The Genetic Architecture of Non-Syndromic Rhegmatogenous Retinal Detachment
Abstract
:1. Introduction
2. Complex Disease Genetics
3. Retinal Detachment Genetic Predispositions and Risk Factors
4. Genetic Mutations in Idiopathic Retinal Detachment
5. Future of Genomic Investigations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitry, D.; Charteris, D.G.; Yorston, D.; Siddiqui, M.A.R.; Campbell, H.; Murphy, A.-L.; Fleck, B.W.; Wright, A.F.; Singh, J. The Epidemiology and Socioeconomic Associations of Retinal Detachment in Scotland: A Two-Year Prospective Population-Based Study. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4963–4968. [Google Scholar] [CrossRef] [PubMed]
- Johnston, T.; Chandra, A.; Hewitt, A.W. Current Understanding of the Genetic Architecture of Rhegmatogenous Retinal Detachment. Ophthalmic Genet. 2016, 37, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Mitry, D.; Fleck, B.W.; Wright, A.F.; Campbell, H.; Charteris, D.G. Pathogenesis of rhegmatogenous retinal detachment: Predisposing anatomy and cell biology. Retina 2010, 30, 1561–1572. [Google Scholar] [CrossRef]
- Foos, R.Y.; Wheeler, N.C. Vitreoretinal juncture. Synchysis senilis and posterior vitreous detachment. Ophthalmology 1982, 89, 1502–1512. [Google Scholar] [CrossRef]
- Geiger, M.; The University of Colorado Retina Research Group; Smith, J.M.; Lynch, A.; Patnaik, J.L.; Oliver, S.C.N.; Dixon, J.A.; Mandava, N.; Palestine, A.G. Predictors for recovery of macular function after surgery for primary macula-off rhegmatogenous retinal detachment. Int. Ophthalmol. 2019, 40, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.O. Clinical features of the congenital vitreoretinopathies. Eye 2008, 22, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Risch, N.; Merikangas, K. The Future of Genetic Studies of Complex Human Diseases. Science 1996, 273, 1516–1517. [Google Scholar] [CrossRef] [PubMed]
- Ogura, Y.; Bonen, D.K.; Inohara, N.; Nicolae, D.L.; Chen, F.F.; Ramos, R.; Britton, H.; Moran, T.; Karaliuskas, R.; Duerr, R.H.; et al. A frameshift mutation in NOD2 associated with sus-ceptibility to Crohn’s disease. Nature 2001, 411, 603–606. [Google Scholar] [CrossRef]
- Chandra, A.; Mitry, D.; Wright, A.; Campbell, H.; Charteris, D.G. Genome-wide association studies: Applications and insights gained in Ophthalmology. Eye 2014, 28, 1066–1079. [Google Scholar] [CrossRef]
- Klein, R.J.; Zeiss, C.; Chew, E.Y.; Tsai, J.-Y.; Sackler, R.S.; Haynes, C.; Henning, A.K.; SanGiovanni, J.P.; Mane, S.M.; Mayne, S.T.; et al. Complement Factor H Polymorphism in Age-Related Macular Degeneration. Science 2005, 308, 385–389. [Google Scholar] [CrossRef]
- Edwards, A.O.; Ritter, R.; Abel, K.J., 3rd; Manning, A.; Panhuysen, C.; Farrer, L.A. Complement factor H polymorphism and age-related macular degeneration. Science 2005, 308, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Haines, J.L.; Hauser, M.A.; Schmidt, S.; Scott, W.K.; Olson, L.M.; Gallins, P.; Spencer, K.L.; Kwan, S.Y.; Noureddine, M.; Gilbert, J.R.; et al. Complement Factor H Variant Increases the Risk of Age-Related Macular Degeneration. Science 2005, 308, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Go, S.L.; Hoyng, C.B.; Klaver, C.C. Genetic risk of rhegmatogenous retinal detachment: A familial aggregation study. Arch. Ophthalmol. 2005, 123, 1237–1241. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, X.; Xu, X.; Wang, X.; Liu, K.; Ho, P.C.P. Epidemiology survey of rhegmatogenous retinal detachment in beixinjing district, Shanghai, China. Retina 2002, 22, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Mitry, D.; Williams, L.; Charteris, D.G.; Fleck, B.W.; Wright, A.F.; Campbell, H. Population-Based Estimate of the Sibling Recurrence Risk Ratio for Rhegmatogenous Retinal Detachment. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2551–2555. [Google Scholar] [CrossRef] [PubMed]
