The Contractile Function of Ventricular Cardiomyocytes Is More Sensitive to Acute 17β-Estradiol Treatment Compared to Atrial Cardiomyocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Ethical Approval
2.2. Experimental Design
2.3. Isolation of Single CM from the Atria and Ventricles
2.4. Measurements of Sarcomere Length Dynamics
2.5. Measurements of Cytosolic [Ca2+]i Transients
2.6. Measurements of Tension-Length Dependence in a Single Cardiomyocyte
2.7. Studies of Actin–Myosin Interaction and Phosphorylation of Contractile Proteins
2.8. Statistical Analysis
3. Results
3.1. The Effects of 17β-Estradiol on Sarcomere Length Dynamics in Single Cardiomyocytes
3.2. The Effects of 17β-Estradiol on Cytosolic [Ca2+]i Transients in Single Cardiomyocytes
3.3. The Effects of 17β-Estradiol on Tension-Length Dependence in Single Cardiomyocytes
3.4. The Effects of 17β-Estradiol on the Myosin Function and Sarcomere Protein Phosphorylation
4. Discussion
4.1. E2 Effects on the Contraction of Atrial and Ventricular Cardiomyocytes
4.2. E2 Effects on Length-Dependent Force Production in Atrial and Ventricular Cardiomyocytes
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meinhardt, U.; Mullis, P.E. The essential role of the aromatase/p450arom. In Seminars in Reproductive Medicine; Thieme Medical Publishers: New York, NY, USA, 2002; Volume 20, pp. 277–284. [Google Scholar]
- Iorga, A.; Li, J.; Sharma, S.; Umar, S.; Bopassa, J.C.; Nadadur, R.D.; Centala, A.; Ren, S.; Saito, T.; Toro, L.; et al. Rescue of pressure overload-induced heart failure by estrogen therapy. J. Am. Heart Assoc. 2016, 5, e002482. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ma, J.; Wang, X.; Zhao, D.; Zhang, J.; Jiang, L.; Duan, W.; Wang, X.; Hong, Z.; Li, Z.; et al. GPR30 alleviates pressure overload-induced myocardial hypertrophy in ovariectomized mice by regulating autophagy. Int. J. Mol. Sci. 2023, 24, 904. [Google Scholar] [CrossRef]
- Rattanasopa, C.; Kirk, J.A.; Bupha-Intr, T.; Papadaki, M.; De Tombe, P.P.; Wattanapermpool, J. Estrogen but not testosterone preserves myofilament function from doxorubicin-induced cardiotoxicity by reducing oxidative modifications. Am. J. Physiol.-Heart Circ. Physiol. 2019, 316, H360–H370. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wang, H.; Jessup, J.A.; Lindsey, S.H.; Chappell, M.C.; Groban, L. Role of estrogen in diastolic dysfunction. Am. J. Physiol.-Heart Circ. Physiol. 2014, 306, H628–H640. [Google Scholar] [CrossRef]
- Dworatzek, E.; Mahmoodzadeh, S.; Schriever, C.; Kusumoto, K.; Kramer, L.; Santos, G.; Fliegner, D.; Leung, Y.K.; Ho, S.M.; Zimmermann, W.H.; et al. Sex-specific regulation of collagen I and III expression by 17β-Estradiol in cardiac fibroblasts: Role of estrogen receptors. Cardiovasc. Res. 2019, 115, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Nuedling, S.; Kahlert, S.; Loebbert, K.; Doevendans, P.A.; Meyer, R.; Vetter, H.; Grohé, C. 17β-Estradiol stimulates expression of endothelial and inducible NO synthase in rat myocardium in-vitro and in-vivo. Cardiovasc. Res. 1999, 43, 666–674. [Google Scholar] [CrossRef]
