Angiogenesis in Glioblastoma—Treatment Approaches
Abstract
:1. Introduction
2. Angiogenesis in Glioblastoma
3. Anti-Angiogenic Therapy
3.1. Aflibercept
3.2. Axitinib
3.3. Bevacizumab
3.4. Cediranib
3.5. Dovitinib
3.6. Pazopanib
3.7. Ramucirumab
3.8. Sunitinib
4. Combination Therapy
5. Resistance to Therapy
5.1. Mechanisms of Resistance—Activation of Redundant Angiogenic Pathways
5.2. Mechanisms of Resistance—Hypoxia
5.3. Mechanisms of Resistance—Heightened Tumor Cell Invasion and Metastasis
5.4. Mechanisms of Resistance—Vascular Mimicry
5.5. Mechanisms of Resistance—Glioma Stem Cells
5.6. Mechanisms of Resistance—Immune Microenvironment Modulation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gilard, V.; Tebani, A.; Dabaj, I.; Laquerrière, A.; Laquerrière, A.; Fontanilles, M.; Derrey, S.; Marret, S.; Bekri, S. Diagnosis and Management of glioblastoma: A Comprehensive Perspective. J. Pers. Med. 2021, 11, 258. [Google Scholar] [CrossRef] [PubMed]
- Bauchet, L.; Ostrom, Q.T. Epidemiology and Molecular Epidemiology. Neurosurg. Clin. N. Am. 2018, 30, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, Y.; Gu, L.; Chen, R.; Zhu, H.; Zhang, X.; Zhang, Y.; Feng, S.-H.; Qiu, S.; Jian, Z.; et al. Gene Targets of CAR-T Cell Therapy for glioblastoma. Cancers 2023, 15, 2351. [Google Scholar] [CrossRef]
- Price, M.; Pittman Ballard, C.A.; Benedetti, J.; Neff, C.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S.; Ostrom, Q.T. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2017–2021. Neuro-Oncology 2024, 26, vi1–vi85. [Google Scholar] [CrossRef] [PubMed]
- Grochans, S.; Cybulska, A.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of glioblastoma Multiforme–Literature Review. Cancers 2022, 14, 2412. [Google Scholar] [CrossRef]
- Miyazaki, T.; Ishikawa, E.; Sugii, N.; Matsuda, M. Therapeutic Strategies for Overcoming Immunotherapy Resistance Mediated by Immunosuppressive Factors of the glioblastoma Microenvironment. Cancers 2020, 12, 1960. [Google Scholar] [CrossRef]
- Griessmair, M.; Delbridge, C.; Ziegenfeuter, J.; Bernhardt, D.; Gempt, J.; Schmidt-Graf, F.; Kertels, O.; Thomas, M.; Meyer, H.S.; Zimmer, C.; et al. Imaging the WHO 2021 Brain Tumor Classification: Fully Automated Analysis of Imaging Features of Newly Diagnosed Gliomas. Cancers 2023, 15, 2355. [Google Scholar] [CrossRef]
- Chieffo, D.; Lino, F.; Ferrarese, D.; Belella, D.; Della Pepa, G.M.; Doglietto, F. Brain Tumor at Diagnosis: From Cognition and Behavior to Quality of Life. Diagnostics 2023, 13, 541. [Google Scholar] [CrossRef]
- Stakaitis, R.; Pranckeviciene, A.; Steponaitis, G.; Tamašauskas, A.; Bunevicius, A.; Vaitkiene, P. Unique Interplay Between Molecular miR-181b/d Biomarkers and Health Related Quality of Life Score in the Predictive Glioma Models. Int. J. Mol. Sci. 2020, 21, 7450. [Google Scholar] [CrossRef]
- Ribeiro, M.; Benadjaoud, M.A.; Moisy, L.; Jacob, J.; Feuvret, L.; Balcerac, A.; Bernier, M.-O.; Psimaras, D.; Hoang-Xuan, K.; Noel, G.; et al. Symptoms of Depression and Anxiety in Adults with High-Grade Glioma: A Literature Review and Findings in a Group of Patients before Chemoradiotherapy and One Year Later. Cancers 2022, 14, 5192. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, C.-Y.; Zhu, Q.; Li, T.; Wang, Y.; Wang, L. Characteristics of Microstructural Changes Associated with Glioma Related Epilepsy: A Diffusion Tensor Imaging (DTI) Study. Brain Sci. 2022, 12, 1169. [Google Scholar] [CrossRef]
- Xiong, F.; Shen, C.; Wang, X. Generalized Knowledge Distillation for Unimodal Glioma Segmentation from Multimodal Models. Electronics 2023, 12, 1516. [Google Scholar] [CrossRef]
- Tandel, G.S.; Tiwari, A.; Kakde, O.G.; Gupta, N.; Saba, L.; Suri, J.S. Role of Ensemble Deep Learning for Brain Tumor Classification in Multiple Magnetic Resonance Imaging Sequence Data. Diagnostics 2023, 13, 481. [Google Scholar] [CrossRef] [PubMed]
- Anand, V.; Gupta, S.; Gupta, D.; Gulzar, Y.; Xin, Q.; Juneja, S.; Shah, A.; Shaikh, A. Weighted Average Ensemble Deep Learning Model for Stratification of Brain Tumor in MRI Images. Diagnostics 2023, 13, 1320. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.; Awadallah Awad, N.; Alsubaie, N.; Ansarullah, S.I.; Alqahtani, M.; Abbas, M.; Usman, M.; Soufiene, B.O.; Saber, A. Advanced Deep Learning Approaches for Accurate Brain Tumor Classification in Medical Imaging. Symmetry 2023, 15, 571. [Google Scholar] [CrossRef]
- Fabian, D.; Guillermo Prieto Eibl, M.d.P.; Alnahhas, I.; Sebastian, N.; Giglio, P.; Puduvalli, V.K.; Gonzalez, J.; Palmer, J.D. Treatment of glioblastoma (GBM) with the Addition of Tumor-Treating Fields (TTF): A Review. Cancers 2019, 11, 174. [Google Scholar] [CrossRef]
- Persano, F.; Gigli, G.; Leporatti, S. Natural Compounds as Promising Adjuvant Agents in The Treatment of Gliomas. Int. J. Mol. Sci. 2022, 23, 3360. [Google Scholar] [CrossRef]
- Huang, B.; Li, X.; Li, Y.; Zhang, J.; Zong, Z.; Zhang, H. Current Immunotherapies for glioblastoma Multiforme. Front Immunol. 2021, 11, 603911. [Google Scholar] [CrossRef]
- Pant, A.; Lim, M. CAR-T Therapy in glioblastoma: Current Challenges and Avenues for Improvement. Cancers 2023, 15, 1249. [Google Scholar] [CrossRef]
- Rong, L.; Li, N.; Zhang, Z. Emerging Therapies for glioblastoma: Current State and Future Directions. J. Exp. Clin. Cancer Res. 2022, 41, 142. [Google Scholar] [CrossRef]
- Calabrese, C.; Poppleton, H.; Kocak, M.; Hogg, T.L.; Fuller, C.E.; Hamner, B.; Oh, E.Y.; Gaber, M.W.; Finklestein, D.; Allen, M.; et al. A Perivascular Niche for Brain Tumor Stem Cells. Cancer Cell 2007, 11, 69–82. [Google Scholar] [CrossRef]
- Brem, S. The Role of Vascular Proliferation in the Growth of Brain Tumors. Clin. Neurosurg. 1976, 23, 440–453. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.; Johnson, R.S. Hypoxia: A Key Regulator of Angiogenesis in Cancer. Cancer Metastasis Rev. 2007, 26, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Wise, D.R.; Ward, P.S.; Shay, J.E.S.; Cross, J.R.; Gruber, J.J.; Sachdeva, U.M.; Platt, J.M.; DeMatteo, R.G.; Simon, M.C.; Thompson, C.B. Hypoxia Promotes Isocitrate Dehydrogenase-Dependent Carboxylation of α-Ketoglutarate to Citrate to Support Cell Growth and Viability. Proc. Natl. Acad. Sci. USA 2011, 108, 19611–19616. [Google Scholar] [CrossRef]
- Lin, J.-L.; Wang, M.J.; Lee, D.-C.; Liang, C.-C.; Lin, S. Hypoxia-inducible Factor-1α Regulates Matrix Metalloproteinase-1 Activity in Human Bone Marrow-derived Mesenchymal Stem Cells. FEBS Lett. 2008, 582, 2615–2619. [Google Scholar] [CrossRef]
- Fitsialos, G.; Fitsialos, G.; Bourget, I.; Bourget, I.; Augier, S.; Augier, S.; Ginouvès, A.; Rezzonico, R.; Rezzonico, R.; Odorisio, T.; et al. HIF1 Transcription Factor Regulates Laminin-332 Expression and Keratinocyte Migration. J. Cell Sci. 2008, 121, 2992–3001. [Google Scholar] [CrossRef] [PubMed]
- Stacker, S.A.; Caesar, C.; Baldwin, M.E.; Thornton, G.E.; Williams, R.A.; Prevo, R.; Jackson, D.A.; Nishikawa, S.-I.; Kubo, H.; Kubo, H.; et al. VEGF-D Promotes the Metastatic Spread of Tumor Cells via the Lymphatics. Nat. Med. 2001, 7, 186–191. [Google Scholar] [CrossRef]
- Rifkin, D.B.; Moscatelli, D. Recent Developments in the Cell Biology of Basic Fibroblast Growth Factor. J. Cell Biol. 1989, 109, 1–6. [Google Scholar] [CrossRef]
