Prenatal Diagnosis of Cystic Fibrosis by Celocentesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Celocentesis: Sampling of Celomatic Fluid
2.3. Fetal Cells Isolation
2.3.1. DNA Extraction
2.3.2. DNA Amplification
2.3.3. First Step of Amplification
2.3.4. Nested PCR
2.4. Nested PCR for CFTR and HBB Genes
2.5. Nested Quantitative Fluorescent PCR (QF-PCR) for Maternal Contamination Evaluation
3. Results
3.1. Sampling of Celomatic Fluid
3.2. Fetal Cell Isolation
3.3. Maternal Contamination Evaluation
3.4. CFTR Analysis
3.4.1. Case 1
3.4.2. Case 2
3.4.3. Case 3
3.4.4. Case 4
3.4.5. Case 5 CFTR Analysis
4. Discussion
4.1. Potentialities of Procedure
4.2. Limitations of Procedure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: http://www.orphadata.org/cgi-bin/epidemio.html (accessed on 5 March 2024).
- Sullivan, B.P.; Freedman, S.D. Cystic fibrosis. Lancet 2009, 373, 1891–1904. [Google Scholar] [CrossRef] [PubMed]
- Weatherall, D.J.; Clegg, J.B. Inherited haemoglobin disorders: An increasing global health problem. Bull. World Health Organ. 2001, 79, 704–712. [Google Scholar] [PubMed]
- Southern, K.W.; Munck, A.; Pollitt, R.; Travert, G.; Zanolla, L.; Dankert-Roelse, J.; Castellani, C.; ECFS CF Neonatal Screening Working Group. A survey of newborn screening for cystic fibrosis in Europe. J. Cyst. Fibros. 2007, 6, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Kosorok, M.R.; Wei, W.H.; Farrell, P.M. The incidence of cystic fibrosis. Stat. Med. 1996, 15, 449–462. [Google Scholar] [CrossRef]
- Rommens, J.M.; Iannuzzi, M.C.; Kerem, B.; Drumm, M.L.; Melmer, G.; Dean, M.; Rozmahel, R.; Cole, J.L.; Kennedy, D.; Hidaka, N.; et al. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 1989, 245, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Riordan, J.R.; Rommens, J.M.; Kerem, B.; Alon, N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.; Plavsic, N.; Chou, J.L.; et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 1989, 245, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Kerem, B.; Rommens, J.M.; Buchanan, J.A.; Markiewicz, D.; Cox, T.K.; Chakravarti, A.; Buchwald, M.; Tsui, L.C. Identification of the cystic fibrosis gene: Genetic analysis. Science 1989, 245, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.M.; Mishler, E.H.; Fost, N.C.; Wilfond, B.S.; Tluczek, A.; Gregg, R.G.; Bruns, W.T.; Hassemer, D.J.; Laessig, R.H. Current issues in neonatal screening for cystic fibrosis and implications of the CF gene discovery. Pediatr. Pulmonol. 1991, 7, S11–S18. [Google Scholar] [CrossRef] [PubMed]
- Scotet, V.; de Braekeleer, M.; Roussey, M.; Rault, G.; Parent, P.; Dagorne, M.; Journel, H.; Lemoigne, A.; Codet, J.P.; Catheline, M.; et al. Neonatal Screening for Cystic Fibrosis in Brittany, France: Assessment of 10 Years’ Experience and Impact on Prenatal Diagnosis. Lancet 2000, 356, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Angastiniotis, M.; Modell, B. Global epidemiology of hemoglobin disorders. Ann. N. Y. Acad. Sci. 1998, 850, 251–269. [Google Scholar] [CrossRef]
- Modell, B.; Darlison, M.; Birgens, H.; Cario, H.; Faustino, P.; Giordano, P.C.; Gulbis, B.; Hopmeier, P.; Lena-Russo, D.; Romao, L.; et al. Epidemiology of Haemoglobin Disorders in Europe: An overview. Scand. J. Clin. Lab. Investig. 2007, 67, 39–69. [Google Scholar] [CrossRef] [PubMed]
- Clegg, J.B.; Weatherall, D.J. Thalassemia and malaria: New insights into and an old problem. Proc. Assoc. Am. Phys. 1999, 111, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Loukopoulos, D. Current status of thalassaemia and the sickle cell syndromes in Greece. Semin. Hematol. 1996, 33, 76–86. [Google Scholar] [PubMed]