- Donaldson, C.; Eder, S.; Baker, C.; Aronovitz, M.J.; Weiss, A.D.; Hall-Porter, M.; Wang, F.; Ackerman, A.; Karas, R.H.; Molkentin, J.D.; et al. Estrogen attenuates left ventricular and cardiomyocyte hypertrophy by an estrogen receptor–dependent pathway that increases calcineurin degradation. Circ. Res. 2009, 104, 265–275. [Google Scholar] [CrossRef]
- Kalász, J.; Pásztor Tóth, E.; Bodi, B.; Fagyas, M.; Toth, A.; Harjit Pal, B.; Vári, S.G.; Balog, M.; Blažetić, S.; Heffer, M.; et al. Single acute stress-induced progesterone and ovariectomy alter cardiomyocyte contractile function in female rats. Croat. Med. J. 2014, 55, 239–249. [Google Scholar] [CrossRef]
- Turdi, S.; Huff, A.F.; Pang, J.; He, E.Y.; Chen, X.; Wang, S.; Chen, Y.; Zhang, Y.; Ren, J. 17-β estradiol attenuates ovariectomy-induced changes in cardiomyocyte contractile function via activation of AMP-activated protein kinase. Toxicol. Lett. 2015, 232, 253–262. [Google Scholar] [CrossRef]
- Iorga, A.; Cunningham, C.M.; Moazeni, S.; Ruffenach, G.; Umar, S.; Eghbali, M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol. Sex Differ. 2017, 8, 1–16. [Google Scholar] [CrossRef]
- Parks, R.J.; Bogachev, O.; Mackasey, M.; Ray, G.; Rose, R.A.; Howlett, S.E. The impact of ovariectomy on cardiac excitation-contraction coupling is mediated through cAMP/PKA-dependent mechanisms. J. Mol. Cell. Cardiol. 2017, 111, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.Y.; Firth, J.M.; Francis, A.J.; Alvarez-Laviada, A.; MacLeod, K.T. Effect of ovariectomy on intracellular Ca2+ regulation in guinea pig cardiomyocytes. Am. J. Physiol.-Heart Circ. Physiol. 2017, 313, H1031–H1043. [Google Scholar] [CrossRef]
- Qian, C.; Liu, J.; Liu, H. Targeting estrogen receptor signaling for treating heart failure. Heart Fail. Rev. 2024, 29, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Maluleke, T.T.; Millen, A.M.; Michel, F.S. The effects of estrogen deficiency and aging on myocardial deformation and motion in normotensive female rats. Menopause 2022, 29, 89–95. [Google Scholar] [CrossRef]
- Bell, J.R.; Bernasochi, G.B.; Wollermann, A.C.; Raaijmakers, A.J.; Boon, W.C.; Simpson, E.R.; Curl, C.L.; Mellor, K.M.; Delbridge, L.M. Myocardial and cardiomyocyte stress resilience is enhanced in aromatase-deficient female mouse hearts through CaMKIIδ activation. Endocrinology 2015, 156, 1429–1440. [Google Scholar] [CrossRef]
- Ramírez-Hernández, D.; López-Sanchez, P.; Lezama-Martínez, D.; Pérez-García, E.; Montoya-Hernández, M.F.S.; Aranda-Fraustro, A.; Flores-Monroy, J. Early estrogen replacement therapy attenuates cardiac dysfunction caused by aging and ovariectomy in female Wistar rats. Front. Biosci. Landmark 2024, 29, 46. [Google Scholar] [CrossRef]
- Sobrano Fais, R.; Hoffer, C.; Moreno Vinasco, L.; Walts, A.; Cook, T.; Fisher, A.; Frump, A.L.; Woulfe, K.; Lahm, T. NLRP3 Activation and Calcium-Dependent Contractile Function in Rat Right Ventricle Cardiomyocytes (RVCMs) Are Sexually Dimorphic and Controlled by 17β-Estradiol-via Estrogen Receptor-α. Circulation 2023, 148 (Suppl. S1), A15308. [Google Scholar] [CrossRef]
- van Eickels, M.; Patten, R.D.; Aronovitz, M.J.; Alsheikh-Ali, A.; Gostyla, K.; Celestin, F.; Grohe, C.; Mendelsohn, M.E.; Karas, R.H. 17-beta-estradiol increases cardiac remodeling and mortality in mice with myocardial infarction. J. Am. Coll. Cardiol. 2003, 41, 2084–2092. [Google Scholar] [CrossRef]
