Sing, K.S.W.; Unger, K.K. Recommendations for the characterization of porous solids. Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- Zdravkov, B.D.; Čermák, J.J.; Šefara, M.; Janků, J. Pore classification in the characterization of porous materials: A perspective. Cent. Eur. J. Chem. 2007, 5, 385–395. [Google Scholar] [CrossRef]
- Pattaraprakorn, W.; Nakamura, R.; Aida, T.; Niiyama, H. Adsorption of CO2 and N2 onto charcoal treated at different temperatures. J. Chem. Eng. Jpn. 2005, 38, 366–372. [Google Scholar] [CrossRef]
- Wang, X.; Sato, T.; Xing, B. Competitive sorption of pyrene on wood chars. Environ. Sci. Technol. 2006, 40, 3267–3272. [Google Scholar] [CrossRef]
- Hammes, K.; Smernik, R.J.; Skjemstad, J.O.; Herzog, A.; Vogt, U.F.; Schmidt, M.W.I. Synthesis and characterisation of laboratory-charred grass straw (Oryza sativa) and chestnut wood (Castanea sativa) as reference materials for black carbon quantification. Org. Geochem. 2006, 37, 1629–1633. [Google Scholar] [CrossRef]
- Fernandes, M.B.; Skjemstad, J.O.; Johnson, B.B.; Wells, J.D.; Brooks, P. Characterization of carbonaceous combustion residues. I. Morphological, elemental and spectroscopic features. Chemosphere 2003, 51, 785–795. [Google Scholar] [CrossRef]
- Aarna, I.; Suuberg, E.M. Changes in Reactive Surface Area and Porosity During Char Oxidation. In Proceedings of the 27th Symposium (International) on Combustionthe Combustion SymposiumUniversity of Colorado, Boulder, CO, USA, 2–7 August 1998; pp. 2933–2939.
- Brown, R.A.; Kercher, A.K.; Nguyen, T.H.; Nagle, D.C.; Ball, W.P. Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Org. Geochem. 2006, 37, 321–333. [Google Scholar]
- Lua, A.C.; Guo, J. Preparation and characterization of chars from oil palm waste. Carbon 1998, 36, 1663–1670. [Google Scholar] [CrossRef]
- Pulido-Novicio, L.; Hata, T.; Kurimoto, Y.; Doi, S.; Ishihara, S.; Imamura, Y. Adsorption capacities and related characteristics of wood charcoals carbonized using a one-step or two-step process. J. Wood Sci. 2001, 47, 48–57. [Google Scholar] [CrossRef]
- Lewis, A.C. Production and Characterization of Structural Active Carbon from Wood Precursors; The Johns Hopkins University: Baltimore, MD, USA, 1999. [Google Scholar]
- Boateng, A.A. Characterization and thermal conversion of charcoal derived from fluidized-bed fast pyrolysis oil production of switchgrass. Ind. Eng. Chem. Res. 2007, 46, 8857–8862. [Google Scholar] [CrossRef]
- Forbes, M.S.; Raison, R.J.; Skjemstad, J.O. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci. Total Environ. 2006, 370, 190–206. [Google Scholar] [CrossRef]
- Goldberg, E.D. Black Carbon in the Environment: Properties and Distribution; John Wiley and Sons: New York, NY, USA, 1985. [Google Scholar]
- Koelmans, A.A.; Jonker, M.T.O.; Cornelissen, G.; Bucheli, T.D.; Van Noort, P.C.M.; Gustafsson, O. Black carbon: The reverse of its dark side. Chemosphere 2006, 63, 365–377. [Google Scholar] [CrossRef]
- Lohmann, R.; MacFarlane, J.K.; Gschwend, P.M. Importance of black carbon to sorption of native PAHs, PCBs, and PCDDs in Boston and New York, harbor sediments. Environ. Sci. Technol. 2005, 39, 141–148. [Google Scholar] [CrossRef]
- Madhavi Latha, K.; Badarinath, K.V.S. Environmental pollution due to black carbon aerosols and its impacts in a tropical urban city. J. Quant. Spectrosc. Radiat. Transf. 2005, 92, 311–319. [Google Scholar]