- Suri, C.; McClain, J.; Thurston, G.; McDonald, D.M.; Zhou, H.; Oldmixon, E.H.; Sato, T.N.; Yancopoulos, G.D. Increased Vascularization in Mice Overexpressing Angiopoietin-1. Science 1998, 282, 468–471. [Google Scholar] [CrossRef]
- Lakka, S.S.; Rao, J.S. Antiangiogenic Therapy in Brain Tumors. Expert Rev. Neurother. 2008, 8, 1457–1473. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, Y.; Zhang, W.-L.; Lian, H.; Iranzad, N.; Wang, E.; Li, Y.-C.; Tong, H.; Li, L.-Y.; Dong, L.-Y.; et al. Intra-Tumoral Angiogenesis Correlates with Immune Features and Prognosis in Glioma. Aging 2022, 14, 4402–4424. [Google Scholar] [CrossRef] [PubMed]
- Ah-Pine, F.; Bedoui, Y.; Khettab, M.; Neal, J.; Freppel, S.; Gasque, P. Complement Activation and Up-Regulated Expression of Anaphylatoxin C3a/C3aR in glioblastoma: Deciphering the Links with TGF-β and VEGF. Cancers 2023, 15, 2647. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Liu, X.; Mu, J.; Yang, J.; Wu, F.; Zhou, H. Therapeutic Approaches Targeting Proteins in Tumor-Associated Macrophages and Their Applications in Cancers. Biomolecules 2022, 12, 392. [Google Scholar] [CrossRef] [PubMed]
- JErbani, J.; Boon, M.; Akkari, L. Therapy-Induced Shaping of the glioblastoma Microenvironment: Macrophages at Play. Semin. Cancer Biol. 2022, 86, 41–56. [Google Scholar] [CrossRef]
- De Bock, K.; Cauwenberghs, S.; Carmeliet, P. Vessel Abnormalization: Another Hallmark of Cancer? Molecular Mechanisms and Therapeutic Implications. Curr. Opin. Genet. Dev. 2011, 21, 73–79. [Google Scholar] [CrossRef]
- Nagy, J.A.; Chang, S.H.; Shih, S.C.; Dvorak, A.M.; Dvorak, H.F. Heterogeneity of the tumor vasculature. Semin. Thromb. Hemost. 2010, 36, 321–331. [Google Scholar] [CrossRef]
- Folkins, C.; Shaked, Y.; Man, S.; Tang, T.; Lee, C.R.; Zhu, Z.; Hoffman, R.M.; Kerbel, R.S. Glioma Tumor Stem-Like Cells Promote Tumor Angiogenesis and Vasculogenesis via Vascular Endothelial Growth Factor and Stromal-Derived Factor 1. Cancer Res. 2009, 69, 7243–7251. [Google Scholar] [CrossRef]
- Papetti, M.; Herman, I.M. Mechanisms of Normal and Tumor-Derived Angiogenesis. Am. J. Physiol. Cell Physiol. 2002, 282, C947–C970. [Google Scholar] [CrossRef]
- Baish, J.W.; Stylianopoulos, T.; Lanning, R.M.; Kamoun, W.S.; Fukumura, D.; Munn, L.L.; Jain, R.K. Scaling Rules for Diffusive Drug Delivery in Tumor and Normal Tissues. Proc. Natl. Acad. Sci. USA 2011, 108, 1799–1803. [Google Scholar] [CrossRef]
- Stylianopoulos, T.; Jain, R.K. Combining Two Strategies to Improve Perfusion and Drug Delivery in Solid Tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 18632–18637. [Google Scholar] [CrossRef]
- Semenza, G.L. Hypoxia-Inducible Factor 1: Oxygen Homeostasis and Disease Pathophysiology. Trends Mol. Med. 2001, 7, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Eldrid, C.; Zloh, M.; Fotinou, C.; Yelland, T.; Yu, L.; Mota, F.; Selwood, D.L.; Djordjevic, S. VEGFA, B, C: Implications of the C-Terminal Sequence Variations for the Interaction with Neuropilins. Biomolecules 2022, 12, 372. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.W.; Madsen, J.R. VEGF Signaling in Neurological Disorders. Int. J. Mol. Sci. 2018, 19, 275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Brekken, R.A. Direct and indirect regulation of the tumor immune microenvironment by VEGF. J. Leukoc. Biol. 2022, 111, 1269–1286. [Google Scholar] [CrossRef]
- Hecking, I.; Stegemann, L.N.; Theis, V.; Vorgerd, M.; Matschke, V.; Stahlke, S.; Theiss, C. Neuroprotective Effects of VEGF in the Enteric Nervous System. Int. J. Mol. Sci. 2022, 23, 6756. [Google Scholar] [CrossRef]
- Masłowska, K.; Halik, P.K.; Tymecka, D.; Misicka, A.; Gniazdowska, E. The Role of VEGF Receptors as Molecular Target in Nuclear Medicine for Cancer Diagnosis and Combination Therapy. Cancers 2021, 13, 1072. [Google Scholar] [CrossRef]
- Nag, S.; Manias, J.L.; Eubanks, J.H.; Stewart, D.J. Increased Expression of Vascular Endothelial Growth Factor-D Following Brain Injury. Int. J. Mol. Sci. 2019, 20, 1594. [Google Scholar] [CrossRef]
- Mallick, R.; Ylä-Herttuala, S. Therapeutic Potential of VEGF-B in Coronary Heart Disease and Heart Failure: Dream or Vision? Cells 2022, 11, 4134. [Google Scholar] [CrossRef]
- Wasik, A.; Ratajczak-Wielgomas, K.; Badziński, A.; Dziegiel, P.; Podhorska-Okolow, M. The Role of Periostin in Angiogenesis and Lymphangiogenesis in Tumors. Cancers 2022, 14, 4225. [Google Scholar] [CrossRef]
- Shaik, F.; Shaik, F.; Cuthbert, G.A.; Homer-Vanniasinkam, S.; Muench, S.P.; Ponnambalam, S.; Harrison, M.A. Structural Basis for Vascular Endothelial Growth Factor Receptor Activation and Implications for Disease Therapy. Biomolecules 2020, 10, 1673. [Google Scholar] [CrossRef]
- Dakowicz, D.; Zajkowska, M.; Mroczko, B. Relationship between VEGF Family Members, Their Receptors and Cell Death in the Neoplastic Transformation of Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 3375. [Google Scholar] [CrossRef]
- Srivastava, S.; Zahra, F.T.; Gupta, N.; Tullar, P.; Srivastava, S.K.; Mikelis, C.M. Low Dose of Penfluridol Inhibits VEGF-Induced Angiogenesis. Int. J. Mol. Sci. 2020, 21, 755. [Google Scholar] [CrossRef]
- Peng, K.; Bai, Y.; Zhu, Q.; Hu, B.; Xu, Y. Targeting VEGF-neuropilin interactions: A promising antitumor strategy. Drug Discov. Today 2019, 24, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Onyeisi, J.O.S.; Ferreira, B.Z.F.; Nader, H.B.; Lopes, C.C. Heparan Sulfate Proteoglycans as Targets for Cancer Therapy: A Review. Cancer Biol. Ther. 2020, 21, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Nowacka, A.; Smuczyński, W.; Rość, D.; Woźniak-Dąbrowska, K.; Śniegocki, M. Serum VEGF-A Concentrations in Patients with Central Nervous System (CNS) Tumors. PLoS ONE 2018, 13, e0192395. [Google Scholar] [CrossRef] [PubMed]
- Phillips, H.; Armani, M.; Stavrou, D.; Ferrara, N.; Westphal, M. Intense Focal Expression of Vascular Endothelial Growth-Factor Messenger-RNA in Human Intracranial Neoplasms—Association with Regions of Necrosis. Int. J. Oncol. 1993, 2, 913–919. [Google Scholar] [CrossRef]
- Plate, K.H.; Breier, G.; Weich, H.A.; Risau, W. Vascular Endothelial Growth Factor Is a Potential Tumour Angiogenesis Factor in Human Gliomas in Vivo. Nature 1992, 359, 845–848. [Google Scholar] [CrossRef]
- Plate, K.H.; Risau, W. Angiogenesis in Malignant Gliomas. Glia 1995, 15, 339–347. [Google Scholar] [CrossRef]
- Lamalice, L.; Le Boeuf, F.; Huot, J. Endothelial Cell Migration During Angiogenesis. Circ. Res. 2007, 100, 782–794. [Google Scholar] [CrossRef]
- Jin, K.; Shen, Y.; He, K.; Xu, Z.; Li, G.; Teng, L. Aflibercept (VEGF Trap): One More Double-Edged Sword of Anti-VEGF Therapy for Cancer? Clin. Transl. Oncol. 2010, 12, 526–532. [Google Scholar] [CrossRef]
- de Groot, J.; Lamborn, K.R.; Chang, S.M.; Gilbert, M.R.; Cloughesy, T.F.; Aldape, K.; Yao, J.; Jackson, E.F.; Lieberman, F.S.; Robins, H.I.; et al. Phase II Study of Aflibercept in Recurrent Malignant Glioma: A North American Brain Tumor Consortium Study. J. Clin. Oncol. 2011, 29, 2689–2695. [Google Scholar] [CrossRef]
- Peng, L.; Bu, Z.; Zhou, Y.; Ye, X.; Liu, J.; Zhao, Q. Hemorrhagic Events in Cancer Patients Treated with Aflibercept: A Meta-Analysis. Tumor Biol. 2014, 35, 9419–9427. [Google Scholar] [CrossRef]
