Integrated Nutrient Management in Rice–Wheat Cropping System: An Evidence on Sustainability in the Indian Subcontinent through Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
- Rice and wheat as study crops.
- Nutrient management options include INM—integration of organic and inorganic sources (option 1); ORA—use of organic source of nutrient application only (option 2); or IORA—full dose of inorganic fertilizer application that mean recommended dose fertilizer application (option 3).
- CO: Control treatments where no fertilizers were added.
- Two soil textures: Loamy (moderately coarse to medium fine) and clayey (moderately fine to fine).
2.2. Crop and Soil Performance Parameters and Economic Analysis Used for Meta-Analysis Study
2.3. Meta-Analysis
3. Results
3.1. Impact of INM on Rice and Wheat Yield and Net Returns
3.2. Effect of INM on Soil Characteristics
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
RWCS | Rice-wheat cropping System |
INM | Integrated nutrient management |
SOC | Soil organic carbon |
INS | Integrated nutrient supply |
ORA | Organic only |
IORA | Inorganic only |
CO | Control (No fertilization) |
TN | Total nitrogen |
N | Nitrogen |
Av. P | Soil available phosphorus |
Av. K | Soil available potassium |
ANB | Apparent nutrient balance |
FYM | Farm yard manure |
SWFCC | Soil-water-fertilizer-climate continuum |
References
- Timsina, J.; Connor, D.J. Productivity and management of rice-wheat cropping systems: Issues and challenges. Field Crop. Res. 2001, 69, 93–132. [Google Scholar] [CrossRef]
- Singh, R.A.; Singh, J.; Yadav, D.; Singh, H.K.; Singh, J. Integrated nutrient management in rice-wheat cropping system. Int. J. Agric. Sci. 2012, 8, 523–526. [Google Scholar]
- Das, A.; Sharma, R.P.; Chattopadhyaya, N.; Rakshit, R. Yield trends and nutrient budgeting under a long-term (28 years) nutrient management in rice-wheat cropping system under subtropical climatic condition. Plant Soil Environ. 2014, 60, 351–357. [Google Scholar] [CrossRef]
- Gupta, R.K.; Naresh, R.K.; Hobbs, P.R.; Jiaguo, Z.; Ladha, J.K. Sustainability of post green revolution agriculture: The rice-wheat cropping systems of Indo-Gangetic plains and China. In Improving the Productivity and Sustainability of the Rice-Wheat System: Issues and Impact; Ladha, J.K., Hill, J.E., Duxbury, J.M., Gupta, R.K., Buresh, R.J., Eds.; ASA Special Publication No. 65; American Society Agronomy, Crop Science Society American, Soil Sciien Society American: Madison, WI, USA, 2003; pp. 1–25. [Google Scholar]
- Mohanty, S.; Nayak, A.K.; Kumar, A.; Tripathi, R.; Shahid, M.; Bhattacharyya, P.; Raja, R.; Panda, B.B. Carbon and nitrogen mineralization kinetics in soil of rice–rice system under long term application of chemical fertilizers and farmyard manure. Eur. J. Soil Biol. 2013, 58, 113–121. [Google Scholar] [CrossRef]
- Kalhapure, A.; Singh, V.P.; Kumar, R.; Pandey, D.S. Tillage and nutrient management in wheat with different plant geometries under rice-wheat cropping system: A review. Basic Res. J. Agric. Sci. Rev. 2015, 4, 296–303. [Google Scholar]
- Zhao, J.T.N.; Lia, J.; Lua, Q.; Fanga, Z.; Huang, Q.; Lia, R.Z.R.; Shen, B.; Shena, Q. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Appl. Soil Ecol. 2016, 99, 1–12. [Google Scholar] [CrossRef]