- Mattson, J.S.; Mark, H.B. Activated Carbon; Marcel Dekker: New York, NY, USA, 1971; p. 237. [Google Scholar]
- Pignatello, J.J.; Kwon, S.; Lu, Y.F. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): Attenuation of surface activity by humic and fulvic acids. Environ. Sci. Technol. 2006, 40, 7757–7763. [Google Scholar] [CrossRef]
- Hammes, K.; Torn, M.S.; Lapenas, A.G.; Schmidt, M.W.I. Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences 2008, 5, 1339–1350. [Google Scholar] [CrossRef] [Green Version]
- Leifeld, J.; Fenner, S.; Muller, M. Mobility of black carbon in drained peatland soils. Biogeosciences 2007, 4, 425–432. [Google Scholar] [CrossRef]
- Major, J.; Lehmann, J.; Rondon, M.; Goodale, C. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Glob. Change Biol. 2010, 16, 1366–1379. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Skjemstad, J.O.; Taylor, J.A.; Janik, L.J.; Marvanek, S.P. Soil organic carbon dynamics under long-term sugarcane monoculture. Aust. J. Soil Res. 1999, 37, 151–164. [Google Scholar] [CrossRef]
- Glaser, B.; Zech, W.; Woods, W.I. History, Current Knowledge and Future Perspectives of Geoecological Research Concerning the Origin of Amazonian Anthropogenic Dark Earths (terra preta). In Amazonian Dark Earths: Explorations in Space and Time; Glaser, B., Woods, W.I., Eds.; Springer: New York, NY, USA, 2004. [Google Scholar]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizao, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.Q.; Karlen, D.L. Impact of biochar amendments on the quality of a typical midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef]
- Jones, B.E.H.; Haynes, R.J.; Phillips, I.R. Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. J. Environ. Manag. 2010, 91, 2281–2288. [Google Scholar] [CrossRef]
- Dempster, D.N.; Gleeson, D.B.; Solaiman, Z.M.; Jones, D.L.; Murphy, D.V. Decreased soil microbial biomass and nitrogen mineralisation with eucalyptus biochar addition to a coarse textured soil. Plant Soil 2012, 354, 311–324. [Google Scholar] [CrossRef]
- Karhu, K.; Mattila, T.; Bergström, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Chen, H.-X.; Du, Z.-L.; Guo, W.; Zhang, Q.-Z. Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China plain. Yingyong Shengtai Xuebao 2011, 22, 2930–2934. [Google Scholar]
- Rogovska, N.; Laird, D.; Cruse, R.; Fleming, P.; Parkin, T.; Meek, D. Impact of biochar on manure carbon stabilization and greenhouse gas emissions. Soil Sci. Soc. Am. J. 2011, 75, 871–879. [Google Scholar]
- Mankasingh, U.; Choi, P.C.; Ragnarsdottir, V. Biochar application in a tropical, agricultural region: A plot scale study in Tamil Nadu, India. Appl. Geochem. 2011, 26, S218–S221. [Google Scholar] [CrossRef]
- Zhang, A.F.; Bian, R.J.; Pan, G.X.; Cui, L.Q.; Hussain, Q.; Li, L.Q.; Zheng, J.W.; Zheng, J.F.; Zhang, X.H.; Han, X.J.; et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Busscher, W.J.; Novak, J.M.; Ahmedna, M. Physical effects of organic matter amendment of a southeastern us coastal loamy sand. Soil Sci. 2011, 176, 661–667. [Google Scholar]
- Novak, J.M.; Busscher, W.J.; Watts, D.W.; Amonette, J.E.; Ippolito, J.A.; Lima, I.M.; Gaskin, J.; Das, K.C.; Steiner, C.; Ahmedna, M.; et al. Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Sci. 2012, 177, 310–320. [Google Scholar]