- Cao, A.; Furbetta, M.; Galanello, R.; Melis, M.A.; Angius, A.; Ximenes, A.; Scalas, M.T. Prevention of homozygous b thalassaemia by carrier screening and prenatal diagnosis in Sardinia. Am. J. Hum. Genet. 1981, 33, 592–605. [Google Scholar] [PubMed]
- Thein, S.L. β-thalassaemia. Baillieres Clin. Haematol. 1998, 11, 91–126. [Google Scholar] [CrossRef] [PubMed]
- Ferraresi, M.; Panzieri, D.L.; Leoni, S.; Cappellini, M.D.; Kattamis, A.; Motta, I. Therapeutic perspective for children and young adults living with thalassemia and sickle cell disease. Eur. J. Pediatr. 2023, 182, 2509–2519. [Google Scholar] [CrossRef] [PubMed]
- Zlotogora, J. Population programs for the detection of couples at risk for severe monogenic genetic diseases. Hum. Genet. 2009, 126, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Levy, B.; Stosic, M. Traditional Prenatal Diagnosis: Past to Present. Methods Mol. Biol. 2019, 1885, 3–22. [Google Scholar] [PubMed]
- Scotchman, E.; Shaw, J.; Paternoster, B.; Chandler, N.; Chitty, L.S. Non-invasive prenatal diagnosis and screening for monogenic disorders. Eur. J. Obs. Gynecol. Reprod. Biol. 2020, 253, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.L.; Hsiao, C.H.; Tseng, H.W.; Lee, T.P. Noninvasive prenatal diagnosis. Taiwan. J. Obs. Gynecol. 2015, 54, 343–349. [Google Scholar] [CrossRef]
- Lo, Y.M.; Hjelm, N.M.; Fidler, C.; Sargent, I.L.; Murphy, M.F.; Chamberlain, P.F.; Poon, P.M.; Redman, C.W.; Wainscoat, J.S. Prenatal diagnosis of fetal RhD status by molecular analysis of maternal plasma. N. Engl. J. Med. 1998, 339, 1734–1738. [Google Scholar] [CrossRef] [PubMed]
- Lench, N.; Barrett, A.; Fielding, S.; McKay, F.; Hill, M.; Jenkins, L.; White, H.; Chitty, L.S. The clinical implementation of non-invasive prenatal diagnosis for single-gene disorders: Challenges and progress made. Prenat. Diagn. 2013, 33, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Barrett, A.N.; Hua, R.; Ho, S.; Jun, L.; Chan, K.; Mei, Z.; Choolani, M. Non-invasive prenatal testing for fetal inheritance of maternal β-thalassaemia mutations using targeted sequencing and relative mutation dosage: A feasibility study. BJOG 2018, 125, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Ashoor, G.; Syngelaki, A.; Poon, L.C.; Rezende, J.C.; Nicolaides, K.H. Fetal fraction in maternal plasma cell-free DNA at 11–13 weeks’ gestation: Relation to maternal and fetal characteristics. Ultrasound Obs. Gynecol. 2013, 41, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Pacault, M.; Verebi, C.; Champion, M.; Orhant, L.; Perrier, A.; Girodon, E.; Leturcq, F.; Vidaud, D.; Férec, C.; Bienvenu, T.; et al. Non-invasive prenatal diagnosis of single gene disorders with enhanced relative haplotype dosage analysis for diagnostic implementation. PLoS ONE 2023, 24, e0280976. [Google Scholar] [CrossRef] [PubMed]
- Carbone, L.; Cariati, F.; Sarno, L.; Conforti, A.; Bagnulo, F.; Strina, I.; Pastore, L.; Maruotti, G.M.; Alviggi, C. Non-Invasive Prenatal Testing: Current Perspectives and Future Challenges. Genes 2020, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Carrera, P.; Lampasona, V.; Galbiati, S. New trend in non-invasive prenatal diagnosis. Clin. Chim. Acta 2015, 451, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Prior-de Castro, C.; Gómez-González, C.; Rodríguez-López, R.; Macher, H.C. Prenatal genetic diagnosis of monogenic diseases. Prenatal Diagnosis Commission and the Genetics Commission of the Spanish Society of Laboratory Medicine. Adv. Lab. Med. 2023, 24, 28–51. [Google Scholar]
- Firth, H.V.; Huson, S.M.; Boyd, P.A.; Chamberlain, P.F.; MacKenzie, I.; Morriss-Kay, G.M. Analysis of limb reduction defects in babies exposed to chorionic villus sampling. Lancet 1994, 343, 1069–1071. [Google Scholar] [CrossRef] [PubMed]