- Abrol, I.P.; Bronson, K.F.; Duxbury, J.M.; Gupta, R.K. Long-term soil fertility experiments in rice-wheat cropping systems. In Long-Term Soil Fertility Experiments with Rice-Wheat Rotations in South Asia; Rice-Wheat Consortium Paper Series No. 1; Abrol, I.P., Ed.; Rice-Wheat Consortium for the Indo-Gangetic Plains: New Delhi, India, 1997; pp. 14–15. [Google Scholar]
- Ladha, J.K.; Dawe, D.; Pathak, H.; Padre, A.T.; Yadav, R.L.; Singh, B.; Singh, Y.; Singh, Y.; Singh, P.; Kundu, A.L.; et al. How extensive are yield declines in long-term rice-wheat experiments in Asia? Field Crop. Res. 2003, 81, 159–180. [Google Scholar] [CrossRef]
- Dobermann, A.; Cassman, K.G. Precision nutrient management in intensive rice systems: The need for another on-farm revolution. Better Crop. 1996, 10, 20–25. [Google Scholar]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef]
- Benbi, D.K.; Brar, J.S.A. 25-year record of carbon sequestration and soil properties in intensive agriculture. Agron. Sustain. Dev. 2009, 29, 257–265. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Mundra, M.C.; Gupta, S.C.; Agrawal, S.K. Effect of integrated nutrient management on productivity of pearl millet-wheat cropping system. Indian J. Agron. 1999, 44, 250–253. [Google Scholar]
- Anwar, M.; Patra, D.D.; Chand, S.; Kumar, A.; Naqvi, A.A.; Khanuja, S.P.S. Effect of organic manures and inorganic fertilizer on growth, herb and oil yield, nutrient accumulation, and oil quality of French basil. Commmun. Soil Sci. Plant Anal. 2005, 36, 1737–1746. [Google Scholar] [CrossRef]
- Kumar, U.; Shahid, M.; Tripathi, R.; Mohanty, S.; Kumar, A.; Bhattacharyya, P.; Lal, B.; Gautam, P.; Raja, R.; Panda, B.B.; et al. Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecol. Indic. 2017, 73, 536–543. [Google Scholar] [CrossRef]
- Kumar, U.; Nayak, A.K.; Shahid, M.; Gupta, V.V.S.R.; Panneerselvam, P.; Mohanty, S.; Kaviraj, M.; Kumar, A.; Chatterjee, D.; Lal, B.; et al. Continuous application of inorganic and organic fertilizers over 47 years in paddy soil alters the bacterial community structure and its influence on rice production. Agric. Ecosyst. Environ. 2018, 262, 65–75. [Google Scholar] [CrossRef]
- Mahajan, A.; Bhagat, R.M.; Gupta, R.D. Integrated nutrient management in sustainable rice-wheat cropping system for food security in India. SAARC J. Agric. 2008, 6, 1–13. [Google Scholar]
- Mahajan, A.; Sharma, R. Integrated nutrient management (INM) system: Concept, need and future strategy. Agrobios. Newsl. 2005, 4, 29–32. [Google Scholar]
- Yadav, D.S.; Kumar, A. Integrated nutrient management in rice-wheat cropping system under eastern Uttar Pradesh. Indian Farm. 2000, 50, 28–30. [Google Scholar]
- Janssen, B.H. Integrated nutrient management: The use of organic and mineral fertilizers. In The Role of Plant Nutrients for Sustainable Crop Production in Sub-Saharan Africa; Van Reuler, H., Prins, W.H., Eds.; Ponsen and Looijen: Wageningen, The Netherlands, 1993; pp. 89–105. [Google Scholar]
- Wu, W.; Ma, B. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: A review. Sci. Total Environ. 2015, 512–513, 415–427. [Google Scholar] [CrossRef]
- Gruhn, P.; Goletti, F.; Yudelman, M. Integrated Nutrient Management, Soil Fertility and Sustainable Agriculture: Current Issues and Future Challenges; International Food Policy Research Institute: Washington, DC, USA, 2000. [Google Scholar]
- Timsina, J. Can organic sources of nutrients increase crop yields to meet global food demand? Agronomy 2018, 8, 214. [Google Scholar] [CrossRef]