- Sitzler, G.; Lenz, O.; Kilter, H.; Rosee, K.L. Investigation of the negative inotropic effects of 17β-oestradiol in human isolated myocardial tissues. Br. J. Pharmacol. 1996, 119, 43–48. [Google Scholar] [CrossRef]
- Jiang, C.; Poole-Wilson, P.A.; Sarrel, P.M.; Mochizuki, S.; Collins, P.; MacLeod, K.T. Effect of 17β-oestradiol on contraction, Ca2+ current and intracellular free Ca2+ in guinea-pig isolated cardiac myocytes. Br. J. Pharmacol. 1992, 106, 739–745. [Google Scholar] [CrossRef]
- Ullrich, N.D.; Krust, A.; Collins, P.; MacLeod, K.T. Genomic deletion of estrogen receptors ERα and ERβ does not alter estrogen-mediated inhibition of Ca2+ influx and contraction in murine cardiomyocytes. Am. J. Physiol.-Heart Circ. Physiol. 2008, 294, H2421–H2427. [Google Scholar] [CrossRef] [PubMed]
- Patten, R.D.; Pourati, I.; Aronovitz, M.J.; Alsheikh-Ali, A.; Eder, S.; Force, T.; Mendelsohn, M.E.; Karas, R.H. 17 Beta-estradiol differentially affects left ventricular and cardiomyocyte hypertrophy following myocardial infarction and pressure overload. J. Card. Fail. 2008, 14, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.R.; Bernasochi, G.B.; Varma, U.; Boon, W.C.; Ellem, S.J.; Risbridger, G.P.; Delbridge, L.M. Aromatase transgenic upregulation modulates basal cardiac performance and the response to ischemic stress in male mice. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, H1265–H1274. [Google Scholar] [CrossRef]
- Kurokawa, J.; Tamagawa, M.; Harada, N.; Honda, S.I.; Bai, C.X.; Nakaya, H.; Furukawa, T. Acute effects of oestrogen on the guinea pig and human IKr channels and drug-induced prolongation of cardiac repolarization. J. Physiol. 2008, 586, 2961–2973. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.E.; Kirkland, D.M.; Beyschau, A.; Cala, P.M. Acute effects of 17β-estradiol on myocardial pH, Na+, and Ca2+ and ischemia-reperfusion injury. Am. J. Physiol. Cell Physiol. 2005, 288, C57–C64. [Google Scholar] [CrossRef]
- Ohya, S.; Kuwata, Y.; Sakamoto, K.; Muraki, K.; Imaizumi, Y. Cardioprotective effects of estradiol include the activation of large-conductance Ca2+-activated K+ channels in cardiac mitochondria. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H1635–H1642. [Google Scholar] [CrossRef]
- Luo, T.; Kim, J.K. The role of estrogen and estrogen receptors on cardiomyocytes: An overview. Can. J. Cardiol. 2016, 32, 1017–1025. [Google Scholar] [CrossRef]
- Lee, J.; Kim, Y.; Park, H.; Kim, C.; Cho, S.; Kim, J. Clinical impact of hormone replacement therapy on atrial fibrillation in postmenopausal women: A nationwide cohort study. J. Clin. Med. 2021, 10, 5497. [Google Scholar] [CrossRef]
- Wells, S.P.; O’Shea, C.; Hayes, S.; Weeks, K.L.; Kirchhof, P.; Delbridge, L.M.; Pavlovic, D.; Bell, J.R. Male and female atria exhibit distinct acute electrophysiological responses to sex steroids. J. Mol. Cell. Cardiol. Plus 2024, 9, 100079. [Google Scholar] [CrossRef]
- Bernasochi, G.B.; Boon, W.C.; Curl, C.L.; Varma, U.; Pepe, S.; Tare, M.; Bell, J.R. Pericardial adipose and aromatase: A new translational target for aging, obesity and arrhythmogenesis? J. Mol. Cell. Cardiol. 2017, 111, 96–101. [Google Scholar] [CrossRef]