- George, C.; Wagner, M.; Kucke, M.; Rillig, M.C. Divergent consequences of hydrochar in the plant-soil system: Arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects. Appl. Soil Ecol. 2012, 59, 68–72. [Google Scholar] [CrossRef]
- Busscher, W.J.; Novak, J.M.; Evans, D.E.; Watts, D.W.; Niandou, M.A.S.; Ahmedna, M. Influence of pecan biochar on physical properties of a norfolk loamy sand. Soil Sci. 2010, 175, 10–14. [Google Scholar]
- Peng, X.; Ye, L.L.; Wang, C.H.; Zhou, H.; Sun, B. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an ultisol in southern china. Soil Tillage Res. 2011, 112, 159–166. [Google Scholar] [CrossRef]
- Brodowski, S.; John, B.; Flessa, H.; Amelung, W. Aggregate-occluded black carbon in soil. Eur. J. Soil Sci. 2006, 57, 539–546. [Google Scholar]
- Piccolo, A.; Mbagwu, J.S.C. Effects of humic substances and surfactants on the stability of soil aggregates. Soil Sci. 1989, 147, 47–54. [Google Scholar]
- Mukherjee, A.; Hamdan, R.; Cooper, W.T.; Zimmerman, A.R. A chemical comparison of freshly-produced and field-aged biochars and biochar-amended soils. Chemosphere 2013. submitted. [Google Scholar]
- Kudeyarova, A.Y. Application of basic chemical concepts to understanding the formation and transformation mechanisms of humic substances: A revue of publications and own experimental data. Eurasian Soil Sci. 2007, 40, 934–948. [Google Scholar]
- Mackowiak, C.L.; Grossl, P.R.; Bugbee, B.G. Beneficial effects of humic acid on micronutrient availability to wheat. Soil Sci. Soc. Am. J. 2001, 65, 1744–1750. [Google Scholar]
- Motojima, H.; Yamada, P.; Irie, M.; Ozaki, M.; Shigemori, H.; Isoda, H. Amelioration effect of humic acid extracted from solubilized excess sludge on saline-alkali soil. J. Mater. Cycles Waste Manag. 2012, 14, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.H.; Lehmann, J. Ageing of black carbon along a temperature gradient. Chemosphere 2009, 75, 1021–1027. [Google Scholar] [CrossRef]
- Cheng, C.H.; Lehmann, J.; Engelhard, M.H. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica Et Cosmochimica Acta 2008, 72, 1598–1610. [Google Scholar] [CrossRef]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Zahoor, A.; Nishihara, E. Influence of biochar application on sandy soil hydraulic properties and nutrient retention. J. Food Agric. Environ. 2011, 9, 1137–1143. [Google Scholar]
- Piccolo, A.; Pietramellara, G.; Mbagwu, J.S.C. Effects of coal derived humic substances on water retention and structural stability of mediterranean soils. Soil Use Manag. 1996, 12, 209–213. [Google Scholar] [CrossRef]
- Tryon, E.H. Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol. Monogr. 1948, 18, 81–115. [Google Scholar] [CrossRef]
- Briggs, C.; Breiner, J.M.; Graham, R.C. Physical and chemical properties of pinus ponderosa charcoal: Implications for soil modification. Soil Sci. 2012, 177, 263–268. [Google Scholar]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Whitaker, J. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—The role of soil aeration. Soil Biol. Biochem. 2012, 51, 125–134. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 815–830. [Google Scholar] [CrossRef]
- da Silva, L.S.; Griebeler, G.; Moterle, D.F.; Bayer, C.; Zschornack, T.; Pocojeski, E. Dynamics of methane emission from flodded rice soils in southern brazil. Revista Brasileira De Ciencia Do Solo 2011, 35, 473–481. [Google Scholar] [CrossRef]