- Canadian Early and Mid trimester Amniocentesis Trial (CEMAT) Group. Randomised trial to assess safety and fetal outcome of early and midtrimester amniocentesis. Lancet 1998, 351, 242–247. [Google Scholar] [CrossRef]
- Jurkovic, D.; Jauniaux, E.; Campbell, S.; Pandya, P.; Nicolaides, K.H.; Cardy, D.L. Coelocentesis: A new technique for early prenatal diagnosis. Lancet 1993, 341, 1623–1624. [Google Scholar] [CrossRef] [PubMed]
- Giambona, A.; Makrydimas, G.; Leto, F.; Damiani, G.; Jakil, M.C.; Picciotto, F.; Renda, D.; Fiorino, R.; Renda, M.C.; Schillaci, G.; et al. Feasibility of DNA diagnosis of haemoglobinopathies on coelocentesis. Br. J. Haematol. 2011, 153, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Findlay, I.; Atkinson, G.; Chambers, M.; Quirke, P.; Campbell, J.; Rutherford, A. Rapid genetic diagnosis at 7–9 weeks gestation: Diagnosis of sex, single gene defects and DNA fingerprint from coelomic samples. Hum. Reprod. 1996, 11, 2548–2553. [Google Scholar] [CrossRef] [PubMed]
- Cruger, D.G.; Bruun-Petersen, G.; Kolvraa, S. Turner’s syndrome 45, X found by celocentesis. Prenat. Diagn. 1997, 17, 588–589. [Google Scholar] [CrossRef]
- Jouannic, J.M.; Costa, J.M.; Ernault, P.; Benifla, J.L. Very early prenatal diagnosis of genetic diseases based on coelomic fluid analysis: A feasibility study. Hum. Reprod. 2006, 21, 2185–2188. [Google Scholar] [CrossRef] [PubMed]
- Funayama, N.; Sato, Y.; Matsumoto, K.; Ogura, T.; Takahashi, Y. Coelom formation: Binary decision of the lateral plate mesoderm is controlled by the ectoderm. Development 1999, 126, 4129–4138. [Google Scholar] [CrossRef] [PubMed]
- Santolaya-Forgas, J.; De Leon-Luis, J.; D’Ancona, R.L.; Morgan, J.; Kauffman, R.P. Evolution of the amniotic sac and extracelomic space as seen by early ultrasound examination. Fetal Diagn. Ther. 2003, 18, 262–269. [Google Scholar] [CrossRef] [PubMed]
- De Leon-Luis, J.; Santolaya-Forgas, J. Catalog of solutes measured in paired extraembryonic celomic fluid and maternal serum samples. J. Reprod. Med. 2006, 518, 311–316. [Google Scholar]
- Aiello, D.; Giambona, A.; Leto, F.; Passarello, C.; Damiani, G.; Maggio, A.; Siciliano, C.; Napoli, A. Human coelomic fluid investigation: A MS-based analytical approach to prenatal screening. Sci. Rep. 2018, 8, 10973. [Google Scholar] [CrossRef] [PubMed]
- Giambona, A.; Damiani, G.; Leto, F.; Jakil, C.; Renda, D.; Cigna, V.; Maggio, A. Embryo-fetal erythroid cell selection from celomic fluid allows earlier prenatal diagnosis of hemoglobinopathies. Prenat. Diagn. 2016, 36, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Giambona, A.; Leto, F.; Damiani, G.; Jakil, C.; Cigna, V.; Schillaci, G.; Stampone, G.; Volpes, A.; Allegra, A.; Nicolaides, K.H.; et al. Identification of embryo fetal cells in celomic fluid using morphological and short-tandem repeats analysis. Prenat. Diagn. 2016, 36, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Giambona, A.; Leto, F.; Passarello, C.; Vinciguerra, M.; Cigna, V.; Schillaci, G.; Picciotto, F.; Lauricella, S.; Nicolaides, K.H.; Makrydimas, G.; et al. Fetal aneuploidy diagnosed at celocentesis for early prenatal diagnosis of congenital hemoglobinopathies. Acta Obs. Gynecol. Scand. 2018, 97, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Makrydimas, G.; Damiani, G.; Jakil, C.; Cigna, V.; Orlandi, M.; PicGiambona, A.; Leto, F.; Cassarà, F.; Tartaglia, V.; Campisi, R.; et al. Celocentesis for early prenatal diagnosis of hemoglobinopathy. Ultrasound Obs. Gynecol. 2020, 56, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, H.; Forouzandeh, M.; Rasaee, M.J.; Rahbarizadeh, F. Modified salting-out method: High-yield, high-quality genomic DNA extraction from whole blood using laundry detergent. J. Clin. Lab. Anal. 2005, 19, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Cirigliano, V.; Voglino, G.; Canadas, M.P.; Marongiu, A.; Ejarque, M.; Ordonez, E.; Adinolfi, M. Rapid prenatal diagnosis of common chromosome aneuploidies by QF-PCR: Assessment on 18,000 consecutive clinical samples. Mol. Hum. Reprod. 