- Austin, K.L.; Palmer, J.R.; Seddon, J.M.; Glynn, R.J.; Rosenberg, L.; Gragoudas, E.S.; Kaufman, D.W.; Shapiro, S. Case-Control Study of Idiopathic Retinal Detachment. Int. J. Epidemiol. 1990, 19, 1045–1050. [Google Scholar] [CrossRef]
- Ferrara, M.; Mehta, A.; Qureshi, H.; Avery, P.; Yorston, D.; Laidlaw, D.A.; Williamson, T.H.; Steel, D.H.; Casswell, A.G.; Morris, A.H.; et al. Phenotype and Outcomes of Phakic Versus Pseudophakic Primary Rhegmatogenous Retinal Detachments: Cataract or Cataract Surgery Related? Am. J. Ophthalmol. 2021, 222, 318–327. [Google Scholar] [CrossRef]
- Radeck, V.; Helbig, H.; Maerker, D.; Gamulescu, M.-A.; Prahs, P.; Barth, T. Rhegmatogenous retinal detachment repair—Does age, sex, and lens status make a difference? Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 3197–3204. [Google Scholar] [CrossRef]
- Boberg-Ans, G.; Henning, V.; Villumsen, J.; La Cour, M. Longterm incidence of rhegmatogenous retinal detachment and survival in a defined population undergoing standardized phacoemulsification surgery. Acta Ophthalmol. Scand. 2006, 84, 613–618. [Google Scholar] [CrossRef]
- Richards, A.J.; Meredith, S.; Poulson, A.; Bearcroft, P.; Crossland, G.; Baguley, D.M.; Scott, J.D.; Snead, M.P. A Novel Mutation of COL2A1 Resulting in Dominantly Inherited Rhegmatogenous Retinal Detachment. Investig. Ophthalmol. Vis. Sci. 2005, 46, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Go, S.L.; Maugeri, A.; Mulder, J.J.S.; van Driel, M.A.; Cremers, F.P.M.; Hoyng, C.B. Autosomal Dominant Rhegmatogenous Retinal Detachment Associated with an Arg453Ter Mutation in the COL2A1 Gene. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4035–4043. [Google Scholar] [CrossRef] [PubMed]
- Kirin, M.; Chandra, A.; Charteris, D.G.; Hayward, C.; Campbell, S.; Celap, I.; Bencic, G.; Vatavuk, Z.; Kirac, I.; Richards, A.J.; et al. Genome-wide association study identifies genetic risk underlying primary rhegmatogenous retinal detachment. Hum. Mol. Genet. 2013, 22, 3174–3185. [Google Scholar] [CrossRef] [PubMed]
- Boutin, T.S.; Charteris, D.G.; Chandra, A.; Campbell, S.; Hayward, C.; Campbell, A.; Nandakumar, P.; Hinds, D.; Mitry, D.; Vitart, V.; et al. Insights into the genetic basis of retinal detachment. Hum. Mol. Genet. 2019, 29, 689–702. [Google Scholar] [CrossRef]
- Laviad, E.L.; Albee, L.; Pankova-Kholmyansky, I.; Epstein, S.; Park, H.; Merrill, A.H.; Futerman, A.H. Characterization of Ceramide Synthase 2: Tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J. Biol. Chem. 2008, 283, 5677–5684. [Google Scholar] [CrossRef]
- Sanvicens, N.; Cotter, T.G. Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells. J. Neurochem. 2006, 98, 1432–1444. [Google Scholar] [CrossRef] [PubMed]
- German, O.L.; Miranda, G.E.; Abrahan, C.E.; Rotstein, N.P. Ceramide is a Mediator of Apoptosis in Retina Photoreceptors. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Idoate, S.; Rodríguez-Hernández, I.; Rojas, J.; Fernández, I.; García-Gutierrez, M.-T.; Ruiz-Moreno, J.M.; Rocha-Sousa, A.; Ramkissoon, Y.D.; Harsum, S.; MacLaren, R.E.; et al. BAX and BCL-2 polymorphisms, as predictors of proliferative vitreoretinopathy development in patients suffering retinal detachment: The Retina 4 project. Acta Ophthalmol. 2015, 93, e541–e549. [Google Scholar] [CrossRef]