- Gogoi, B.; Baruah, K.K. Nitrous oxide emissions from fields with different wheat and rice varieties. Pedosphere 2012, 22, 112–121. [Google Scholar] [CrossRef]
- Luo, L.-G.; Kondo, M.; Itoh, S. N2O and CH4 emission from japan rice fields under different long–term fertilization patterns and its environmental impact. Yingyong Shengtai Xuebao 2010, 21, 3200–3206. [Google Scholar]
- Minamikawa, K.; Hayakawa, A.; Nishimura, S.; Akiyama, H.; Yagi, K. Comparison of indirect nitrous oxide emission through lysimeter drainage between an andosol upland field and a fluvisol paddy field. Soil Sci. Plant Nutr. 2011, 57, 843–854. [Google Scholar] [CrossRef]
- Neue, H.U.; Wassmann, R.; Lantin, R.S.; Alberto, M.; Aduna, J.B.; Javellana, A.M. Factors affecting methane emission from rice fields. Atmos. Environ. 1996, 30, 1751–1754. [Google Scholar]
- Yagi, K.; Minami, K. Effect of organic-matter application on methane emission from some japanese paddy fields. Soil Sci. Plant Nutr. 1990, 36, 599–610. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Dong, H.; Wang, R.; Mei, B.; Zhu, J. A 3-year record of N2O and CH4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agric. Ecosyst. Environ. 2012, 152, 1–9. [Google Scholar] [CrossRef]
- Jones, D.L.; Murphy, D.V.; Khalid, M.; Ahmad, W.; Edwards-Jones, G.; DeLuca, T.H. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem. 2011, 43, 1723–1731. [Google Scholar] [CrossRef]
- Bruun, E.W.; Ambus, P.; Egsgaard, H.; Hauggaard-Nielsen, H. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol. Biochem. 2012, 46, 73–79. [Google Scholar] [CrossRef]
- Scheer, C.; Grace, P.R.; Rowlings, D.W.; Kimber, S.; Van Zwieten, L. Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern new south wales, australia. Plant Soil 2011, 345, 47–58. [Google Scholar]
- Wardle, D.A.; Nilsson, M.C.; Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 2008, 320, 629–629. [Google Scholar]
- Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar]
- Lehmann, J.; Sohi, S. Comment on “Fire-derived charcoal causes loss of forest humus”. Science 2008, 321, 1295. [Google Scholar] [CrossRef]
- Wardle, D.A.; Nilsson, M.C.; Zackrisson, O. Response to comment on “Fire-derived charcoal causes loss of forest humus”. Science 2008, 321, 629–629. [Google Scholar]
- Castaldi, S.; Riondino, M.; Baronti, S.; Esposito, F.R.; Marzaioli, R.; Rutigliano, F.A.; Vaccari, F.P.; Miglietta, F. Impact of biochar application to a mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 2011, 85, 1464–1471. [Google Scholar] [CrossRef]
- Yanai, Y.; Toyota, K.; Okazaki, M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr. 2007, 53, 181–188. [Google Scholar] [CrossRef]
- Smith, J.L.; Collins, H.P.; Bailey, V.L. The effect of young biochar on soil respiration. Soil Biol. Biochem. 2010, 42, 2345–2347. [Google Scholar] [CrossRef]
- Liu, Y.X.; Yang, M.; Wu, Y.M.; Wang, H.L.; Chen, Y.X.; Wu, W.X. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J. Soils Sediments 2011, 11, 930–939. [Google Scholar] [CrossRef]
- Rondon, M.; Molina, D.; Hurtado, M.; Ramirez, J.; Lehmann, J.; Major, J.; Amezquita, E. Enhancing the Productivity of Crops and Grasses While Reducing Greenhouse Gas Emissions through Bio-Char Amendments to Unfertile Tropical Soils. In Proceedings of the 18th World Congress of Soil Science, Philadelphia, PA, USA, 9–15 July 2006.