- Niggli, U.; Fliebbach, A.; Hepperly, P.; Scialabba, N. Low Greenhouse Gas Agriculture: Mitigation and Adaptation Potential of Sustainable Farming Systems; Food and Agriculture Organization of the United Nations: Rome, Italy, 2009. [Google Scholar]
- Padbhushan, R.; Rakshit, R.; Das, A.; Sharma, R.P. Effects of various organic amendments on organic carbon pools and water stable aggregates under a scented rice–potato–onion cropping system. Paddy Water Environ. 2016, 14, 481–489. [Google Scholar] [CrossRef]
- Rosenberg, M.S.; Adams, D.C.; Gurevitch, J. MetaWin: Statistical Software for Meta-Analysis, Version 2.0; Sinauer Associates: Sunderland, MA, USA, 2000. [Google Scholar]
- Zaman, S.K.; Jahiruddin, M.; Panaullah, G.M.; Mian, M.H.; Islam, M.R. Integrated nutrient management for sustainable yield in rice-rice cropping system. In Proceedings of the 17th WCSS, Bangkok, Thailand, 14–21 August 2002. [Google Scholar]
- Kumar, M.; Singh, R.P.; Rana, N.S. Effect of organic and inorganic sources of nutrition on productivity of rice. Ind. J. Agron. 2003, 48, 175–177. [Google Scholar]
- Bhoite, S.V. Integrated nutrient management in basmati rice (Oryza sativa)-wheat (Triticum aestivum) cropping system. Indian J. Agron. 2005, 50, 98–101. [Google Scholar]
- Surekha, K.; Rao, K.V. Direct and residual effects of organic sources on rice productivity and soil quality of vertisols. J. Indian Soc. Soil Sci. 2009, 57, 53–57. [Google Scholar]
- Kumari, R.; Kumar, S.; Kumar, R.; Das, A.; Kumari, R.; Choudhary, C.D.; Sharma, R.P. Effect of long-term integrated nutrient management on crop yield, nutrition and soil fertility under rice-wheat system. J. Appl. Nat. Sci. 2017, 9, 1801–1807. [Google Scholar] [CrossRef]
- Chakraborty, D.; Ladha, J.K.; Rana, D.S.; Jat, M.L.; Gathala, M.K.; Yadav, S.; Rao, A.N.; Ramesha, M.S.; Raman, A. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Sci. Rep. 2017, 7, 9342. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.; Khaleel, R.; Overcash, M.R. Behavior and transport of microbial pathogens and indicator organism in soils treated with organic wastes. J. Environ. Qual. 1981, 10, 255–266. [Google Scholar] [CrossRef]
- Mehdi, S.M.; Sarfraz, M.; Abbas, S.T.; Shabbir, G.; Akhtar, A. Integrated nutrient management for rice-wheat cropping system in a recently reclaimed soil. Soil Environ. 2011, 30, 36–44. [Google Scholar]
- Chaudhary, S.; Dheri, G.S.; Brar, B.S. Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system. Soil Tillage Res. 2017, 166, 59–66. [Google Scholar] [CrossRef]
- Kharub, A.S.; Sharma, R.K.; Mongia, A.D.; Chhokar, R.S.; Tripathi, S.C.; Sharma, V.K. Effect of rice (Oryza sativa) straw removal, burning and incorporation on soil properties and crop productivity under rice-wheat (Triticum aestivum) system. Indian J. Agric. Sci. 2004, 74, 295–299. [Google Scholar]
- Paikaray, R.K.; Mahapatra, B.S.; Sharma, G.L. Effect of organic and inorganic sources of nitrogen on productivity and soil fertility under rice (Oryza sativa)-wheat (Triticum aestivum) crop sequence. Indian J. Agric. Sci. 2002, 72, 445–448. [Google Scholar]
- Ghuman, B.S.; Sur, H.S. Effect of manuring on soil properties and yield of rainfed wheat. J. Indian Soc. Soil Sci. 2006, 54, 6–11. [Google Scholar]
