Unveiling the Differentiation Potential of Ovarian Theca Interna Cells from Multipotent Stem Cell-like Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Ovarian Stromal Cells
2.2. Differentiation of TICs
2.3. Enzyme-Linked Immunosorbent Assay (ELISA)
2.4. RT-qPCR Analysis
2.5. Flow Cytometry
2.6. Immunocytochemistry
2.7. Statistical Analysis
3. Results
3.1. Hormone Secretion
3.2. RT-qPCR
3.3. Flow Cytometry
3.4. Immunocytochemistry
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaw, J.M.; Oranratnachai, A.; Trounson, A.O. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 2000, 53, 59–72. [Google Scholar] [CrossRef]
- Young, J.M.; McNeilly, A.S. Theca: The forgotten cell of the ovarian follicle. Reproduction 2010, 140, 489–504. [Google Scholar] [CrossRef]
- Vlieghe, H.; Leonel, E.C.R.; Asiabi, P.; Amorim, C.A. The characterization and therapeutic applications of ovarian theca cells: An update. Life Sci. 2023, 317, 121479. [Google Scholar] [CrossRef]
- Bukovsky, A.; Svetlikova, M.; Caudle, M.R. Oogenesis in cultures derived from adult human ovaries. Reprod. Biol. Endocrinol. 2005, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Parte, S.; Bhartiya, D.; Patel, H.; Daithankar, V.; Chauhan, A.; Zaveri, K.; Hinduja, I. Dynamics associated with spontaneous differentiation of ovarian stem cells in vitro. J. Ovarian Res. 2014, 7, 25. [Google Scholar] [CrossRef]
- Silvestris, E.; Cafforio, P.; Felici, C.; Cormio, G.; D’Oronzo, S. Ddx4(+) Oogonial Stem Cells in Postmenopausal Women’s Ovaries: A Controversial, Undefined Role. Cells 2019, 8, 650. [Google Scholar] [CrossRef]
- Virant-Klun, I.; Skutella, T.; Hren, M.; Gruden, K.; Cvjeticanin, B.; Vogler, A.; Sinkovec, J. Isolation of small SSEA-4-positive putative stem cells from the ovarian surface epithelium of adult human ovaries by two different methods. Biomed. Res. Int. 2013, 2013, 690415. [Google Scholar] [CrossRef]
- Woods, D.C.; Tilly, J.L. Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries. Nat. Protoc. 2013, 8, 966–988. [Google Scholar] [CrossRef] [PubMed]
- Dalman, A.; Totonchi, M.; Valojerdi, M.R. Establishment and characterization of human theca stem cells and their differentiation into theca progenitor cells. J. Cell. Biochem. 2018, 119, 9853–9865. [Google Scholar] [CrossRef] [PubMed]
- Adib, S.; Valojerdi, M.R. Molecular assessment, characterization, and differentiation of theca stem cells imply the presence of mesenchymal and pluripotent stem cells in sheep ovarian theca layer. Res. Vet. Sci. 2017, 114, 378–387. [Google Scholar] [CrossRef]
- Lee, Y.M.; Kumar, B.M.; Lee, J.H.; Lee, W.J.; Kim, T.H.; Lee, S.L.; Ock, S.A.; Jeon, B.G.; Park, B.W.; Rho, G.J. Characterisation and differentiation of porcine ovarian theca-derived multipotent stem cells. Vet. J. 2013, 197, 761–768. [Google Scholar] [CrossRef]
- Chen, H.; Xia, K.; Huang, W.; Li, H.; Wang, C.; Ma, Y.; Chen, J.; Luo, P.; Zheng, S.; Wang, J.; et al. Autologous transplantation of thecal stem cells restores ovarian function in nonhuman primates. Cell Discov. 2021, 7, 75. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Ge, R.; Zirkin, B.R. Leydig cell stem cells: Identification, proliferation and differentiation. Mol. Cell. Endocrinol. 2017, 445, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Eliveld, J.; van den Berg, E.A.; Chikhovskaya, J.V.; van Daalen, S.K.M.; de Winter-Korver, C.M.; van der Veen, F.; Repping, S.; Teerds, K.; van Pelt, A.M.M. Primary human testicular PDGFRalpha+ cells are multipotent and can be differentiated into cells with Leydig cell characteristics in vitro. Hum. Reprod. 2019, 34, 1621–1631. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Deng, C.; Jiang, M.H.; Feng, X.; Xia, K.; Li, W.; Lai, X.; Xiao, H.; Ge, R.S.; et al. Transplanted human p75-positive stem Leydig cells replace disrupted Leydig cells for testosterone production. Cell Death Dis. 2017, 8, e3123. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Wang, J.; Qin, M.; Wang, H.; Xu, J.; Guan, X.; Shan, D.; Chen, P.; Xie, J.; Shao, J.; et al. Characterization of ovarian progenitor cells for their potential to generate steroidogenic theca cells in vitro. Reproduction 2024, 168, e230407. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Viejo, M.; Menéndez-Menéndez, Y.; Otero-Hernández, J. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture. World J. Stem Cells 2015, 7, 470–476. [Google Scholar] [CrossRef]
- Farahani, R.M.; Xaymardan, M. Platelet-Derived Growth Factor Receptor Alpha as a Marker of Mesenchymal Stem Cells in Development and Stem Cell Biology. Stem Cells Int. 2015, 2015, 362753. [Google Scholar] [CrossRef]
- Xie, L.; Zeng, X.; Hu, J.; Chen, Q. Characterization of Nestin, a Selective Marker for Bone Marrow Derived Mesenchymal Stem Cells. Stem Cells Int. 2015, 2015, 762098. [Google Scholar] [CrossRef]
- Uccelli, A.; Moretta, L.; Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 2008, 8, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Hernández, R.; Jiménez-Luna, C.; Perales-Adán, J.; Perazzoli, G.; Melguizo, C.; Prados, J. Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders. Biomol. Ther. 2020, 28, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Li, X.; Chi, Y.; Ma, F.; Li, Z.; Yang, S.; Song, B.; Cui, J.; Ma, T.; Li, J.; et al. VCAM-1+ placenta chorionic villi-derived mesenchymal stem cells display potent pro-angiogenic activity. Stem Cell Res. Ther. 2016, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Friedenstein, A.J.; Petrakova, K.V.; Kurolesova, A.I.; Frolova, G.P. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968, 6, 230–247. [Google Scholar] [CrossRef] [PubMed]
- McGonagle, D.; Baboolal, T.G.; Jones, E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nat. Rev. Rheumatol. 2017, 13, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Chen, N.; Wang, X.; Zhang, L.; Huo, J.; Chi, Y.; Li, Z.; Han, Z. Human Supernumerary Teeth-Derived Apical Papillary Stem Cells Possess Preferable Characteristics and Efficacy on Hepatic Fibrosis in Mice. Stem Cells Int. 2020, 2020, 6489396. [Google Scholar] [CrossRef] [PubMed]
- Zitvogel, L.; Regnault, A.; Lozier, A.; Wolfers, J.; Flament, C.; Tenza, D.; Ricciardi-Castagnoli, P.; Raposo, G.; Amigorena, S. Eradication of established murine tumors using a novel cell-free vaccine: Dendritic cell-derived exosomes. Nat. Med. 1998, 4, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Lierman, S.; Bus, A.; Andries, S.; Trias, E.; Bols, P.E.J.; Tilleman, K. Passive slow freezing is an efficacious and cost-effective alternative to controlled slow freezing for ovarian tissue cryopreservation. Cryobiology 2021, 100, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Chiti, M.C.; Dolmans, M.M.; Hobeika, M.; Cernogoraz, A.; Donnez, J.; Amorim, C.A. A modified and tailored human follicle isolation procedure improves follicle recovery and survival. J. Ovarian Res. 2017, 10, 71. [Google Scholar] [CrossRef]
- Soares, M.; Sahrari, K.; Chiti, M.C.; Amorim, C.A.; Ambroise, J.; Donnez, J.; Dolmans, M.M. The best source of isolated stromal cells for the artificial ovary: Medulla or cortex, cryopreserved or fresh? Hum. Reprod. 2015, 30, 1589–1598. [Google Scholar] [CrossRef]
- Asiabi, P.; Dolmans, M.M.; Ambroise, J.; Camboni, A.; Amorim, C.A. In vitro differentiation of theca cells from ovarian cells isolated from postmenopausal women. Hum. Reprod. 2020, 35, 2793–2807. [Google Scholar] [CrossRef] [PubMed]
- Asiabi, P.; Ambroise, J.; Giachini, C.; Coccia, M.E.; Bearzatto, B.; Chiti, M.C.; Dolmans, M.M.; Amorim, C.A. Assessing and validating housekeeping genes in normal, cancerous, and polycystic human ovaries. J. Assist. Reprod. Genet. 2020, 37, 2545–2553. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