- van Zwieten, L.; Kimber, S.; Morris, S.; Downie, A.; Berger, E.; Rust, J.; Scheer, C. Influence of biochars on flux of N2O and CO2 from ferrosol. Soil Res. 2010, 48, 555–568. [Google Scholar] [CrossRef]
- Hilscher, A.; Heister, K.; Siewert, C.; Knicker, H. Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil. Org. Geochem. 2009, 40, 332–342. [Google Scholar]
- Khalil, K.; Mary, B.; Renault, P. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O2 concentration. Soil Biol. Biochem. 2004, 36, 687–699. [Google Scholar] [CrossRef]
- Wrage, N.; Groenigen, J.W.V.; Oenema, O.; Baggs, E.M. A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Commun. Mass Spectrom. 2005, 19, 3298–3306. [Google Scholar] [CrossRef]
- Gillam, K.M.; Zebarth, B.J.; Burton, D.L. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration. Can. J. Soil Sci. 2008, 88, 133–143. [Google Scholar]
- Spokas, K.; Baker, J.; Reicosky, D. Ethylene: Potential key for biochar amendment impacts. Plant Soil 2010, 333, 443–452. [Google Scholar] [CrossRef]
- Dobbie, K.E.; Smith, K.A. The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. Eur. J. Soil Sci. 2001, 52, 667–673. [Google Scholar]
- Khalil, M.I.; Baggs, E.M. CH4 oxidation and N2O emissions at varied soil water-filled pore spaces and headspace CH4 concentrations. Soil Biol. Biochem. 2005, 37, 1785–1794. [Google Scholar] [CrossRef]
- Von Fischer, J.C.; Butters, G.; Duchateau, P.C.; Thelwell, R.J.; Siller, R. In situ measures of methanotroph activity in upland soils: A reaction-diffusion model and field observation of water stress. J. Geophys. Res. 2009, 114, G01015. [Google Scholar] [CrossRef]
- Dalal, R.C.; Allen, D.E. Turner review No. 18. Greenhouse gas fluxes from natural ecosystems. Aust. J. Bot. 2008, 56, 369–407. [Google Scholar]
- Chun, Y.; Sheng, G.Y.; Chiou, C.T.; Xing, B.S. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol. 2004, 38, 4649–4655. [Google Scholar]
- Mukherjee, A.; Zimmerman, A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma 2013, 193–194, 122–130. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils; Macmillan: New York, NY, USA, 1984. [Google Scholar]
- Cheng, C.H.; Lehmann, J.; Thies, J.E.; Burton, S.D.; Engelhard, M.H. Oxidation of black carbon by biotic and abiotic processes. Org. Geochem. 2006, 37, 1477–1488. [Google Scholar]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.H.; Hook, J.; van Zwieten, L.; Kimber, S.; Cowie, A.; Singh, B.P.; Lehmann, J.; Foidl, N.; Smernik, R.J.; Amonette, J.E. An investigation into the reactions of biochar in soil. Aust. J. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Lin, Y.; Munroe, P.; Joseph, S.; Kimber, S.; Van Zwieten, L. Nanoscale organo-mineral reactions of biochars in ferrosol: An investigation using microscopy. Plant Soil 2012, 357, 369–380. [Google Scholar] [CrossRef]
- Kleber, M.; Sollins, P.; Sutton, R. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 2007, 85, 9–24. [Google Scholar] [CrossRef]
- Rutherford, D.W.; Wershaw, R.L.; Reeves, J.B. Development of Acid Functional Groups and Lactones during the Thermal Degradation of Wood and Wood Components, 2007-5013; U.S. Department of the Interior, U.S.; Geological Survey: Denver, CO, USA, 2008; p. 52. [Google Scholar]
- Baldock, J.A.; Smernik, R.J. Chemical composition and bioavailability of thermally, altered pinus resinosa (red pine) wood. Org. Geochem. 2002, 33, 1093–1109. [Google Scholar]
- Czimczik, C.I.; Preston, C.M.; Schmidt, M.W.I.; Werner, R.A.; Schulze, E.D. Effects of charring on mass, organic carbon, and stable carbon isotope composition of wood. Org. Geochem. 2002, 33, 1207–1223. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar]
- Kuzyakov, Y.; Subbotina, I.; Chen, H.Q.; Bogomolova, I.; Xu, X.L. Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling. Soil Biol. Biochem. 2009, 41, 210–219. [Google Scholar] [CrossRef]
- Singh, B.P.; Cowie, A.L. A Novel Approach, Using 13C Natural Abundance, for Measuring Decomposition of Biochars in Soil. In Proceedings of the Carbon and Nutrient Management in Agriculture, Fertilizer and Lime Research Centre Workshop, Massey University, Palmerston North, New Zealand, 13–14 February 2008; Currie, L.D., Yates, L., Eds.; p. 549.