- Bhattacharya, R.; Chandra, S.; Singh, R.D.; Kundu, S.; Srivastva, A.K.; Gupta, H.S. Long-term farmyard manure application effects on properties of a silty clay loam soil under irrigated wheat-soybean rotation. Soil Tillage Res. 2007, 94, 386–396. [Google Scholar] [CrossRef]
- Oborn, I.; Edwards, A.C.; Witter, E.; Oenema, O.; Ivarsson, K.; Withers, P.J.A.; Nilsson, S.I.; Stinzing, A.R. Element balances as a tool for sustainable nutrient management: A critical appraisal of their merits and limitations within an agronomic and environmental context. Eur. J. Agron. 2003, 20, 211–225. [Google Scholar] [CrossRef]
- Janssen, B.H.; de Willigen, P. Ideal and saturated soil fertility as bench marks in nutrient management. II. Interpretation of chemical soil tests in relation to ideal and saturated soil fertility. Agric. Ecosyst. Environ. 2006, 116, 147–155. [Google Scholar] [CrossRef]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; Kessel, C.V. Efficiency of fertilizer nitrogen in cereal production: Retrospect and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- Ghosh, B.N.; Singh, R.J.; Mishra, P.K. Soil and input management options for increasing nutrient use efficiency. In Nutrient Use Efficiency: From Basics to Advances; Rakshit, A., Ed.; Springer: New Delhi, India, 2015. [Google Scholar]
- Abrol, I.P.; Gill, M.S. Regional office for Asia and Pacific (FAO) Publication; FAO: Roma, Italy, 1994; Volume 11, pp. 172–183. [Google Scholar]
- Modgal, S.C.; Singh, Y.; Gupta, P.C. Nutrient management in rice-wheat cropping system. Fert. News 1995, 40, 49–54. [Google Scholar]
- Patro, H.; Dash, D.; Parida, D.; Panda, P.K.; Kumar, A.; Tiwari, R.C.; Shahid, M. Effect of organic and inorganic sources of nitrogen on yield attributes, grain yield and straw yield of rice (Oryza sativa). Int. J. Pharma Biol. Sci. 2011, 2, 1–8. [Google Scholar]
- Acharya, D.; Mandal, S.S. Effect of integrated nutrient management on the growth, productivity and quality of crops in rice (Oryza sativa L.)—Cabbage (Brassica oleracea)—Greengram (Vigna radiata) cropping system. Ind. J. Agron. 2010, 55, 1–5. [Google Scholar]
- Brahmachari, K.; Choudhury, S.R.; Karmakar, S.; Dutta, S.; Ghosh, P. Sustainable nutrient management in rice (Oryza sativa)—Paira chickling pea (Lathyrus sativus)—Green gram (Vigna radiata) sequence to improve total productivity of land under coastal zone of West Bengal. Rajshahi Univ. J. Environ. Sci. 2011, 1, 51–61. [Google Scholar]
- Yadav, G.S.; Datta, M.; Basu, S.; Debnath, C.; Sarkar, P.K. Growth and productivity of lowland rice (Oryza sativa) as influenced by substitution of nitrogenous fertilizer by organic sources. Indian J. Agric. Sci. 2013, 83, 1038–1042. [Google Scholar]
- Jaga, P.K. Effect of integrated nutrient management on wheat—A review. Innovare J. Agric. Sci. 2013, 1, 185–191. [Google Scholar]
- Aulakh, M.S.; Adhya, T.K. Impact of agricultural activities on emission of greenhouse gases—Indian perspective. In Proceedings of the International Conference on Soil, Water and Environmental Quality—Issues and Strategies; Indian Society of Soil Science: New Delhi, India, 2005; pp. 319–335. [Google Scholar]
- Aulakh, M.S.; Khurana, M.P.S.; Singh, D. Water pollution related to agricultural, industrial and urban activities, and its effects on food chain: Case studies from Punjab. J. New Seeds 2009, 10, 112–137. [Google Scholar] [CrossRef]