- Khokhlova, A.; Myachina, T.; Butova, X.; Volzhaninov, D.; Berg, V.; Kochurova, A.; Kuznetsov, D.; Mukhlynina, E.; Kopylova, G.; Shchepkin, D. Differing effects of estrogen deficiency on the contractile function of atrial and ventricular myocardium. Biochem. Biophys. Res. Commun. 2021, 541, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, M.; Rachelska, G.; Donghao, W.; McCann, S.M.; Gutkowska, J. Estrogen receptors activate atrial natriuretic peptide in the rat heart. Proc. Natl. Acad. Sci. USA 2001, 98, 11765–11770. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.F.; Li, B.Y.; Lu, Y.J.; Fu, Y.L.; Schild, J.H. 17β-estradiol restores excitability of a sexually dimorphic subset of myelinated vagal afferents in ovariectomized rats. Am. J. Physiol. Cell Physiol. 2009, 297, C654–C664. [Google Scholar] [CrossRef]
- Parini, P.; Angelin, B.; Stavréus-Evers, A.; Freyschuss, B.; Eriksson, H.; Rudling, M. Biphasic effects of the natural estrogen 17beta-estradiol on hepatic cholesterol metabolism in intact female rats. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, T.; Schumann, M.; Neumann, M.; deJager, T.; Stimpel, M.; Serfling, E.; Neyses, L. 17β-estradiol prevents programmed cell death in cardiac myocytes. Biochem. Biophys. Res. Commun. 2000, 268, 192–200. [Google Scholar] [CrossRef]
- Al-Rubaiee, M.; Gangula, P.R.; Millis, R.M.; Walker, R.K.; Umoh, N.A.; Cousins, V.M.; Jeffress, M.A.; Haddad, G.E. Inotropic and lusitropic effects of calcitonin gene-related peptide in the heart. Am. J. Physiol. -Heart Circ. Physiol. 2013, 304, H1525–H1537. [Google Scholar] [CrossRef]
- Butova, X.A.; Myachina, T.A.; Khokhlova, A.D. A combined Langendorff-injection technique for simultaneous isolation of single cardiomyocytes from atria and ventricles of the rat heart. MethodsX 2021, 8, 101189. [Google Scholar] [CrossRef]
- Khokhlova, A.; Myachina, T.; Butova, X.; Kochurova, A.; Polyakova, E.; Galagudza, M.; Solovyova, O.; Kopylova, G.; Shchepkin, D. The acute effects of leptin on the contractility of isolated rat atrial and ventricular cardiomyocytes. Int. J. Mol. Sci. 2022, 23, 8356. [Google Scholar] [CrossRef]
- Myachina, T.A.; Butova, K.A.; Lookin, O.N. Development and program implementation of an algorithm to estimate the mean sarcomere length of a cardiomyocyte. Biophysics 2019, 64, 732–737. [Google Scholar] [CrossRef]
- Khokhlova, A.; Konovalov, P.; Iribe, G.; Solovyova, O.; Katsnelson, L. The effects of mechanical preload on transmural differences in mechano-calcium-electric feedback in single cardiomyocytes: Experiments and mathematical models. Front. Physiol. 2020, 11, 171. [Google Scholar] [CrossRef]
- Volzhaninov, D.; Khokhlova, A. Parallel Control of Two Digital Micromanipulators for Biomechanical Experiments Using LabVIEW. In Proceedings of the 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 25–26 April 2019; pp. 167–170. [Google Scholar]
- Nishimura, S.; Yasuda, S.I.; Katoh, M.; Yamada, K.P.; Yamashita, H.; Saeki, Y.; Sunagawa, K.; Nagai, R.; Hisada, T.; Sugiura, S. Single cell mechanics of rat cardiomyocytes under isometric, unloaded, and physiologically loaded conditions. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H196–H202. [Google Scholar] [CrossRef]