- Gaskin, J.W.; Speir, R.A.; Harris, K.; Das, K.C.; Lee, R.D.; Morris, L.A.; Fisher, D.S. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J. 2010, 102, 623–633. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Steiner, C.; Harris, K.; Das, K.C.; Bibens, B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. Asabe 2008, 51, 2061–2069. [Google Scholar]
- Knicker, H. “Black nitrogen”—An important fraction in determining the recalcitrance of charcoal. Org. Geochem. 2010, 41, 947–950. [Google Scholar] [CrossRef]
- Yao, F.X.; Arbestain, M.C.; Virgel, S.; Blanco, F.; Arostegui, J.; Maciá-Agulló, J.A.; Macías, F. Simulated geochemical weathering of a mineral ash-rich biochar in a modified soxhlet reactor. Chemosphere 2010, 80, 724–732. [Google Scholar] [CrossRef]
- Chidumayo, E.N. Effects of wood carbonization on soil and initial development of seedlings in miombo woodland, zambia. For. Ecol. Manag. 1994, 70, 353–357. [Google Scholar] [CrossRef]
- Kishimoto, S.; Sugiura, G. Charcoal as a soil conditioner. Int. Ach. Futur. 1985, 5, 12–23. [Google Scholar]
- Six, J.; Jastrow, J.D. Organic Matter Turnover. In Encyclopedia of Soil Science; Lal, R., Ed.; Marcel Dekker: New York, NY, USA, 2002; pp. 936–942. [Google Scholar]
- Kyung-Hwa, H.; Sang-Geun, H.; Byoung-Choon, J. Aggregate Stability and Soil Carbon Storage as Affected by Different Land Use Practices. In Proceedings of the International Workshop on Evaluation and Sustainable Management of Soil Carbon Sequestration in Asian Countries, Bogor, Indonesia, 28–29 September 2010.
- Sollins, P.; Homann, P.; Caldwell, B.A. Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma 1996, 74, 65–105. [Google Scholar] [CrossRef]
- Zhang, A.; Cui, L.; Pan, G.; Li, L.; Hussain, Q.; Zhang, X.; Zheng, J.; Crowley, D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from tai lake plain, china. Agric. Ecosyst. Environ. 2010, 139, 469–475. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mukherjee, A.; Lal, R. Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions. Agronomy 2013, 3, 313-339. https://doi.org/10.3390/agronomy3020313
Mukherjee A, Lal R. Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions. Agronomy. 2013; 3(2):313-339. https://doi.org/10.3390/agronomy3020313
Chicago/Turabian StyleMukherjee, Atanu, and Rattan Lal. 2013. "Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions" Agronomy 3, no. 2: 313-339. https://doi.org/10.3390/agronomy3020313
APA StyleMukherjee, A., & Lal, R. (2013). Biochar Impacts on Soil Physical Properties and Greenhouse Gas Emissions. Agronomy, 3(2), 313-339. https://doi.org/10.3390/agronomy3020313