- Shonka, N.; Piao, Y.; Gilbert, M.R.; Yung, W.K.A.; Chang, S.M.; DeAngelis, L.M.; Lassman, A.B.; Liu, J.; Cloughesy, T.F.; Robins, H.I.; et al. Cytokines Associated with Toxicity in the Treatment of Recurrent glioblastoma with Aflibercept. Target. Oncol. 2013, 8, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Moussallem, T.; Lim, C.; Osseis, M.; Esposito, F.; Lahat, E.; Fuentes, L.; Salloum, C.; Azoulay, D. Early Small Bowel Perforation Due to Aflibercept. Drug Discov. Ther. 2017, 11, 291–292. [Google Scholar] [CrossRef]
- Alkan, A.; Yücel, L.; Mizrak, D.; Akbulut, H. Aflibercept-Related Nasal Septum Perforation. Asia-Pac. J. Clin. Oncol. 2017, 13, e179–e180. [Google Scholar] [CrossRef] [PubMed]
- Duerinck, J.; Du Four, S.; Vandervorst, F.; D’Haene, N.; Le Mercier, M.; Michotte, A.; Van Binst, A.; Everaert, H.; Salmon, I.; Bouttens, F.; et al. Randomized Phase II Study of Axitinib versus Physicians Best Alternative Choice of Therapy in Patients with Recurrent glioblastoma. J. Neuro-Oncol. 2016, 128, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Bao, S.; Zhao, H.-L.; Li, L.; Fu, X. Efficacy and Safety of Bevacizumab for Treating glioblastoma: A Systematic Review and Meta-Analysis of Phase II and III Randomized Controlled Trials. Cancer Investig. 2023, 41, 305–317. [Google Scholar] [CrossRef]
- Odia, Y.; Shih, J.H.; Kreisl, T.N.; Fine, H.A. Bevacizumab-Related Toxicities in the National Cancer Institute Malignant Glioma Trial Cohort. J. Neuro-Oncol. 2014, 120, 431–440. [Google Scholar] [CrossRef]
- Narita, Y. Drug Review: Safety and Efficacy of Bevacizumab for glioblastoma and Other Brain Tumors. Jpn. J. Clin. Oncol. 2013, 43, 587–595. [Google Scholar] [CrossRef]
- Friedman, H.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.A.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; et al. Bevacizumab Alone and in Combination With Irinotecan in Recurrent glioblastoma. J. Clin. Oncol. 2023, 41, 4945–4952. [Google Scholar] [CrossRef]
- Mamo, A.; Baig, A.; Azam, M.; Rho, Y.S.; Sahebjam, S.; Muanza, T.; Owen, S.; Petrecca, K.; Guiot, M.-C.; Alshami, J.; et al. Progression Pattern and Adverse Events with Bevacizumab in glioblastoma. Curr. Oncol. 2016, 23, 468–471. [Google Scholar] [CrossRef]
- Li, X.; Huang, R.; Xu, Z. Risk of Adverse Vascular Events in Newly Diagnosed glioblastoma Multiforme Patients Treated with Bevacizumab: A Systematic Review and Meta-Analysis. Sci. Rep. 2015, 5, 14698. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, G.; Trevisan, E.; Silvani, A.; Gaviani, P.; Botturi, A.; Lamperti, E.; Beecher, D.; Bertero, L.; Bosa, C.; Salmaggi, A. Safety of Bevacizumab in Patients with Malignant Gliomas: A Systematic Review. Neurol. Sci. 2014, 35, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Brandes, A.A.; Bartolotti, M.; Tosoni, A.; Poggi, R.; Franceschi, E. Practical Management of Bevacizumab-Related Toxicities in glioblastoma. Oncologist 2015, 20, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Latzer, P.; Shchyglo, O.; Hartl, T.; Matschke, V.; Schlegel, U.; Manahan-Vaughan, D.; Theiss, C. Blocking VEGF by Bevacizumab Compromises Electrophysiological and Morphological Properties of Hippocampal Neurons. Front. Cell. Neurosci. 2019, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, J.; Wang, D.L.; Batchelor, T.T. Cediranib—Profile of a Novel Anti-Angiogenic Agent in Patients with glioblastoma. Expert Opin. Investig. Drugs 2009, 18, 1549–1557. [Google Scholar] [CrossRef]
- Schäfer, N.; Gielen, G.H.; Kebir, S.; Wieland, A.; Till, A.; Mack, F.; Schaub, C.; Tzaridis, T.; Reinartz, R.; Niessen, M.; et al. Phase I Trial of Dovitinib (TKI258) in Recurrent glioblastoma. J. Cancer Res. Clin. Oncol. 2016, 142, 1581–1589. [Google Scholar] [CrossRef]
- Sharma, M.; Schilero, C.; Peereboom, D.M.; Hobbs, B.P.; Elson, P.; Stevens, G.; McCrae, K.R.; Nixon, A.B.; Ahluwalia, M. Phase II Study of Dovitinib in Recurrent glioblastoma. J. Neuro-Oncol. 2019, 144, 359–368. [Google Scholar] [CrossRef]
- Saada-Bouzid, E.; Frenel, J.-S.; Augereau, P.; Bourg, V.; Gal, J.; Gourmelon, C.; Château, Y.; Barrière, J.; Bondiau, P.-Y. Phase I/II Study of Pazopanib and Temozolomide in Patients with Newly Diagnosed and Resected glioblastoma: Pazoglio Trial. J. Clin. Oncol. 2023, 41, e14024. [Google Scholar] [CrossRef]
- Abdel-Rahman, O.; Elhalawani, H. Risk of Cardiovascular Adverse Events in Patients with Solid Tumors Treated with Ramucirumab: A Meta Analysis and Summary of Other VEGF Targeted Agents. Crit. Rev. Oncol. Hematol. 2016, 102, 89–100. [Google Scholar] [CrossRef]
- Fujii, T.; Kawasoe, K.; Tonooka, A.; Ohta, A.; Nitta, K. Nephrotic Syndrome Associated with Ramucirumab Therapy: A Single-Center Case Series and Literature Review. Medicine 2019, 98, e16236. [Google Scholar] [CrossRef] [PubMed]
- Urakawa, S.; Sakai, D.; Miyazaki, Y.; Kudo, T.; Katou, A.; Inagaki, C.; Tanaka, K.; Makino, T.; Takahashi, T.; Kurokawa, Y.; et al. A Case of Ramucirumab-Related Gastrointestinal Perforation in Gastric Cancer with Small Bowel Metastasis. Surg. Case Rep. 2017, 3, 127. [Google Scholar] [CrossRef]
- Lim, Y.H.; Odell, I.D.; Ko, C.J.; Choate, K.A. Somatic p.T771R KDR (VEGFR2) Mutation Arising in a Sporadic Angioma During Ramucirumab Therapy. JAMA Dermatol. 2015, 151, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- Melo, É.G.A.; Silveira, P.A.L.; Mello, C.A. Transient Vocal Fold Lesion and Hoarseness Associated with the Use of Ramucirumab: Case Report. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2019, 136, 317–319. [Google Scholar] [CrossRef]
- Pan, E.; Yu, D.; Yue, B.; Potthast, L.; Chowdhary, S.; Smith, P.; Chamberlain, M.C. A Prospective Phase II Single-Institution Trial of Sunitinib for Recurrent Malignant Glioma. J. Neuro-Oncol. 2012, 110, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Kreisl, T.N.; Smith, P.; Sul, J.; Salgado, C.A.I.; Iwamoto, F.M.; Shih, J.H.; Fine, H.A. Continuous Daily Sunitinib for Recurrent glioblastoma. J. Neuro-Oncol. 2013, 111, 41–48. [Google Scholar] [CrossRef]
- Balana, C.; Gil, M.J.; Perez, P.; Reynes, G.; Gallego, O.; Ribalta, T.; Capellades, J.; Gonzalez, S.; Verger, E. Sunitinib Administered Prior to Radiotherapy in Patients with Non-Resectable glioblastoma: Results of a Phase II Study. Target. Oncol. 2014, 9, 321–329. [Google Scholar] [CrossRef]
- Neyns, B.; Sadones, J.; Chaskis, C.; Dujardin, M.; Everaert, H.; Lv, S.; Duerinck, J.; Tynninen, O.; Nupponen, N.N.; Michotte, A.; et al. Phase II Study of Sunitinib Malate in Patients with Recurrent High-Grade Glioma. J. Neuro-Oncol. 2011, 103, 491–501. [Google Scholar] [CrossRef]
- de Groot, J.F.; Piao, Y.; Tran, H.; Gilbert, M.; Wu, H.-K.; Liu, J.; Bekele, B.N.; Cloughesy, T.; Mehta, M.; Robins, H.I.; et al. Data from Myeloid Biomarkers Associated with glioblastoma Response to Anti-VEGF Therapy with Aflibercept. Am. Assoc. Cancer Res. 2011. [Google Scholar] [CrossRef]
- de Groot, J.F.; Piao, Y.; Tran, H.; Gilbert, M.; Wu, H.-K.; Liu, J.; Bekele, B.N.; Cloughesy, T.; Mehta, M.; Robins, H.I.; et al. Myeloid Biomarkers Associated with glioblastoma Response to Anti-VEGF Therapy with Aflibercept. Clin. Cancer Res. 2011, 17, 4872–4881. [Google Scholar] [CrossRef]