- Bollensdorff, C.; Lookin, O.; Kohl, P. Assessment of contractility in intact ventricular cardiomyocytes using the dimensionless ‘Frank–Starling Gain’index. Pflügers Arch. Eur. J. Physiol. 2011, 462, 39–48. [Google Scholar] [CrossRef]
- Khokhlova, A.; Solovyova, O.; Kohl, P.; Peyronnet, R. Single cardiomyocytes from papillary muscles show lower preload-dependent activation of force compared to cardiomyocytes from the left ventricular free wall. J. Mol. Cell. Cardiol. 2022, 166, 127–136. [Google Scholar] [CrossRef]
- Margossian, S.S.; Lowey, S. Preparation of myosin and its subfragments from rabbit skeletal muscle. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1982; Volume 85, pp. 55–71. [Google Scholar]
- Pardee, J.D.; Spudich, A.J. Purification of muscle actin. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1982; Volume 85, pp. 164–181. [Google Scholar]
- Quinn, T.A.; Kohl, P. Cardiac mechano-electric coupling: Acute effects of mechanical stimulation on heart rate and rhythm. Physiol. Rev. 2021, 101, 37–92. [Google Scholar] [CrossRef] [PubMed]
- Raddino, R.; Manca, C.; Poli, E.; Bolognesi, R.; Visioli, O. Effects of 17 beta-estradiol on the isolated rabbit heart. Arch. Int. Pharmacodyn. Ther. 1986, 281, 57–65. [Google Scholar] [PubMed]
- Bening, C.; Genser, B.; Keller, D.; Müller-Altrock, S.; Radakovic, D.; Penov, K.; Hassan, M.; Aleksic, I.; Leyh, R.; Madrahimov, N. Impact of estradiol, testosterone and their ratio on left and right auricular myofilament function in male and female patients undergoing coronary artery bypass grafting. BMC Cardiovasc. Disord. 2023, 23, 538. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Hintz, K.K.; Roughead, Z.K.; Duan, J.; Colligan, P.B.; Ren, B.H.; Lee, K.J.; Zeng, H. Impact of estrogen replacement on ventricular myocyte contractile function and protein kinase B/Akt activation. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H1800–H1807. [Google Scholar] [CrossRef]
- Müller, M.; Eghbalian, R.; Boeckel, J.N.; Frese, K.S.; Haas, J.; Kayvanpour, E.; Sedaghat-Hamedani, F.; Lackner, M.K.; Tugrul, O.F.; Ruppert, T.; et al. NIMA-related kinase 9 regulates the phosphorylation of the essential myosin light chain in the heart. Nat. Commun. 2022, 13, 6209. [Google Scholar] [CrossRef]
- Scheid, L.M.; Mosqueira, M.; Hein, S.; Kossack, M.; Juergensen, L.; Mueller, M.; Meder, B.; Fink, R.H.; Katus, H.A.; Hassel, D. Essential light chain S195 phosphorylation is required for cardiac adaptation under physical stress. Cardiovasc. Res. 2016, 111, 44–55. [Google Scholar] [CrossRef]
- Meder, B.; Laufer, C.; Hassel, D.; Just, S.; Marquart, S.; Vogel, B.; Hess, A.; Fishman, M.C.; Katus, H.A.; Rottbauer, W. A single serine in the carboxyl terminus of cardiac essential myosin light chain-1 controls cardiomyocyte contractility in vivo. Circ. Res. 2009, 104, 650–659. [Google Scholar] [CrossRef]
- Ma, Y.; Cheng, W.T.; Wu, S.; Wong, T.M. Oestrogen confers cardioprotection by suppressing Ca2+/calmodulin-dependent protein kinase II. Br. J. Pharmacol. 2009, 157, 705–715. [Google Scholar] [CrossRef]