- Moschos, M.M.; Chatziralli, I.; Brouzas, D.; Gazouli, M. BAX and BCL2 Gene Polymorphisms in Rhegmatogenous Retinal Detachment. Ophthalmic Res. 2017, 58, 227–230. [Google Scholar] [CrossRef]
- Lo, A.C.; Woo, T.T.; Wong, R.L.; Wong, D. Apoptosis and Other Cell Death Mechanisms after Retinal Detachment: Implications for Photoreceptor Rescue. Ophthalmologica 2011, 226, 10–17. [Google Scholar] [CrossRef]
- Bellosillo, B.; Villamor, N.; López-Guillermo, A.; Marcé, S.; Bosch, F.; Campo, E.; Montserrat, E.; Colomer, D. Spontaneous and drug-induced apoptosis is mediated by conformational changes of Bax and Bak in B-cell chronic lymphocytic leukemia. Blood 2002, 100, 1810–1816. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, J.; Park, B.H.; Kinzler, K.W.; Vogelstein, B. Role of BAX in the Apoptotic Response to Anticancer Agents. Science 2000, 290, 989–992. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Moshynska, O.; Sankaran, K.; Viswanathan, S.; Sheridan, D.P. Association of a novel single nucleotide polymorphism, G(-248)A, in the 5′-UTR of BAX gene in chronic lymphocytic leukemia with disease progression and treatment resistance. Cancer Lett. 2002, 187, 199–205. [Google Scholar] [CrossRef]
- Quiroz-Casian, N.; Lozano-Giral, D.; Miranda-Duarte, A.; Montalvo, I.G.; Rodriguez-Loaiza, J.L.; Zenteno, J.C. Association study between polymorphisms of the p53 and lymphotoxin alpha (LTA) genes and the risk of proliferative vitreoretinopathy/retinal detachment in a mexican population. Retina 2018, 38, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Dumont, P.; Leu, J.I.; Della Pietra, A.C., 3rd; George, D.L.; Murphy, M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat. Genet. 2003, 33, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.H.; Khalil, A.; Rashid, H. Evaluation of the p53 Arg72Pro polymorphism and its association with cancer risk: A HuGE review and meta-analysis. Genet. Res. 2015, 97, e7. [Google Scholar] [CrossRef]
- Lei, H.; Rheaume, M.-A.; Cui, J.; Mukai, S.; Maberley, D.; Samad, A.; Matsubara, J.; Kazlauskas, A. A Novel Function of p53: A gatekeeper of retinal detachment. Am. J. Pathol. 2012, 181, 866–874. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, G.; Hu, J.; Peng, Q.; Zheng, Y. Id1-induced inhibition of p53 facilitates endothelial cell migration and tube formation by regulating the expression of beta1-integrin. Mol. Cell. Biochem. 2011, 357, 125–133. [Google Scholar] [CrossRef]
- Keser, V.; Khan, A.; Siddiqui, S.; Lopez, I.; Ren, H.; Qamar, R.; Nadaf, J.; Majewski, J.; Chen, R.; Koenekoop, R.K. The Genetic Causes of Nonsyndromic Congenital Retinal Detachment: A Genetic and Phenotypic Study of Pakistani Families. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1028–1036. [Google Scholar] [CrossRef]
- Ghiasvand, N.M.; Rudolph, D.D.; Mashayekhi, M.; Brzezinski, J.A.; Goldman, D.; Glaser, T. Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease. Nat. Neurosci. 2011, 14, 578–586. [Google Scholar] [CrossRef]