- Nayak, L.; de Groot, J.; Wefel, J.S.; Cloughesy, T.F.; Lieberman, F.S.; Chang, S.M.; Omuro, A.; Drappatz, J.; Batchelor, T.T.; DeAngelis, L.M.; et al. Phase I Trial of Aflibercept (VEGF Trap) with Radiation Therapy and Concomitant and Adjuvant Temozolomide in Patients with High-Grade Gliomas. J. Neuro-Oncol. 2017, 132, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Berro, A.; Assi, A.; Farhat, M.; Hatoum, L.; Saad, J.P.; Mohanna, R.; Bechara, A.M.A.; Prince, G.; Hachem, M.C.R.; Zalaquett, Z.; et al. Unlocking Hope: Anti-VEGFR inhibitors and their potential in glioblastoma treatment. Crit. Rev. Oncol. Hematol. 2024, 198, 104365. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Wakimoto, H.; Peters, C.; Antoszczyk, S.; Rabkin, S.D.; Martuza, R.L. Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human glioblastoma Stem-Like Cell Models. Clin. Cancer Res. 2018, 24, 3409–3422. [Google Scholar] [CrossRef]
- Mohd, A.B.; Mohd, A.B.; Alabdallat, Y.J.; Ghannam, R.A.; Altiti, A.; Albakri, K.; Khaity, A.; Al-Dwairy, S. Bevacizumab for glioblastoma Multiforme: A Literature Review. Jordanian Am. Physician Acad. J. 2024, 2, 1–13. [Google Scholar] [CrossRef]
- Scheer, K.G.; Ebert, L.M.; Samuel, M.S.; Bonder, C.S.; Gomez, G.A. Bevacizumab-Induced Hypertension in glioblastoma Patients and Its Potential as a Modulator of Treatment Response. Hypertension 2023, 80, 1590–1597. [Google Scholar] [CrossRef] [PubMed]
- Alves, B.; Peixoto, J.; Macedo, S.; Pinheiro, J.; Carvalho, B.; Soares, P.; Lima, J.; Lima, R.T. High VEGFA Expression Is Associated with Improved Progression-Free Survival after Bevacizumab Treatment in Recurrent glioblastoma. Cancers 2023, 15, 2196. [Google Scholar] [CrossRef]
- Melhem, J.; Tahir, A.; Calabrese, E.; Granovskaya, I.; Atenafu, E.G.; Sahgal, A.; Lim-Fat, M.J.; Perry, J. Dose-Dependent Efficacy of Bevacizumab in Recurrent glioblastoma. J. Neuro-Oncol. 2023, 161, 633–641. [Google Scholar] [CrossRef]
- Álvarez-Torres, M.d.M.; Balana, C.; Fuster-Garcia, E.; Puig, J.; García-Gómez, J.M. Unlocking Bevacizumab’s Potential: rCBVmax as a Predictive Biomarker for Enhanced Survival in glioblastoma IDH-Wildtype Patients. Cancers 2023, 16, 161. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Zhang, X.; Liang, K. In Vitro Experiment Present ROCK2 Inhibition Promotes the Therapeutic of Bevacizumab in Treatment of glioblastoma Multiforme. Clin. Neuropharmacol. 2024, 47, 193–200. [Google Scholar] [CrossRef]
- Zhuang, H.; Shi, S.; Yuan, Z.; Chang, J.Y. Bevacizumab Treatment for Radiation Brain Necrosis: Mechanism, Efficacy and Issues. Mol. Cancer 2019, 18, 21. [Google Scholar] [CrossRef]
- Batchelor, T.; Won, M.; Chakravarti, A.; Hadjipanayis, C.G.; Shi, W.; Ashby, L.S.; Stieber, V.W.; Robins, H.I.; Gray, H.J.; Voloschin, A.; et al. NRG/RTOG 0837: Randomized, Phase II, Double-Blind, Placebo-Controlled Trial of Chemoradiation with or without Cediranib in Newly Diagnosed glioblastoma. Neuro-Oncology Adv. 2023, 5, vdad116. [Google Scholar] [CrossRef] [PubMed]
- di Tomaso, E.; Snuderl, M.; Kamoun, W.S.; Duda, D.G.; Auluck, P.K.; Fazlollahi, L.; Andronesi, O.C.; Frosch, M.P.; Wen, P.Y.; Plotkin, S.R.; et al. Data from glioblastoma Recurrence after Cediranib Therapy in Patients: Lack of “Rebound” Revascularization as Mode of Escape. Am. Assoc. Cancer Res. 2023. [Google Scholar] [CrossRef]
- Sorensen, A.G.; Batchelor, T.T.; Zhang, W.; Chen, P.-J.; Yeo, P.; Wang, M.; Jennings, D.; Wen, P.Y.; Lahdenranta, J.; Ancukiewicz, M.; et al. Data from A “Vascular Normalization Index” as Potential Mechanistic Biomarker to Predict Survival after a Single Dose of Cediranib in Recurrent glioblastoma Patients. Am. Assoc. Cancer Res. 2023. [Google Scholar] [CrossRef]
- Thanasupawat, T.; Natarajan, S.; Rommel, A.; Glogowska, A.; Bergen, H.; Krcek, J.; Pitz, M.; Beiko, J.; Krawitz, S.; Verma, I.M.; et al. Dovitinib Enhances Temozolomide Efficacy in glioblastoma Cells. Mol. Oncol. 2017, 11, 1078–1098. [Google Scholar] [CrossRef]
- Iwamoto, F.M.; Lamborn, K.R.; Robins, H.I.; Mehta, M.P.; Chang, S.M.; Butowski, N.; DeAngelis, L.M.; Abrey, L.E.; Zhang, W.-T.; Prados, M.D.; et al. Phase II Trial of Pazopanib (GW786034), an Oral Multi-Targeted Angiogenesis Inhibitor, for Adults with Recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro-Oncology 2010, 12, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Saada, E.; Gal, J.; Frenel, J.-S.; Augereau, P.; Bourg, V.; Jacquinot, F.; Gourmelon, C.; Chateau, Y.; Barriere, J.; Milano, G.; et al. 62P Phase I/II Study of Pazopanib and Temozolomide in Patients with Newly Diagnosed glioblastoma Multiforme: PAZOGLIO Trial. ESMO Open 2024, 9, 102291. [Google Scholar] [CrossRef]
- Kennedy, W.; Chang, Y.W.; Jiang, J.; Molloy, J.; Pennington-Krygier, C.; Harmon, J.; Hong, A.; Wanebo, J.E.; Braun, K.; Garcia, M.A.; et al. A Combined Phase 0/2 “Trigger” Trial Evaluating Pamiparib or Olaparib with Concurrent Radiotherapy in Patients with Newly-Diagnosed or Recurrent glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, e115. [Google Scholar] [CrossRef]
- Wadhwa, R.; Taketa, T.; Sudo, K.; Blum-Murphy, M.; Ajani, J.A. Ramucirumab: A Novel Antiangiogenic Agent. Future Oncol. 2013, 9, 789–795. [Google Scholar] [CrossRef]
- Telekes, A.; Deme, D. Ramucirumab—Egy új gyógyszer az onkológiában [Ramucirumab—A new anticancer agent]. Orv. Hetil. 2016, 157, 1587–1594. [Google Scholar] [CrossRef]
- Spratlin, J.L.; Mulder, K.E.; Mackey, J.R. Ramucirumab (IMC-1121B): A Novel Attack on Angiogenesis. Future Oncol. 2010, 6, 1085–1094. [Google Scholar] [CrossRef]
- Tiwari, P. Ramucirumab: Boon or Bane. J. Egypt. Natl. Cancer Inst. 2016, 28, 133–140. [Google Scholar] [CrossRef]
- Blakeley, J.O.; Fisher, J.D.; Lieberman, F.S.; Lupo, J.M.; Nabors, L.B.; Crane, J.C.; Wen, P.Y.; Cote, A.M.; Peereboom, D.M.; Wen, Q.; et al. Imaging Biomarkers of Ramucirumab and Olaratumab in Patients with Recurrent glioblastoma. J. Clin. Oncol. 2013, 31, 2044. [Google Scholar] [CrossRef]
- Zhang, A.B.; Mozaffari, K.; Aguirre, B.; Li, V.; Kubba, R.; Desai, N.; Wei, D.; Yang, I.; Wadehra, M. Exploring the Past, Present, and Future of Anti-Angiogenic Therapy in glioblastoma. Cancers 2023, 15, 830. [Google Scholar] [CrossRef] [PubMed]
- Seidkhani, E.; Moradi, F.; Rustamzadeh, A.; Simorgh, S.; Shirvalilou, S.; Mehdizadeh, M.; Dehghani, H.; Akbarnejad, Z.; Motevalian, M.; Charkhat Gorgich, E. Intranasal Delivery of Sunitinib: A New Therapeutic Approach for Targeting Angiogenesis of glioblastoma. Toxicol. Appl. Pharmacol. 2023, 481, 116754. [Google Scholar] [CrossRef]
- Raibhole, U.K.; Brosnan, T. Tumor Drug Concentration and Phosphoproteomic Profiles After Two Weeks of Treatment With Sunitinib in Patients with Newly Diagnosed glioblastoma. Clin. Cancer Res. 2022, 28, 1595–1602. [Google Scholar] [CrossRef]
- Janssen, J.B.E.; Brahm, C.G.; Driessen, C.M.L.; Nuver, J.; Labots, M.; Kouwenhoven, M.C.M.; Sanchez Aliaga, E.; Enting, R.H.; de Groot, J.C.; Berkhof, J.; et al. Abstract CT139: The STELLAR Trial: A Phase II/III Study of High-Dose Intermittent Sunitinib in Patients with Recurrent glioblastoma. Cancer Res. 2023, 83, CT139. [Google Scholar] [CrossRef]
- Awada, G.; Ben Salama, L.; De Cremer, J.; Schwarze, J.K.; Fischbuch, L.; Seynaeve, L.; Du Four, S.; Vanbinst, A.-M.; Michotte, A.; Everaert, H.; et al. Axitinib plus Avelumab in the Treatment of Recurrent glioblastoma: A Stratified, Open-Label, Single-Center Phase 2 Clinical Trial (GliAvAx). J. ImmunoTher. Cancer 2020, 8, e001146. [Google Scholar] [CrossRef] [PubMed]