- Mahmoodzadeh, S.; Dworatzek, E. The role of 17β-estradiol and estrogen receptors in regulation of Ca2+ channels and mitochondrial function in cardiomyocytes. Front. Endocrinol. 2019, 10, 310. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.W.; Gaffin, R.D.; Zawieja, D.C.; Muthuchamy, M. Roles of phosphorylation of myosin binding protein-C and troponin I in mouse cardiac muscle twitch dynamics. J. Physiol. 2004, 558, 927–941. [Google Scholar] [CrossRef]
- Ropero, A.B.; Eghbali, M.; Minosyan, T.Y.; Tang, G.; Toro, L.; Stefani, E. Heart estrogen receptor alpha: Distinct membrane and nuclear distribution patterns and regulation by estrogen. J. Mol. Cell. Cardiol. 2006, 41, 496–510. [Google Scholar] [CrossRef] [PubMed]
- Lizotte, E.; Grandy, S.A.; Tremblay, A.; Allen, B.G.; Fiset, C. Expression, distribution and regulation of sex steroid hormone receptors in mouse heart. Cell. Physiol. Biochem. 2009, 23, 075–086. [Google Scholar] [CrossRef] [PubMed]
- Iorga, A.; Umar, S.; Ruffenach, G.; Aryan, L.; Li, J.; Sharma, S.; Motayagheni, N.; Nadadur, R.D.; Bopassa, J.C.; Eghbali, M. Estrogen rescues heart failure through estrogen receptor Beta activation. Biol. Sex Differ. 2018, 9, 48. [Google Scholar] [CrossRef]
- Machuki, J.O.; Zhang, H.Y.; Harding, S.E.; Sun, H. Molecular pathways of oestrogen receptors and β-adrenergic receptors in cardiac cells: Recognition of their similarities, interactions and therapeutic value. Acta Physiol. 2018, 222, e12978. [Google Scholar] [CrossRef]
- Grohé, C.; Kahlert, S.; Löbbert, K.; Stimpel, M.; Karas, R.H.; Vetter, H.; Neyses, L. Cardiac myocytes and fibroblasts contain functional estrogen receptors. FEBS Lett. 1997, 416, 107–112. [Google Scholar] [CrossRef]
- Lipovka, Y.; Chen, H.; Vagner, J.; Price, T.J.; Tsao, T.S.; Konhilas, J.P. Oestrogen receptors interact with the α-catalytic subunit of AMP-activated protein kinase. Biosci. Rep. 2015, 35, e00264. [Google Scholar] [CrossRef]
- Huang, P.C.; Kuo, W.W.; Shen, C.Y.; Chen, Y.F.; Lin, Y.M.; Ho, T.J.; Padma, V.V.; Lo, J.F.; Huang, C.Y.; Huang, C.Y. Anthocyanin attenuates doxorubicin-induced cardiomyotoxicity via estrogen receptor-α/β and stabilizes HSF1 to inhibit the IGF-IIR apoptotic pathway. Int. J. Mol. Sci. 2016, 17, 1588. [Google Scholar] [CrossRef]
- Schuster, I.; Mahmoodzadeh, S.; Dworatzek, E.; Jaisser, F.; Messaoudi, S.; Morano, I.; Regitz-Zagrosek, V. Cardiomyocyte-specific overexpression of oestrogen receptor β improves survival and cardiac function after myocardial infarction in female and male mice. Clin. Sci. 2016, 130, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Pugach, E.K.; Blenck, C.L.; Dragavon, J.M.; Langer, S.J.; Leinwand, L.A. Estrogen receptor profiling and activity in cardiac myocytes. Mol. Cell. Endocrinol. 2016, 431, 62–70. [Google Scholar] [PubMed]
- Weil, B.R.; Manukyan, M.C.; Herrmann, J.L.; Wang, Y.; Abarbanell, A.M.; Poynter, J.A.; Meldrum, D.R. Signaling via GPR30 protects the myocardium from ischemia/reperfusion injury. Surgery 2010, 148, 436–443. [Google Scholar] [CrossRef]
- Liu, D.; Zhan, Y.; Ono, K.; Yin, Y.; Wang, L.; Wei, M.; Ji, L.; Liu, M.; Liu, G.; Zhou, X.; et al. Pharmacological activation of estrogenic receptor G protein-coupled receptor 30 attenuates angiotensin II-induced atrial fibrosis in ovariectomized mice by modulating TGF-β1/smad pathway. Mol. Biol. Rep. 2022, 49, 6341–6355. [Google Scholar] [CrossRef] [PubMed]