- Prasad, B.; Prasad, J.; Prasad, R. Nutrient management for sustainable rice and wheat production in calcareous soil amended with green manures, organic manures and zinc. Fert. News. 1995, 40, 39–45. [Google Scholar]
- Aulakh, M.S. Integrated nutrient management for sustainable crop production, improving crop quality and soil health, and minimizing environmental pollution. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
- Kundu, S.; Bhattacharyya, R.; Prakash, V.; Ghosh, B.N.; Gupta, H.S. Carbon sequestration and relationship between carbon addition and storage under rainfed soybean–wheat rotation in a sandy loam soil of the Indian Himalayas. Soil Tillage Res. 2007, 92, 87–95. [Google Scholar] [CrossRef]
- Chander, K.; Goyal, S.; Mundra, M.C.; Kapoor, K.K. Organic matter, microbial biomass and enzyme activity of soils under different crop rotations in the tropics. Biol. Fert. Soils 1977, 24, 306–310. [Google Scholar] [CrossRef]
- Wardle, D.A.; Yeates, G.W.; Nicholson, K.S.; Bonner, K.I.; Watson, R.N. Response of soil microbial biomass dynamics, activity and plant litter decomposition to agricultural intensification over a seven-year period. Soil Biol. Biochem. 1999, 31, 1707–1720. [Google Scholar] [CrossRef]
- Schloter, M.; Dilly, O.; Munch, J.K. Indicators for evaluating soil quality. Agric. Ecosyst. Environ. 2003, 98, 255–262. [Google Scholar] [CrossRef]
- Livia, B.; Uwe, L.; Frank, B. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric. Ecosyst. Environ. 2005, 109, 141–152. [Google Scholar]
- Kuttimani, R.; Somasundaram, E.; Velayudham, K. Effect of integrated nutrient management on soil microorganisms under irrigated banana. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2342–2350. [Google Scholar] [CrossRef]
- Pernes-Debuyser, A.; Tessier, D. Soil physical properties affected by long-term fertilization. Eur. J. Soil Sci. 2004, 55, 505–512. [Google Scholar] [CrossRef]
- Singh, G.; Singh, O.P.; Singh, S.; Prasad, K. Weed management in late sown wheat (Triticum aestivum) after rice (Oryza sativa) in rice–wheat system in rainfed lowland. Indian J. Agron. 2010, 55, 83–88. [Google Scholar]
- Prasad, P.; Satyanarayana, V.; Murthy, V.; Boote, K.J. Maximizing yields in rice- groundnut cropping sequence through integrated nutrient management. Field Crop. Res. 2002, 75, 9–21. [Google Scholar] [CrossRef]
- Parkinson, R. System based integrated nutrient management. Soil Use Manag. 2013, 29, 608. [Google Scholar] [CrossRef]
- Zhang, F.; Cui, Z.; Chen, X.; Ju, X.; Shen, J.; Chen, Q.; Liu, X.; Zhang, W.; Mi, G.; Fan, M.; et al. Integrated nutrient management for food security and environmental quality in China. Adv. Agron. 2012, 116, 1–40. [Google Scholar]
- Das, B.; Chakraborty, D.; Singh, V.; Aggarwal, P.; Singh, R.; Dwivedi, B.; Mishra, R. Effect of integrated nutrient management practice on soil aggregate properties, its stability and aggregate-associated carbon content in an intensive rice-wheat system. Soil Tillage Res. 2014, 136, 9–18. [Google Scholar] [CrossRef]
- Khan, M.U.; Qasim, M.; Sarhad, I.U.K. Effect of integrated nutrient management on crop yields in rice-wheat cropping system. J. Agric. 2007, 23, 4. [Google Scholar]
Nutrient Management Practices | Crops | |
---|---|---|
Rice | Wheat | |
INM vs. IORA | −2.93 (−9.48 to 3.93) | 9.34 (4.28 to 15.07) * |
INM vs. ORA | −0.27 (−3.78 to 3.37) | 0.13 (−3.85 to 4.27) |