- Fujiwara, H.; Maeda, M.; Imai, K.; Fukuoka, M.; Yasuda, K.; Horie, K.; Takakura, K.; Taii, S.; Mori, T. Differential expression of aminopeptidase-N on human ovarian granulosa and theca cells. J. Clin. Endocrinol. Metab. 1992, 74, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Bialecka, M.; Moustakas, I.; Lam, E.; Torrens-Juaneda, V.; Borggreven, N.V.; Trouw, L.; Louwe, L.A.; Pilgram, G.S.K.; Mei, H.; et al. Single-cell reconstruction of follicular remodeling in the human adult ovary. Nat. Commun. 2019, 10, 3164. [Google Scholar] [CrossRef] [PubMed]
- Cowan, R.G.; Quirk, S.M. Cells responding to hedgehog signaling contribute to the theca of ovarian follicles. Reproduction 2021, 161, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Honda, A.; Hirose, M.; Hara, K.; Matoba, S.; Inoue, K.; Miki, H.; Hiura, H.; Kanatsu-Shinohara, M.; Kanai, Y.; Kono, T.; et al. Isolation, characterization, and in vitro and in vivo differentiation of putative thecal stem cells. Proc. Natl. Acad. Sci. USA 2007, 104, 12389–12394. [Google Scholar] [CrossRef] [PubMed]
- Antebi, B.; Asher, A.M.; Rodriguez, L.A., 2nd; Moore, R.K.; Mohammadipoor, A.; Cancio, L.C. Cryopreserved mesenchymal stem cells regain functional potency following a 24-h acclimation period. J. Transl. Med. 2019, 17, 297. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, R.; Burgos, M.; Barrionuevo, F.J. Sex Maintenance in Mammals. Genes 2021, 12, 999. [Google Scholar] [CrossRef]
- Vogel, C.; Marcotte, E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012, 13, 227–232. [Google Scholar] [CrossRef]
- Ohta, N.; Saito, H.; Kuzumaki, T.; Takahashi, T.; Ito, M.M.; Saito, T.; Nakahara, K.; Hiroi, M. Expression of CD44 in human cumulus and mural granulosa cells of individual patients in in-vitro fertilization programmes. Mol. Hum. Reprod. 1999, 5, 22–28. [Google Scholar] [CrossRef]
- Dadashzadeh, A.; Moghassemi, S.; Grubliauskaité, M.; Vlieghe, H.; Brusa, D.; Amorim, C.A. Medium supplementation can influence the human ovarian cells in vitro. J. Ovarian Res. 2022, 15, 137. [Google Scholar] [CrossRef] [PubMed]
- Stimpfel, M.; Cerkovnik, P.; Novakovic, S.; Maver, A.; Virant-Klun, I. Putative mesenchymal stem cells isolated from adult human ovaries. J. Assist. Reprod. Genet. 2014, 31, 959–974. [Google Scholar] [CrossRef] [PubMed]
- Rotgers, E.; Jorgensen, A.; Yao, H.H. At the Crossroads of Fate-Somatic Cell Lineage Specification in the Fetal Gonad. Endocr. Rev. 2018, 39, 739–759. [Google Scholar] [CrossRef] [PubMed]
- Orisaka, M.; Tajima, K.; Mizutani, T.; Miyamoto, K.; Tsang, B.K.; Fukuda, S.; Yoshida, Y.; Kotsuji, F. Granulosa cells promote differentiation of cortical stromal cells into theca cells in the bovine ovary. Biol. Reprod. 2006, 75, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, H.; Imai, K.; Inoue, T.; Maeda, M.; Fujii, S. Membrane-bound cell surface peptidases in reproductive organs. Endocr. J. 1999, 46, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Talbott, H.A.; Plewes, M.R.; Krause, C.; Hou, X.; Zhang, P.; Rizzo, W.B.; Wood, J.R.; Cupp, A.S.; Davis, J.S. Formation and characterization of lipid droplets of the bovine corpus luteum. Sci. Rep. 2020, 10, 11287. [Google Scholar] [CrossRef] [PubMed]
- Devoto, L.; Kohen, P.; Gonzalez, R.R.; Castro, O.; Retamales, I.; Vega, M.; Carvallo, P.; Christenson, L.K.; Strauss, J.F., III. Expression of Steroidogenic Acute Regulatory Protein in the Human Corpus Luteum throughout the Luteal Phase. J. Clin. Endocrinol. Metab. 2001, 86, 5633–5639. [Google Scholar] [CrossRef]
- Soundararajan, M.; Kannan, S. Fibroblasts and mesenchymal stem cells: Two sides of the same coin? J. Cell. Physiol. 2018, 233, 9099–9109. [Google Scholar] [CrossRef]