- Duerinck, J.; Du Four, S.; Bouttens, F.; Andre, C.; Verschaeve, V.; Van Fraeyenhove, F.; Chaskis, C.; D’Haene, N.; Le Mercier, M.; Rogiers, A.; et al. Randomized Phase II Trial Comparing Axitinib with the Combination of Axitinib and Lomustine in Patients with Recurrent glioblastoma. J. Neuro-Oncol. 2018, 136, 115–125. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, E.Y.; Roh, T.H.; Kim, S.-H. Bevacizumab Alone Versus Bevacizumab Plus Irinotecan in Patients With Recurrent glioblastoma: A Nationwide Population-Based Study. J. Korean Med. Sci. 2024, 39, e244. [Google Scholar] [CrossRef]
- Yang, F.D.; Wang, L.; Zhao, W.; Wang, S.; Li, J.; Sun, A.; Wang, M.; Wang, Z.; Chen, Z.; Heng, X. A Systematic Review and Meta-Analysis on the Effectiveness of Radiotherapy and Temozolomide Treatment With or Without Bevacizumab in Patients With glioblastoma Multiforme. Neurol. India 2024, 72, 700–707. [Google Scholar] [CrossRef]
- Aravantinou-Fatorou, A.; Georgakopoulou, V.; Mathioudakis, N.; Papalexis, P.; Tarantinos, K.; Trakas, I.; Τράκας, Ν.; Spandidos, D.; Fotakopoulos, G. Comparison of the Outcomes Following Bevacizumab and/or Temozolamide/Radiosurgery Treatment in Patients with glioblastoma. Mol. Clin. Oncol. 2023, 19, 73. [Google Scholar] [CrossRef] [PubMed]
- Пoлевщикoв, А.В.Д.О.; Иванoв, А.И.; Мелуа, А.Д. Нoздрачев. Академики Пoбеды. Vestn. Ross. Akad. Nauk 2022, 92, 97–100. [Google Scholar] [CrossRef]
- Zhang, J.F.; Okai, B.K.; Iovoli, A.; Goulenko, V.; Attwood, K.; Lim, J.; Hess, R.M.; Abad, A.P.; Prasad, D.; Fenstermaker, R. Bevacizumab and Gamma Knife Radiosurgery for First-Recurrence glioblastoma. J. Neuro-Oncol. 2024, 166, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Roh, T.S.; Kim, S.-H. Ncog-08. Bevacizumab Alone versus Bevacizumab plus Irinotecan in Patients with Recurrent glioblastoma: A Nationwide Population-Based Study. Neuro-Oncology 2023, 25, v215. [Google Scholar] [CrossRef]
- Galanis, E.; Anderson, S.K.; Lafky, J.M.; Uhm, J.H.; Giannini, C.; Kumar, S.; Kimlinger, T.K.; Northfelt, D.W.; Flynn, P.J.; Jaeckle, K.A.; et al. Phase II Study of Bevacizumab in Combination with Sorafenib in Recurrent glioblastoma (N0776): A North Central Cancer Treatment Group Trial. Clin. Cancer Res. 2013, 19, 4816–4823. [Google Scholar] [CrossRef]
- Erdem-Eraslan, L.; van den Bent, M.J.; Hoogstrate, Y.; Naz-Khan, H.; Stubbs, A.; van der Spek, P.; Böttcher, R.; Gao, Y.; de Wit, M.; Taal, W.; et al. Data from Identification of Patients with Recurrent glioblastoma Who May Benefit from Combined Bevacizumab and CCNU Therapy: A Report from the BELOB Trial. Am. Assoc. Cancer Res. 2023, 76, 525–534. [Google Scholar] [CrossRef]
- Beige, A.; Ghiringhelli, F.; Lecuelle, J.; Truntzer, C.; Truc, G.; Vincent, J.; Farah, W.; Borsotti, F.; Mazilu, I.; Ilie, S.M. Efficacy of Chemotherapy Plus Bevacizumab in Recurrent glioblastoma Multiform: A Real-Life Study. Anticancer Res. 2022, 42, 5847–5858. [Google Scholar] [CrossRef]
- Escudero, L.; Urbano, M.; Garcés, M.; Murillo, F. Efficacy and Safety Study of Fotemustine and Bevacizumab in Patients with Recurrent glioblastoma. J. Clin. Oncol. 2022, 40, e14041. [Google Scholar] [CrossRef]
- Puduvalli, V.K.; Wu, J.; Yuan, Y.; Armstrong, T.S.; Vera, E.; Wu, J.; Xu, J.; Giglio, P.; Colman, H.; Walbert, T.; et al. A Bayesian Adaptive Randomized Phase II Multicenter Trial of Bevacizumab with or without Vorinostat in Adults with Recurrent glioblastoma. Neuro-Oncology 2020, 22, 1505–1515. [Google Scholar] [CrossRef]
- Hata, N.; Mizoguchi, M.; Kuga, D.; Hatae, R.; Akagi, Y.; Sangatsuda, Y.; Amemiya, T.; Michiwaki, Y.; Fujioka, Y.; Takigawa, K.; et al. First-Line Bevacizumab Contributes to Survival Improvement in glioblastoma Patients Complementary to Temozolomide. J. Neuro-Oncol. 2020, 146, 451–458. [Google Scholar] [CrossRef]
- Hsieh, A.; Gerstner, E.R.; Sahebjam, S.; Piccioni, D.; Campian, J.; Drappatz, J.; Aiken, R.; Lee, E.Q.; Welch, M.; Becker, K.P.; et al. Ctni-50. a Randomized Phase 2 Trial of Cediranib/Olaparib versus Bevacizumab in Patients with Recurrent glioblastoma: Updated Results. Neuro-Oncology 2022, 24, vii83. [Google Scholar] [CrossRef]
- Reardon, D.A.; Groves, M.D.; Wen, P.Y.; Nabors, L.B.; Mikkelsen, T.; Rosenfeld, S.; Raizer, J.J.; Barriuso, J.; McLendon, R.E.; Suttle, A.B.; et al. A Phase I/II Trial of Pazopanib in Combination with Lapatinib in Adult Patients with Relapsed Malignant Glioma. Clin. Cancer Res. 2013, 19, 900–908. [Google Scholar] [CrossRef]
- Faye, M.D.; Easaw, J.; de Robles, P.; Agnihotram, R.; Torres-Vasquez, A.; Lamonde, F.; Petrecca, K.; Owen, S.; Panet-Raymond, V.; Shenouda, G.; et al. Phase II Trial of Concurrent Sunitinib, Temozolomide and Radiotherapy with Adjuvant Temozolomide for Newly Diagnosed Unmethylated MGMT glioblastoma. Neuro-Oncol. Adv. 2023, 5, vdad106. [Google Scholar] [CrossRef] [PubMed]
- Ezaki, T.; Tanaka, T.; Tamura, R.; Ohara, K.; Yamamoto, Y.; Takei, J.; Morimoto, Y.; Imai, R.; Kuranai, Y.; Akasaki, Y.; et al. Status of Alternative Angiogenic Pathways in glioblastoma Resected under and after Bevacizumab Treatment. Brain Tumor Pathol. 2024, 41, 61–72. [Google Scholar] [CrossRef]
- Rahman, M.A.; Ali, M.M. Recent Treatment Strategies and Molecular Pathways in Resistance Mechanisms of Antiangiogenic Therapies in glioblastoma. Cancers 2024, 16, 2975. [Google Scholar] [CrossRef]
- D’Amico, A.G.; Maugeri, G.; Magrì, B.; Giunta, S.; Saccone, S.; Federico, C.; Pricoco, E.; Broggi, G.; Caltabiano, R.; Musumeci, G.; et al. Modulatory Activity of ADNP on the Hypoxia-induced Angiogenic Process in glioblastoma. Int. J. Oncol. 2022, 62, 14. [Google Scholar] [CrossRef] [PubMed]
- Bou-Gharios, J.; Nöel, G.; Burckel, H. Preclinical and Clinical Advances to Overcome Hypoxia in glioblastoma Multiforme. Cell Death Dis. 2024, 15, 503. [Google Scholar] [CrossRef]
- Kumar, A.; Rajasekera, P.; Becker, V.; Biehn, S.; Pérez-Soto, B.; Beyer, S.; Mcelroy, J.; Becker, A.-K.; Johnson, B.; Cui, T.; et al. Hypoxia-Inducible Transgelin-2 Confers Treatment Resistance through Activation of PI3K/Akt/GSK3β Pathway in glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, e121. [Google Scholar] [CrossRef]
- Lucio-Eterovic, A.K.; Piao, Y.; de Groot, J. Mediators of glioblastoma Resistance and Invasion during Antivascular Endothelial Growth Factor Therapy. Clin. Cancer Res. 2009, 15, 4589–4599. [Google Scholar] [CrossRef]
- Xie, J.; Tang, J.; Li, Y.; Kong, X.; Wang, W.; Wu, H. ATM Activation is Key in Vasculogenic Mimicry Formation by Glioma Stem-like Cells. Biomed. Environ. Sci. 2024, 37, 834–849. [Google Scholar] [CrossRef]
- Cannell, I.G.; Sawicka, K.; Pearsall, I.; Wild, S.A.; Deighton, L.; Pearsall, S.M.; Lerda, G.; Joud, F.; Khan, S.; Bruna, A.; et al. FOXC2 Promotes Vasculogenic Mimicry and Resistance to Anti-Angiogenic Therapy. Cell Rep. 2023, 42, 112791. [Google Scholar] [CrossRef]
- Pellerino, A.; Bruno, F.; Soffietti, R.; Rudà, R. Antiangiogenic Therapy for Malignant Brain Tumors: Does It Still Matter? Curr. Oncol. Rep. 2023, 25, 777–785. [Google Scholar] [CrossRef]
- Tătăranu, L.G.; Turliuc, S.; Kamel, A.; Rizea, R.E.; Dricu, A.; Staicu, G.-A.; Baloi, C.; Rodriguez, S.M.B.; Manole, A.I.M. Glioblastoma Tumor Microenvironment: An Important Modulator for Tumoral Progression and Therapy Resistance. Curr. Issues Mol. Biol. 2024, 46, 9881–9894. [Google Scholar] [CrossRef] [PubMed]
- Sarantopoulos, A.; Ene, C.; Aquilanti, E. Therapeutic Approaches to Modulate the Immune Microenvironment in Gliomas. npj Precis. Oncol. 2024, 8, 241. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Cai, H.; Ni, X. P02.25.a Tumor Microenvironment (Tme) Vis-à-Vis Anti-Vascular Treatment in glioblastoma. Neuro-oncology 2024, 26, v40–v41. [Google Scholar] [CrossRef]