- Wang, S.W.; Kim, B.S.; Ding, K.; Wang, H.; Sun, D.; Johnson, R.L.; Klein, W.H.; Gan, L. Requirement for math5 in the development of retinal ganglion cells. Genes Dev. 2001, 15, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lv, B.; He, Z.; Zhou, Y.; Han, C.; Shi, G.; Gao, R.; Wang, C.; Yang, L.; Song, H.; et al. Lysyl Oxidase Polymorphisms and Susceptibility to Osteosarcoma. PLoS ONE 2012, 7, e41610. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, T.; Zou, X.; Yuan, L.; Hu, J.; Xu, Z.; Peng, L.; Zhang, C.; Zou, Y. Effects of Lysyl Oxidase Genetic Variants on the Susceptibility to Rhegmatogenous Retinal Detachment and Proliferative Vitreoretinopathy. Inflammation 2013, 36, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Chronopoulos, A.; Tang, A.; Beglova, E.; Trackman, P.C.; Roy, S. High Glucose Increases Lysyl Oxidase Expression and Activity in Retinal Endothelial Cells: Mechanism for Compromised Extracellular Matrix Barrier Function. Diabetes 2010, 59, 3159–3166. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Akiyama, H.; Iguchi, H.; Iyama, K.-I.; Miyamoto, M.; Ohsawa, K.; Nakamura, T. Molecular Cloning and Biological Activity of a Novel Lysyl Oxidase-related Gene Expressed in Cartilage. J. Biol. Chem. 2001, 276, 24023–24029. [Google Scholar] [CrossRef] [PubMed]
- Mäki, J.M.; Räsänen, J.; Tikkanen, H.; Sormunen, R.; Mäkikallio, K.; Kivirikko, K.I.; Soininen, R. Inactivation of the Lysyl Oxidase Gene Lox Leads to Aortic Aneurysms, Cardiovascular Dysfunction, and Perinatal Death in Mice. Circulation 2002, 106, 2503–2509. [Google Scholar] [CrossRef]
- Wilmarth, K.R.; Froines, J.R. In vitro and in vivo inhibition of lysyl oxidase byaminopropionitriles. J. Toxicol. Environ. Health Part A 1992, 37, 411–423. [Google Scholar] [CrossRef]
- Gilad, G.M.; Kagan, H.M.; Gilad, V.H. Evidence for increased lysyl oxidase, the extracellular matrix-forming enzyme, in Alzheimer’s disease brain. Neurosci. Lett. 2005, 376, 210–214. [Google Scholar] [CrossRef]
- Li, X.; He, J.; Sun, J. LOXL1 gene polymorphisms are associated with exfoliation syndrome/exfoliation glaucoma risk: An updated meta-analysis. PLoS ONE 2021, 16, e0250772. [Google Scholar] [CrossRef]
- Wiggs, J.L. Genomic Promise: Personalized medicine for ophthalmology. Arch. Ophthalmol. 2008, 126, 422–423. [Google Scholar] [CrossRef]
- Coral, K.; Angayarkanni, N.; Madhavan, J.; Bharathselvi, M.; Ramakrishnan, S.; Nandi, K.; Rishi, P.; Kasinathan, N.; Krishnakumar, S. Lysyl Oxidase Activity in the Ocular Tissues and the Role of LOX in Proliferative Diabetic Retinopathy and Rhegmatogenous Retinal Detachment. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4746–4752. [Google Scholar] [CrossRef] [Green Version]
- Schlötzer-Schrehardt, U. Molecular pathology of pseudoexfoliation syndrome/glaucoma—New insights from LOXL1 gene associations. Exp. Eye Res. 2009, 88, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Sadeqzadeh, E.; de Bock, C.; Thorne, R.F. Sleeping Giants: Emerging Roles for the Fat Cadherins in Health and Disease. Med. Res. Rev. 2013, 34, 190–221. [Google Scholar] [CrossRef] [PubMed]
- Krol, A.; Henle, S.J.; Goodrich, L.V. Fat3 and Ena/VASP proteins influence the emergence of asymmetric cell morphology in the developing retina. Development 2016, 143, 2172–2182. [Google Scholar] [CrossRef]
- Deans, M.R.; Krol, A.; Abraira, V.E.; Copley, C.O.; Tucker, A.F.; Goodrich, L.V. Control of Neuronal Morphology by the Atypical Cadherin Fat3. Neuron 2011, 71, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Schulze, J.; Hansen, U.; Ashwodt, T.; Keene, D.R.; Brunken, W.J.; Burgeson, R.E.; Bruckner, P.; Bruckner-Tuderman, L. A novel marker of tissue junctions, collagen XXII. J. Biol. Chem. 2004, 279, 22514–22521. [Google Scholar] [CrossRef] [PubMed]