2004, 10, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Giambona, A.; Vinciguerra, M.; Leto, F.; Cassarà, F.; Tartaglia, V.; Cigna, V.; Orlandi, E.; Picciotto, F.; Al Qahtani, N.H.; Alsulmi, E.S.; et al. Celomic Fluid: Laboratory Workflow for Prenatal Diagnosis of Monogenic Diseases. Mol. Diagn. Ther. 2022, 26, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Giambona, A.; Vinciguerra, M.; Leto, F.; Cassarà, F.; Cucinella, G.; Cigna, V.; Orlandi, E.; Piccione, M.; Picciotto, F.; Maggio, A. Very early prenatal diagnosis of Cockayne’s syndrome by coelocentesis. J. Obs. Gynaecol. 2022, 42, 1524–1531. [Google Scholar] [CrossRef]
- Giambona, A.; Leto, F.; Cassarà, F.; Tartaglia, V.; Marchese, G.; Orlandi, E.; Cigna, V.; Picciotto, F.; Maggio, A.; Vinciguerra, M. Early prenatal diagnosis of Hb Lepore Boston-Washington and β-thalassemia on fetal celomatic DNA. Int. J. Lab. Hematol. 2022, 44, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Giambona, A.; Leto, F.; Cassarà, F.; Tartaglia, V.; Campisi, R.; Campisi, C.; Cigna, V.; Mugavero, E.; Cucinella, G.; Orlandi, E.; et al. Celocentesis for Early Prenatal Diagnosis in Couples at-Risk for β-Thalassemia and Sicilian (δβ)0-Thalassemia. Hemoglobin 2022, 46, 297–302. [Google Scholar] [CrossRef]
Sampling Week | Sampling Amount (μL) | Paternal Mutation | Maternal Mutation | Fetal Genotype | Fetal Condition | Post Celocentesis Control | Voluntary Interruption of Pregnancy | |
---|---|---|---|---|---|---|---|---|
CASE 1 | 9+0 | 1250 | CFTR:c.1521_1523delCTT | CFTR:c.1521_1523delCTT | CFTR:c.[1521_1523delCTT];[1521_1523delCTT] | Affected of cystic fibrosis | NO | YES at 10+0 |
CASE 2 | 8+4 | 1100 | CFTR:c.350G>A | CFTR:c.1521_1523delCTT | CFTR:c.[350G>A];[1521_1523delCTT] | Affected of cystic fibrosis | YES on abortive tissue | YES at 9+5 |
HBB:C.92-21G>A | HBB:c.-137C>G | HBB:c.[92-21G>A];[=] | healthy carrier of β-thalassemia | |||||
CASE 3 | 8+2 | 1250 | CFTR:c.3230T>C | CFTR:c.1521_1523delCTT | CFTR:c.[3230T>C];[1521_1523delCTT] | Affected of cystic fibrosis | YES on abortive tissue | YES at 9+4 |
CASE 4 | 8+5 | 1100 | CFTR:c.3909C>G | CFTR:c.1657C>T | CFTR:c.[3909C>G];[1657C>T] | Affected of cystic fibrosis | YES on abortive tissue | YES at 9+6 |
CASE 5 | 9+3 | 1150 | CFTR:c.1624G>T | CFTR:c.1521_1523delCTT | CFTR:c.[1521_1523delCTT];[=] | healthy carrier of cystic fibrosis | NO | Pregnancy on going |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giambona, A.; Vinciguerra, M.; Leto, F.; Cassarà, F.; Marchese, G.; Cigna, V.; Orlandi, E.; Mugavero, M.E.; Cucinella, G.; Maggio, A.; et al. Prenatal Diagnosis of Cystic Fibrosis by Celocentesis. Genes 2024, 15, 662. https://doi.org/10.3390/genes15060662
Giambona A, Vinciguerra M, Leto F, Cassarà F, Marchese G, Cigna V, Orlandi E, Mugavero ME, Cucinella G, Maggio A, et al. Prenatal Diagnosis of Cystic Fibrosis by Celocentesis. Genes. 2024; 15(6):662. https://doi.org/10.3390/genes15060662
Chicago/Turabian StyleGiambona, Antonino, Margherita Vinciguerra, Filippo Leto, Filippo Cassarà, Giuseppe Marchese, Valentina Cigna, Emanuela Orlandi, Maria Elena Mugavero, Gaspare Cucinella, Aurelio Maggio, and et al. 2024. "Prenatal Diagnosis of Cystic Fibrosis by Celocentesis" Genes 15, no. 6: 662. https://doi.org/10.3390/genes15060662
APA StyleGiambona, A., Vinciguerra, M., Leto, F., Cassarà, F., Marchese, G., Cigna, V., Orlandi, E., Mugavero, M. E., Cucinella, G., Maggio, A., Termini, L., Makrydimas, G., D’Alcamo, E., & Picciotto, F. (2024). Prenatal Diagnosis of Cystic Fibrosis by Celocentesis. Genes, 15(6), 662. https://doi.org/10.3390/genes15060662