- Krishnan, S.; Amoozgar, Z.; Fukumura, D.; Jain, R.K. Implications of a Granulocyte-high glioblastoma Microenvironment in Immune Suppression and Therapy Resistance. J. Pathol. 2021, 254, 105–108. [Google Scholar] [CrossRef]
- William, I.; Huntoon, K.; Lea, S.; Rajkumar Bhanu, K.; Hegde, S.; Kim, B.Y.S.; Curran, M.A. Tmic-20. Unlocking the Potential of Hypoxia Reduction in Reshaping the glioblastoma Tumor Microenvironment for Enhanced Therapeutic Synergy. Neuro-Oncology 2024, 26, viii301–viii302. [Google Scholar] [CrossRef]
- Johnson, A.L.; Laterra, J.; Lopez-Bertoni, H. Exploring glioblastoma Stem Cell Heterogeneity: Immune Microenvironment Modulation and Therapeutic Opportunities. Front. Oncol. 2022, 12, 995498. [Google Scholar] [CrossRef]
- Choi, S.H.; Jang, J.; Kim, Y.; Park, C.; Lee, S.Y.; Kim, H.; Kim, H. ID1high/Activin Ahigh glioblastoma Cells Contribute to Resistance to Anti-Angiogenesis Therapy through Malformed Vasculature. Cell Death Dis. 2024, 15, 292. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, J.; Xu, T.L. Inhibition of Eukaryotic Initiation Factor 4E by Tomivosertib Suppresses Angiogenesis, Growth, and Survival of glioblastoma and Enhances Chemotherapy’s Efficacy. Fundam. Clin. Pharmacol. 2023, 37, 807–815. [Google Scholar] [CrossRef]
- Soumya, S.J.; Arya, K.R.; Abhinand, C.S.; Sunitha, P.; Athira, A.P.; Nair, A.S.; Oommen, O.V.; Sudhakaran, P.R. Multi-Target and Natural Product-Based Multi-Drug Approach for Anti-VEGF Resistance in glioblastoma. Explor. Drug Sci. 2024, 2, 567–582. [Google Scholar] [CrossRef]
- Wirsching, H.-G.; Roth, P.; Weller, M. A Vasculature-Centric Approach to Developing Novel Treatment Options for glioblastoma. Expert Opin. Ther. Targets 2021, 25, 87–100. [Google Scholar] [CrossRef] [PubMed]
Anti-Angiogenic Agent | Protein Targets | Adverse Effects | References |
---|---|---|---|
aflibercept | VEGF-A, VEGF-B, PlGF-1, PlGF-2 | hypertension thromboembolic events (deep vein thrombosis and pulmonary embolism) hemorrhagic complications proteinuria fatigue gastrointestinal and nasal septum perforation | [60,61,62,63,64,65] |
axitinib | VEGFRs, c-Kit, PDGFR | fatigue diarrhea hypertension oral hyperesthesia dysphonia changes in voice | [66] |
bevacizumab | VEGF-A | hypertension proteinuria fatigue neutropenia (more common when bevacizumab is combined with other therapies) increased risk of thromboembolic events (when combined with chemotherapy or anticoagulants) hemorrhagic events gastrointestinal perforation neurocognitive dysfunction (potentially impacting memory and information processing) | [67,68,69,70,71,72,73,74,75] |
cediranib | VEGFRs, c-Kit | fatigue diarrhea hypertension | [76] |
dovitinib | FGFRs, VEGFRs, PDGFR | severe fatigue diarrhea liver enzyme elevation | [77,78] |
pazopanib | VEGFRs, c-Kit, PDGFR | thrombocytopenia neutropenia hypertension elevated ALT levels asthenia nausea diarrhea anemia | [79] |
ramucirumab | VEGFR2 | hypertension bleeding febrile neutropenia neutropenia thrombocytopenia nephrotic syndrome gastrointestinal perforation sporadic angioma transient vocal fold lesions hoarseness | [80,81,82,83,84] |
sunitinib | VEGFRs, c-Kit, PDGFR, Flt-3, RET, CSF-1R | fatigue neutropenia thrombocytopenia diarrhea nausea hand-foot syndrome neurological deterioration central nervous system hemorrhage | [85,86,87,88] |
Anti-Angiogenic Agent | Clinical Trial Number |
aflibercept | NCT00650923 |
axitinib | NCT01562197, NCT03291314, NCT01508117 |
bevacizumab | NCT01102595, NCT02285959, NCT02511405, NCT01091792, NCT01349660, NCT05476341, NCT05871021, NCT01564914, NCT00805961, NCT02342379, NCT02669173, NCT00800917, NCT01269853, NCT01308684, NCT03452579, NCT01933815, NCT02337491, NCT02047214, NCT00345163, NCT02698280, NCT05811793, NCT01939574, NCT01115491, NCT01782976, NCT05502991, NCT00501891, NCT01811498, NCT00892177, NCT01632228, NCT01435395, NCT02060955, NCT03661723, NCT00817284, NCT00762255, NCT00590681, NCT01443676, NCT01474239, NCT00904852, NCT01209442, NCT03149003, NCT00921167, NCT05540275, NCT05191784, NCT04952571, NCT02898012, NCT02761070, NCT06061809, NCT00671970, NCT00612430, NCT01067469, NCT02157103, NCT00967330, NCT00525525, NCT01331616, NCT02017717, NCT00943826, NCT00883298, NCT01266031, NCT02743078, NCT00613028, NCT01113398, NCT03743662, NCT02120287, NCT05638451, NCT05201326, NCT05118776, NCT00611325, NCT02974621, NCT02386826, NCT01860638, NCT00735436, NCT02768389, NCT01526837, NCT00979017, NCT00939991, NCT02841332, NCT04446416, NCT05284643, NCT01663012, NCT06329570, NCT02663271, NCT00612339, NCT01609790, NCT04681677, NCT01186406, NCT01814813, NCT04074785, NCT01730950, NCT01086345, NCT03631836, NCT01618747, NCT05271240, NCT03573986, NCT03532295, NCT00968240, NCT00463073, NCT02330562, NCT01149850, NCT03890952, NCT04974983, NCT01987830, NCT00884741, NCT06496971, NCT01582152, NCT00586508, NCT02833701, NCT00597402, NCT01413438, NCT03856099, NCT01925573, NCT00621686, NCT02754362, NCT01004874, NCT03149575, NCT01022918, NCT04566185, NCT01894061, NCT00433381, NCT01290939, NCT01740258, NCT01931098, NCT00906516, NCT06160206, NCT00720356, NCT01648348, NCT03144167, NCT05611645, NCT00337207, NCT02343549, NCT02142803, NCT00973557, NCT04143425, NCT02348255, NCT00458731, NCT01478321, NCT01392209, NCT00667394, NCT03623347, NCT00795665, NCT01810744, NCT00879437, NCT01013285, NCT01339039, NCT01189240, NCT00782756, NCT00352521 |
cediranib | NCT00777153, NCT02974621, NCT01310855, NCT00503204, NCT00979862, NCT00458731, NCT01062425, NCT00662506, NCT01131234 |
dovitinib | NCT01972750, NCT01753713 |
pazopanib | NCT02331498, NCT01931098, NCT00459381, NCT01392352, NCT00350727 |
ramucirumab | NCT00895180 |
sunitinib | NCT00535379, NCT00611728, NCT00606008, NCT03025893, NCT01100177, NCT02928575, NCT00864864, NCT00923117, NCT00499473, NCT01122888 |
Anti-Angiogenic Agent | Combination Agent | Study Description | References |
---|---|---|---|
aflibercept | radiation therapy, temozolomide | Study Design: Phase I, 3+3 dose-escalation, three arms with different aflibercept/temozolomide combinations. Patient Population: 59 patients with newly diagnosed high-grade gliomas. Study Objective: Determine the maximum tolerated dose of aflibercept. MTD (Maximum tolerated dose): 4 mg/kg every two weeks for all arms. Dose-Limiting Toxicities: deep vein thrombosis, neutropenia, thrombotic microangiopathy, rash, thrombocytopenia Reasons for Treatment Discontinuation: Primarily disease progression and toxicities. Treatment Duration: Median of five aflibercept cycles. | [91] |
axitinib | avelumab | Study Design: Phase II, open-label, single-center, stratified. Patient Population: Recurrent GBM patients, stratified by corticosteroid use. Intervention: Cohort 1: concurrent axitinib and avelumab. Cohort 2: axitinib monotherapy initially, avelumab added after corticosteroid reduction. Primary Endpoint: 6-month progression-free survival. Results: Cohort 1: 22.2% 6-month PFS, 26.6 weeks median overall survival. Cohort 2: 18.5% 6-month PFS, 18.0 weeks median OS. Safety: Generally well-tolerated. Common adverse events included dysphonia, lymphopenia, hypertension, and diarrhea. Conclusion: Did not meet efficacy threshold for further study in an unselected recurrent GBM population. | [117] |