- Ton, Q.V.; Leino, D.; Mowery, S.A.; Bredemeier, N.O.; Lafontant, P.J.; Lubert, A.; Gurung, S.; Farlow, J.; Foroud, T.M.; Broderick, J.; et al. Collagen COL22A1 maintains vascular stability and mutations in COL22A1 are potentially associated with intracranial aneurysms. Dis. Model. Mech. 2018, 11, dmm033654. [Google Scholar] [CrossRef] [PubMed]
- The Eye Disease Case-Control Study Group. Risk factors for idiopathic rhegmatogenous retinal detachment. Am. J. Epidemiol. 1993, 137, 749–757. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Yamashiro, K.; Miyake, M.; Oishi, M.; Akagi-Kurashige, Y.; Kumagai, K.; Nakata, I.; Nakanishi, H.; Oishi, A.; Gotoh, N.; et al. Comprehensive Replication of the Relationship between Myopia-Related Genes and Refractive Errors in a Large Japanese Cohort. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7343–7354. [Google Scholar] [CrossRef]
- Fan, Q.; Barathi, V.A.; Cheng, C.-Y.; Zhou, X.; Meguro, A.; Nakata, I.; Khor, C.-C.; Goh, L.-K.; Li, Y.-J.; Lim, W.; et al. Genetic Variants on Chromosome 1q41 Influence Ocular Axial Length and High Myopia. PLoS Genet. 2012, 8, e1002753. [Google Scholar] [CrossRef]
- Cheng, C.-Y.; Schache, M.; Ikram, M.K.; Young, T.L.; Guggenheim, J.A.; Vitart, V.; MacGregor, S.; Verhoeven, V.J.; Barathi, V.A.; Liao, J.; et al. Nine Loci for Ocular Axial Length Identified through Genome-wide Association Studies, Including Shared Loci with Refractive Error. Am. J. Hum. Genet. 2013, 93, 264–277. [Google Scholar] [CrossRef] [Green Version]
- Edwards, T.L.; Burt, B.O.; Black, G.C.; Perveen, R.; Kearns, L.S.; Staffieri, S.E.; Toomes, C.; Buttery, R.G.; Mackey, D. Familial retinal detachment associated with COL2A1 exon 2 and FZD4 mutations. Clin. Exp. Ophthalmol. 2012, 40, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Prokopenko, I.; Langenberg, C.; Florez, J.C.; Saxena, R.; Soranzo, N.; Thorleifsson, G.; Loos, R.J.F.; Manning, A.K.; Jackson, A.U.; Aulchenko, Y.; et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 2008, 41, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Visscher, P.M. Sizing up human height variation. Nat. Genet. 2008, 40, 489–490. [Google Scholar] [CrossRef] [PubMed]
- Myles, S.; Davison, D.; Barrett, J.; Stoneking, M.; Timpson, N. Worldwide population differentiation at disease-associated SNPs. BMC Med. Genom. 2008, 1, 22. [Google Scholar] [CrossRef] [PubMed]
- Frazer, K.A.; Murray, S.S.; Schork, N.J.; Topol, E.J. Human genetic variation and its contribution to complex traits. Nat. Rev. Genet. 2009, 10, 241–251. [Google Scholar] [CrossRef]
- MacArthur, J.; Bowler-Barnett, E.; Cerezo, M.; Gil, L.; Hall, P.; Hastings, E.; Junkins, H.; McMahon, A.; Milano, A.; Morales, J.; et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2016, 45, D896–D901. [Google Scholar] [CrossRef]
- Bodmer, W.; Bonilla, C. Common and rare variants in multifactorial susceptibility to common diseases. Nat. Genet. 2008, 40, 695–701. [Google Scholar] [CrossRef]
- Frayling, I.M.; Beck, N.E.; Ilyas, M.; Dove-Edwin, I.; Goodman, P.; Pack, K.; Bell, J.A.; Williams, C.B.; Hodgson, S.V.; Thomas, H.J.; et al. The APC variants I1307K and E1317Q are associated with colorectal tumors, but not always with a family history. Proc. Natl. Acad. Sci. USA 1998, 95, 10722–10727. [Google Scholar] [CrossRef]
- Majewski, J.; Schwartzentruber, J.; LaLonde, E.; Montpetit, A.; Jabado, N. What can exome sequencing do for you? J. Med. Genet. 2011, 48, 580–589. [Google Scholar] [CrossRef]