INM vs. CO | 121 (101 to 142) * | 127 (97 to 156) * |
Soil Parameters | Nutrient Management Practices | Crops | Texture Groups | ||
---|---|---|---|---|---|
Rice | Wheat | Loamy | Clayey | ||
BD | INM vs. IORA | 0.53 (−1.33 to 2.44) | −0.98 (−3.83 to 1.96) | −0.94 (−2.87 to 1.04) | 1.85 (−0.79 to 4.55) |
INM vs. ORA | # | # | # | # | |
INM vs. CO | 1.15 (−0.74 to 3.07) | −0.55 (−3.42 to 2.42) | 0.19 (−1.77 to 2.19) | 1.38 (−1.24 to 4.06) | |
Soil pH | INM vs. IORA | 0.53 (−0.13 to 1.33) | −0.98 (−1.24 to −0.68) * | −0.94 (−1.28 to −0.58) * | 1.85 (0.84 to 3.02) * |
INM vs. ORA | −0.27 (−3.78 to 3.37) | 0.13 (−3.85 to 4.27) | −0.07 (−2.68 to 2.60) | −0.31 (−45.34 to 81.83) | |
INM vs. CO | 1.15 (0.24 to 2.18) * | −0.55 (−0.99 to −0.14) * | 0.19 (−1.77 to 2.19) | 1.38 (−1.24 to 4.06) | |
SOC | INM vs. IORA | 23.20 (18.55 to 27.48) * | 16.20 (9.94 to 21.95) * | 26.50 (21.05 to 31.19) * | 12.29 (9.74 to 14.88) * |
INM vs. ORA | # | # | # | # | |
INM vs. CO | 34.95 (28.08 to 41.92) * | 52.09 (41.79 to 66.53) * | 51.21 (43.43 to 59.79) * | 23.40 (17.95 to 29.38) * | |
TN | INM vs. IORA | 49.86 (42.99 to 57.07) * | 71.26 (60.11 to 83.16) * | # | # |
INM vs. ORA | 29.01 (24.93 to 33.22) * | 29.16 (25.08 to 33.38) * | # | # | |
INM vs. CO | 28.49 (25.46 to 31.59) * | 29.16 (24.82 to 33.66) * | # | # | |
Av. P | INM vs. IORA | 15.94 (12.24 to 19.76) * | 4.88 (−0.45 to 10.47) | 17.15 (13.18 to 21.26) * | 5.30 (0.58 to 10.23) * |
INM vs. ORA | 12.68 (3.97 to 22.12) * | 11.28 (1.42 to 22.09) * | 12.49 (5.95 to 19.45) * | 7.14 (−69.39 to 275.05) | |
INM vs. CO | 37.18 (21.93 to 54.34) * | 53.54 (31.93 to 78.68) * | 54.64 (38.89 to 72.17) * | 21.35 (3.40 to 42.40) * | |
Av. K | INM vs. IORA | 15.33 (11.20 to 20.21) * | 1.69 (−7.04 to 9.84) | 13.36 (7.06 to 19.97) * | 7.52 (4.75 to 10.69) * |
INM vs. ORA | 9.10 (7.36 to 10.82) * | 9.46 (7.97 to 11.02) * | 9.74 (8.68 to 10.83) * | 3.48 (2.84 to 4.12) * | |
INM vs. CO | 30.23 (24.68 to 36.12) * | 18.32 (14.50 to 22.52) * | 26.29 (21.85 to 31.48) * | 23.97 (18.07 to 30.12) * | |
SMBC | INM vs. IORA | 55.91 (44.09 to 68.67) * | 32.92 (23.50 to 43.05) * | 56.19 (46.29 to 66.76) * | 28.44 (19.12 to 38.49) * |
INM vs. ORA | # | # | # | # | |
INM vs. CO | 97.90 (70.98 to 129.03) * | 111.11 (95.15 to 128.35) * | 134.03 (116.41 to 153.07) * | 99.23 (79.98 to 103.16) * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Padbhushan, R.; Kumar, U. Integrated Nutrient Management in Rice–Wheat Cropping System: An Evidence on Sustainability in the Indian Subcontinent through Meta-Analysis. Agronomy 2019, 9, 71. https://doi.org/10.3390/agronomy9020071
Sharma S, Padbhushan R, Kumar U. Integrated Nutrient Management in Rice–Wheat Cropping System: An Evidence on Sustainability in the Indian Subcontinent through Meta-Analysis. Agronomy. 2019; 9(2):71. https://doi.org/10.3390/agronomy9020071
Chicago/Turabian StyleSharma, Sheetal, Rajeev Padbhushan, and Upendra Kumar. 2019. "Integrated Nutrient Management in Rice–Wheat Cropping System: An Evidence on Sustainability in the Indian Subcontinent through Meta-Analysis" Agronomy 9, no. 2: 71. https://doi.org/10.3390/agronomy9020071
APA StyleSharma, S., Padbhushan, R., & Kumar, U. (2019). Integrated Nutrient Management in Rice–Wheat Cropping System: An Evidence on Sustainability in the Indian Subcontinent through Meta-Analysis. Agronomy, 9(2), 71. https://doi.org/10.3390/agronomy9020071