axitinib | lomustine | Study Design: Randomized phase II trial. Patient Population: Recurrent GBM (rGB). Interventions: Axitinib monotherapy vs. axitinib plus lomustine. Primary Endpoint: 6-month progression-free survival (6mPFS). Results: 6mPFS: 26% AXI, 17% AXILOM (no significant benefit for combination). Median overall survival (mOS): 29 weeks AXI, 27.4 weeks AXILOM (similar). Best overall response rate: 38% AXILOM, 28% AXI (higher in combination, but with increased toxicity). Safety: Increased grade 3/4 neutropenia and thrombocytopenia in the AXILOM arm. Crossover: AXI arm patients could crossover to AXILOM upon progression. | [118] |
bevacizumab | irinotecan | Study Design: Randomized Phase II trial. Patient Population: 846 patients with recurrent GBM following surgery/biopsy and chemoradiotherapy. Interventions: Bevacizumab monotherapy vs. bevacizumab plus irinotecan. Primary Outcome: Overall survival from initial surgery. Results: No significant difference in overall survival (22.6 months for bevacizumab vs. 20.44 months for bevacizumab + irinotecan). B+I group received a significantly higher median number of bevacizumab prescriptions (5 vs. 3). Factors associated with decreased survival: Male sex, older age, biopsy (vs. resection), and higher number of radiotherapy cycles. Conclusion: Bevacizumab monotherapy is a reasonable option considering the lack of added survival benefit with irinotecan and the potential for increased toxicity with combination therapy. | [119] |
bevacizumab | temozolomide, radiotherapy | Study Design: Systematic review and meta-analysis of six studies. Intervention: Addition of bevacizumab to temozolomide and radiotherapy for GBM multiforme. Outcomes: Overall survival and progression-free survival. Results: No significant improvement in OS or PFS with bevacizumab. Pooled odds ratio for OS: 0.843 (95% CI 0.615–1.156, p = 0.290). Pooled odds ratio for PFS: 0.829 (95% CI 0.561–1.224, p = 0.346). Conclusion: Bevacizumab does not offer additional benefit in this setting. | [120,121] |
bevacizumab | re-irradiation | Context: Recurrent GBM has a poor prognosis and lacks a standard treatment approach. Treatment Strategy: Re-irradiation combined with bevacizumab is frequently used. Potential Advantages: This combination may offer acceptable toxicity, especially with appropriate fractionation, making it a potentially safer option. Current Status: While various re-irradiation and bevacizumab regimens have been explored, further research is crucial to optimize treatment protocols. Challenges and Future Directions: Further research is needed to address existing challenges and improve treatment efficacy. | [122] |
bevacizumab | Gamma Knife | Study Design: Comparison of three treatment groups for recurrent GBM (rGBM) at first recurrence. Treatment Groups: Bevacizumab only, Gamma Knife radiosurgery only, Combined bevacizumab and Gamma Knife Outcome Measures: Post-recurrence progression-free survival and overall survival. Key Findings: The combined treatment group showed significantly improved PFS (7.7 months) and OS (11.5 months). These improvements were statistically significant compared to either treatment alone (p = 0.015 for total PFS, p = 0.0050 for total OS, p = 0.018 for post-recurrence PFS, and p = 0.0082 for post-recurrence OS). Conclusion: Concurrent bevacizumab and Gamma Knife radiosurgery appear to enhance survival in recurrent GBM. | [123] |
bevacizumab | irinotecan | Study Design: Phase II trial in 167 patients with recurrent GBM. Treatment Arms: Bevacizumab monotherapy vs. bevacizumab plus irinotecan. Outcomes: 6-month progression-free survival: 42.6% (bevacizumab) vs. 50.3% (combination). Objective response rate: 28.2% (bevacizumab) vs. 37.8% (combination). Median overall survival: 9.2 months (bevacizumab) vs. 8.7 months (combination). Safety: Grade 3 or higher adverse events: 46.4% (bevacizumab) vs. 65.8% (combination). Conclusion: While both treatments showed activity, adding irinotecan did not significantly improve OS despite increasing PFS and ORR. | [70] |
bevacizumab | irinotecan | Study Design: Analysis of outcomes in 846 recurrent GBM patients. Treatment Groups: Bevacizumab monotherapy (BEV, n = 450), Bevacizumab plus irinotecan (B+I, n = 396) Demographics: The BEV group was older and had a higher proportion of females. Primary Outcome: Overall survival Results: No significant difference in OS between the two treatment groups. Prognostic Factors: Younger age, female gender, and prior surgery (vs. biopsy) were associated with better prognosis. Conclusion: Bevacizumab monotherapy is a reasonable treatment option, offering similar efficacy to combination therapy with potentially less toxicity. | [124] |
bevacizumab | sorafenib | Objective: To evaluate the efficacy and safety of combining bevacizumab and sorafenib, targeting vertical VEGF signaling blockade, in recurrent GBM. Study Design: Phase II trial with two sorafenib dosing groups due to initial toxicity concerns. Results: No significant improvement in outcomes compared to historical bevacizumab monotherapy data. Objective response rate: 18.5%. 6-month progression-free survival: 20.4%. Median overall survival: 5.6 months. Biomarkers: Associations found between SNPs in VEGF and VEGFR2, baseline stromal cell-derived factor-1 levels, and PFS6. Circulating endothelial cells and ADC-L identified as potential biomarkers. Toxicity: Significant toxicity observed, leading to dose adjustments. Conclusion: While the combination did not improve efficacy, the study provided valuable insights into potential biomarkers and highlighted the challenges of combination anti-VEGF therapies in GBM. | [125] |
bevacizumab | lomustine | Study Design: Randomized phase II trial investigating bevacizumab plus CCNU (lomustine) in recurrent GBM. Molecular Profiling: Gene expression profiling was used to classify tumors. Key Finding: Patients with the IGS-18/classical subtype experienced significantly improved progression-free survival and a trend toward better overall survival with the combination therapy. Subtype-Specific Benefit: Other molecular subtypes did not show similar benefits. Conclusion: Tumor classification is important for predicting treatment response to bevacizumab and CCNU in recurrent GBM. The combination appears most effective in the IGS-18/classical subtype. | [126] |
bevacizumab | fotemustine, irinotecan, temozolomide, lomustine | Study Population: 160 patients with recurrent GBM treated with bevacizumab plus chemotherapy. Treatment Groups: Bevacizumab + fotemustine (n = 100), Bevacizumab + another cytotoxic agent (irinotecan, temozolomide, or lomustine; n = 62) Outcomes: Median progression-free survival: 4.47 months (entire cohort). Median overall survival: 9 months (entire cohort); 7.3 months (fotemustine group); 19.9 months (other cytotoxic agents group). 3-month disease control rate: 51%. Prognostic Factors: Baseline steroid use and low Karnofsky performance status associated with poorer survival. Adverse Events: Grade 3–4 adverse events: 21.9% of patients (no difference between groups). Grade 5 adverse events: 7 patients in the fotemustine group. Conclusion: Bevacizumab plus fotemustine was less effective than bevacizumab combined with other cytotoxic agents in this real-world setting. | [127] |