- Bansal, V.; Libiger, O.; Torkamani, A.; Schork, N.J. Statistical analysis strategies for association studies involving rare variants. Nat. Rev. Genet. 2010, 11, 773–785. [Google Scholar] [CrossRef] [Green Version]
- Petersen, B.-S.; Fredrich, B.; Hoeppner, M.P.; Ellinghaus, D.; Franke, A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet. 2017, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.-J.; Tavtigian, S.V.; Southey, M.C.; Goldgar, D.E. Design Considerations for Massively Parallel Sequencing Studies of Complex Human Disease. PLoS ONE 2011, 6, e23221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Authors | Mechanism |
---|---|---|
COL2A1 | Allan J Richards et al. [20], Sioe Lie Go et al. [21] | α-1 chain of type II collagen involved in tissue structural integrity. |
SS18 | Mirna Kirin et al. [22] | Restructuring of integrins involved in cellular adhesion possibly at the vitreoretinal interface |
CERS2 | Mirna Kirin et al. [22] | Ceramide Synthase 2 signalling molecules involved in Caspase Cascade Activation leading to photoreceptor apoptosis |
TIAM1 | Mirna Kirin et al. [22] | Cytoskeleton Remodelling |
TSTA3 | Mirna Kirin et al. [22] | Restructuring of integrins involved in cellular adhesion possibly at the vitreoretinal interface |
LDB2 | Mirna Kirin et al. [22] | Cytoskeleton Remodelling |
FAT3 | Thibaud S Boutin et al. [23] | Involved in cadherin production which is critical in the development of normal retinal architecture and cell migration |
TYR | Thibaud S Boutin et al. [23] | Involved in retinal structure development and homeostasis. |
ZC3H11B | Thibaud S Boutin et al. [23] | Influences axial length resulting high myopia |
COL22A1 | Thibaud S Boutin et al. [23] | α-1 chain of type XXII collagen involved in tissue structural integrity. |
BMP3 | Thibaud S Boutin et al. [23] | Associated with myopia in Caucasian populations but protective in Japanese Asian populations. |
PLCE1 | Thibaud S Boutin et al. [23] | Involved in retinal structure development and homeostasis |
LOXL1 | Thibaud S Boutin et al. [23], Honghua Yu et al. [42] | Development in Extracellular Matrix Production. |
BCL2 | Marilita M. Moschos et al. [28] | Role in the apoptotic cell death pathway of photoreceptors. |
BAX | Marilita M. Moschos et al. [28] | Role in the apoptotic cell death pathway of photoreceptors. |
P53 | Natalia Quiroz-Casian et al. [33] | Potential role in the regulation and expression of integrins and cellular adhesion molecules. |
ATOH7 | Vafa Keser et al. [38], Noor M Ghiasvand et al. [39] | Development and regulation of retinal architecture in particular retinal ganglion cells |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moledina, M.; Charteris, D.G.; Chandra, A. The Genetic Architecture of Non-Syndromic Rhegmatogenous Retinal Detachment. Genes 2022, 13, 1675. https://doi.org/10.3390/genes13091675
Moledina M, Charteris DG, Chandra A. The Genetic Architecture of Non-Syndromic Rhegmatogenous Retinal Detachment. Genes. 2022; 13(9):1675. https://doi.org/10.3390/genes13091675
Chicago/Turabian StyleMoledina, Malik, David G. Charteris, and Aman Chandra. 2022. "The Genetic Architecture of Non-Syndromic Rhegmatogenous Retinal Detachment" Genes 13, no. 9: 1675. https://doi.org/10.3390/genes13091675
APA StyleMoledina, M., Charteris, D. G., & Chandra, A. (2022). The Genetic Architecture of Non-Syndromic Rhegmatogenous Retinal Detachment. Genes, 13(9), 1675. https://doi.org/10.3390/genes13091675