- Caporizzo, M.A.; Chen, C.Y.; Salomon, A.K.; Margulies, K.B.; Prosser, B.L. Microtubules provide a viscoelastic resistance to myocyte motion. Biophys. J. 2018, 115, 1796–1807. [Google Scholar] [CrossRef]
- Mamidi, R.; Gresham, K.S.; Verma, S.; Stelzer, J.E. Cardiac myosin binding protein-C phosphorylation modulates myofilament length-dependent activation. Front. Physiol. 2016, 7, 38. [Google Scholar] [CrossRef]
- Bupha-Intr, T.; Oo, Y.W.; Wattanapermpool, J. Increased myocardial stiffness with maintenance of length-dependent calcium activation by female sex hormones in diabetic rats. Am. J. Physiol.-Heart Circ. Physiol. 2011, 300, H1661–H1668. [Google Scholar] [CrossRef]
- Shen, J.B.; Pappano, A.J. An estrogen metabolite, 2-methoxyestradiol, disrupts cardiac microtubules and unmasks muscarinic inhibition of calcium current. J. Pharmacol. Exp. Ther. 2008, 325, 507–512. [Google Scholar] [CrossRef]
- Vite, A.; Caporizzo, M.A.; Corbin, E.A.; Brandimarto, J.; McAfee, Q.; Livingston, C.E.; Prosser, B.L.; Margulies, K.B. Extracellular stiffness induces contractile dysfunction in adult cardiomyocytes via cell-autonomous and microtubule-dependent mechanisms. Basic Res. Cardiol. 2022, 117, 41. [Google Scholar] [CrossRef]
- Caporizzo, M.A.; Prosser, B.L. The microtubule cytoskeleton in cardiac mechanics and heart failure. Nat. Rev. Cardiol. 2022, 19, 364–378. [Google Scholar] [CrossRef]
- Rosas, P.C.; Liu, Y.; Abdalla, M.I.; Thomas, C.M.; Kidwell, D.T.; Dusio, G.F.; Mukhopadhyay, D.; Kumar, R.; Baker, K.M.; Mitchell, B.M.; et al. Phosphorylation of cardiac Myosin-binding protein-C is a critical mediator of diastolic function. Circ. Heart Fail. 2015, 8, 582–594. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myachina, T.A.; Butova, X.A.; Simonova, R.A.; Volzhaninov, D.A.; Kochurova, A.M.; Kopylova, G.V.; Shchepkin, D.V.; Khokhlova, A.D. The Contractile Function of Ventricular Cardiomyocytes Is More Sensitive to Acute 17β-Estradiol Treatment Compared to Atrial Cardiomyocytes. Cells 2025, 14, 561. https://doi.org/10.3390/cells14080561
Myachina TA, Butova XA, Simonova RA, Volzhaninov DA, Kochurova AM, Kopylova GV, Shchepkin DV, Khokhlova AD. The Contractile Function of Ventricular Cardiomyocytes Is More Sensitive to Acute 17β-Estradiol Treatment Compared to Atrial Cardiomyocytes. Cells. 2025; 14(8):561. https://doi.org/10.3390/cells14080561
Chicago/Turabian StyleMyachina, Tatiana A., Xenia A. Butova, Raisa A. Simonova, Denis A. Volzhaninov, Anastasia M. Kochurova, Galina V. Kopylova, Daniil V. Shchepkin, and Anastasia D. Khokhlova. 2025. "The Contractile Function of Ventricular Cardiomyocytes Is More Sensitive to Acute 17β-Estradiol Treatment Compared to Atrial Cardiomyocytes" Cells 14, no. 8: 561. https://doi.org/10.3390/cells14080561
APA StyleMyachina, T. A., Butova, X. A., Simonova, R. A., Volzhaninov, D. A., Kochurova, A. M., Kopylova, G. V., Shchepkin, D. V., & Khokhlova, A. D. (2025). The Contractile Function of Ventricular Cardiomyocytes Is More Sensitive to Acute 17β-Estradiol Treatment Compared to Atrial Cardiomyocytes. Cells, 14(8), 561. https://doi.org/10.3390/cells14080561