- Ugurlu, B.; Karaoz, E. Comparison of similar cells: Mesenchymal stromal cells and fibroblasts. Acta Histochem. 2020, 122, 151634. [Google Scholar] [CrossRef]
- Uder, C.; Brückner, S.; Winkler, S.; Tautenhahn, H.M.; Christ, B. Mammalian MSC from selected species: Features and applications. Cytom. Part A 2018, 93, 32–49. [Google Scholar] [CrossRef] [PubMed]
Reagent | Concentration | Supplier |
---|---|---|
Dulbecco’s modified Eagle’s medium/Ham’s nutrient mixture F-12 + GlutaMAX (DMEM/F12) | N/A | Thermo Fisher Scientific, Merelbeke, Belgium |
KnockOut GibcoTM serum replacement (KSR) | 10% (v/v) | |
Antibiotic–antimycotic (Anti–Anti) | 1% (v/v) | |
Insulin-transferrin-selenium (ITS) | 1% (v/v) | |
Recombinant human stem cell factor (SCF) | 100 ng/mL | |
Recombinant human bone morphogenic protein 6 (BMP-6) | 20 ng/mL | |
Recombinant human transforming growth factor beta (TGF-β1) | 20 ng/mL | |
Recombinant human hepatocyte growth factor (HGF) | 20 ng/mL | |
Recombinant human keratinocyte growth factor (KGF) | 20 ng/mL | |
Recombinant human insulin-like growth factor 1 (IGF-1) | 100 ng/mL | |
Recombinant Human fibroblast growth factor basic (bFGF) | 10 ng/mL | |
Recombinant human epidermal growth factor (EGF) | 20 ng/mL | |
Recombinant human growth differentiation factor 9 (GDF-9) | 20 ng/mL | Sigma-Aldrich |
Follicle-stimulating hormone (FSH) | 100 ng/mL | Menopur, Ferring, Aalst, Belgium |
Luteinizing hormone (LH) | 100 ng/mL |
Gene Name | Gene Symbol | Reference | Supplier |
---|---|---|---|
Steroidogenic acute regulatory protein | StAR | Hs00986559_g1 | Thermo Fisher Scientific |
Alanyl aminopeptidase | ANPEP (CD13) | Hs00174265_m1 | |
Perilipin 2 | PLIN2 | Hs00605340_m1 | |
Dipeptidyl peptidase 4 | DDP4 (CD26) | Hs00897386_m1 | |
Peptidylprolyl isomerase A | PPIA | Hs01565699_g1 | |
Glyceraldehyde-3-phosphate dehydrogenase | GAPDH | Hs02758991_g1 | |
5′-nucleotidase ecto | NT5E (CD73) | Hs00159686_m1 | |
Thy-1 cell surface antigen | THY1 (CD90) | Hs06633377_s1 | |
Endoglin | ENG (CD105) | Hs00923996_m1 | |
CD44 molecule | CD44 | Hs01075864_m1 | |
Platelet-derived growth factor receptor alpha | PDGFRA | Hs00998018_m1 | |
Nerve growth factor receptor | NGFR | Hs00609976_m1 |
CD Marker | Target Cell | Supplier |
---|---|---|
CD73 | MSC | Biolegend, Amsterdam, The Netherlands |
CD90 | MSC | |
CD105 | MSC | |
CD34 | MSC | |
CD45 | MSC | |
HLA-DR | MSC | |
CD13 | TIC |
Protein Name | Protein Symbol | Target Cell | Supplier |
---|---|---|---|
Cytochrome P450 family 17A1 | CYP17A1 | TICs | Biorbyt Ltd., Cambridge, UK |
Insulin-like growth factor 1 | IGF1 | Biolegend, Amsterdam, The Netherlands | |
Platelet-derived growth factor receptor alpha | PDGFRA | MSCs | Abcam, Cambridge, UK |
Nerve growth factor receptor | NGFR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlieghe, H.; Sousa, M.J.; Charif, D.; Amorim, C.A. Unveiling the Differentiation Potential of Ovarian Theca Interna Cells from Multipotent Stem Cell-like Cells. Cells 2024, 13, 1248. https://doi.org/10.3390/cells13151248
Vlieghe H, Sousa MJ, Charif D, Amorim CA. Unveiling the Differentiation Potential of Ovarian Theca Interna Cells from Multipotent Stem Cell-like Cells. Cells. 2024; 13(15):1248. https://doi.org/10.3390/cells13151248
Chicago/Turabian StyleVlieghe, Hanne, Maria João Sousa, Dania Charif, and Christiani A. Amorim. 2024. "Unveiling the Differentiation Potential of Ovarian Theca Interna Cells from Multipotent Stem Cell-like Cells" Cells 13, no. 15: 1248. https://doi.org/10.3390/cells13151248
APA StyleVlieghe, H., Sousa, M. J., Charif, D., & Amorim, C. A. (2024). Unveiling the Differentiation Potential of Ovarian Theca Interna Cells from Multipotent Stem Cell-like Cells. Cells, 13(15), 1248. https://doi.org/10.3390/cells13151248