bevacizumab | fotemustine | Patients: Forty-two recurrent GBM patients (16 women, 25 men; median age 52). Most (85.4%) had a good performance status (ECOG 0-1). Prior Treatments: All patients received prior radiotherapy and temozolomide. A majority had prior tumor resection (total/subtotal or partial). About 36% experienced relapse within 3 months of initial treatment. Relapse location was unifocal in 61% and multifocal in 39%. Treatment Response: Stable disease: 46.3%. Partial response: 24.4%. Complete response: 2.4%. Survival: Median progression-free survival: 6 months. Median overall survival: 7 months. Toxicity: Grade 3–4 toxicity occurred in 22% of patients, primarily hematologic adverse events. Comparison to Other Studies: Results were comparable to other studies using this combination, though with slightly higher PFS but lower OS than a previous phase II study, potentially due to more rapid progressors in this cohort. | [128] |
bevacizumab | vorinostat | Trial Design: Compared bevacizumab plus vorinostat versus bevacizumab alone in patients with recurrent GBM. Outcomes: No significant difference in outcomes between the two groups. Median progression-free survival: 3.7 months (combination) vs. 3.9 months (bevacizumab monotherapy). Median overall survival: 7.8 months (combination) vs. 9.3 months (bevacizumab monotherapy). No improvement in clinical benefit or quality of life. Safety: Grade ≥ 3 toxicities were observed, including hypertension, neurological changes, anorexia, infections, wound dehiscence, thromboembolic events, and colonic perforation. However, the combination was generally well-tolerated. Conclusion: The addition of vorinostat to bevacizumab did not offer a significant advantage over bevacizumab monotherapy in recurrent GBM. The trial successfully demonstrated the feasibility of a Bayesian adaptive design in this setting. | [129] |
bevacizumab | temozolomide | Study Focus: Evaluated the impact of adding bevacizumab to temozolomide in newly diagnosed IDH-wildtype GBM. Compared outcomes in three eras: pre-TMZ, TMZ alone, and TMZ + BEV. Overall Survival: Median OS increased with the introduction of TMZ: 14.6 months (pre-TMZ) to 14.9 months. Further OS improvement with BEV addition: 22.1 months (TMZ + BEV). Prognostic Factors: Extent of resection and MGMT methylation status were significant prognostic factors in the TMZ era but not in the TMZ + BEV era. Subgroup Analysis: TMZ improved OS in MGMT-methylated patients, although not significantly (p = 0.13). BEV significantly improved OS in MGMT-unmethylated patients (p = 0.04). Conclusion: First-line BEV complements TMZ and may extend survival, particularly in patients without MGMT methylation. This supports personalized treatment strategies based on prognostic factors. | [130] |
cediranib | radiotherapy, temozolomide | Trial Design: A randomized, double-blind, placebo-controlled phase II study evaluating cediranib added to standard radiotherapy and temozolomide in newly diagnosed GBM. Key Finding: Cediranib significantly improved 6-month progression-free survival (46.6% vs. 24.5%, p = 0.005). Overall Survival: Despite the improvement in progression-free survival, there was no significant overall survival benefit with the addition of cediranib. Adverse Events: Cediranib was associated with a higher rate of severe adverse events. | [101] |
cediranib | olaparib | Trial Design: Compared cediranib/olaparib combination therapy to bevacizumab monotherapy in 70 recurrent GBM patients. Treatment Arms: Cediranib 30 mg daily + olaparib 200 mg twice daily. Bevacizumab 10 mg/kg every two weeks. Outcomes: No significant difference in survival outcomes between the two groups. Median progression-free survival: 118 days (cediranib/olaparib) vs. 92 days (bevacizumab). Median overall survival: 269.5 days (cediranib/olaparib) vs. 192 days (bevacizumab) Genomic Analysis: Whole exome sequencing was performed on a subset of patients (details not provided). Conclusion: The combination of cediranib and olaparib did not demonstrate a significant survival benefit compared to bevacizumab alone in recurrent GBM. | [131] |
pazopanib | temozolomide | Trial Design: A phase I/II study evaluating pazopanib combined with temozolomide during maintenance therapy for resected GBM. Phase I: 20 patients enrolled across four pazopanib dose levels (200 mg, 400 mg, 600 mg, 800 mg). One dose-limiting toxicity observed at 600 mg. Two DLTs observed at 800 mg (primarily thrombocytopenia and hypertension). Most adverse events were grade 1–2. Recommended Phase II Dose (RP2D): 600 mg pazopanib with temozolomide, although frequent dose adjustments were required. Conclusion: The combination was deemed feasible, and the phase II portion of the trial is ongoing. | [79] |
pazopanib | lapatinib | Trial Design: A phase I/II trial investigating the combination of pazopanib and lapatinib for malignant glioma. The trial was terminated early during phase II due to limited efficacy. Phase II Results: Low progression-free survival rates at 6 months: 0% in patients positive for both PTEN and EGFRvIII. 15% in patients negative for PTEN and/or EGFRvIII. Efficacy: Limited overall anti-tumor activity was observed despite some patients experiencing partial response or stable disease. Phase I Results: A safe dosage regimen was determined in phase I, but the maximum tolerated dose was not reached. Drug Interactions: Concomitant use of enzyme-inducing anticonvulsants reduced drug exposure, potentially impacting efficacy. Conclusion: The combination therapy showed limited efficacy, possibly due to subtherapeutic lapatinib exposure. The study highlights the need to explore alternative drug delivery methods, such as intratumoral delivery, in future trials. | [132] |
sunitinib | temozolomide radiotherapy | Trial Design: Phase II trial evaluating sunitinib in combination with temozolomide and radiotherapy in newly diagnosed GBM patients with unmethylated MGMT. Key Outcomes: Median progression-free survival: 7.15 months. Median overall survival: 15 months Positive Prognostic Factors for Overall Survival: Receiving more than three cycles of adjuvant TMZ. Undergoing surgery at progression. Neutrophil-to-lymphocyte ratio ≤ 6 Negative Prognostic Factor for Overall Survival: Age over 65 Adverse Events: Grade 3 thrombocytopenia, neutropenia, and thromboembolic events were observed; no grade 5 events occurred. Conclusion: Suggests potential benefits for this combination therapy, warranting further investigation. | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowacka, A.; Śniegocki, M.; Smuczyński, W.; Bożiłow, D.; Ziółkowska, E. Angiogenesis in Glioblastoma—Treatment Approaches. Cells 2025, 14, 407. https://doi.org/10.3390/cells14060407
Nowacka A, Śniegocki M, Smuczyński W, Bożiłow D, Ziółkowska E. Angiogenesis in Glioblastoma—Treatment Approaches. Cells. 2025; 14(6):407. https://doi.org/10.3390/cells14060407
Chicago/Turabian StyleNowacka, Agnieszka, Maciej Śniegocki, Wojciech Smuczyński, Dominika Bożiłow, and Ewa Ziółkowska. 2025. "Angiogenesis in Glioblastoma—Treatment Approaches" Cells 14, no. 6: 407. https://doi.org/10.3390/cells14060407
APA StyleNowacka, A., Śniegocki, M., Smuczyński, W., Bożiłow, D., & Ziółkowska, E. (2025). Angiogenesis in Glioblastoma—Treatment Approaches. Cells, 14(6), 407. https://doi.org/10.3390/cells14060407