Assessing Falling Number Stability Increases the Genomic Prediction Ability of Pre-Harvest Sprouting Resistance in Common Winter Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trials
2.2. Phenotyping
2.3. Genotyping
2.4. Statistical Analysis
2.5. Cross-Validation
3. Results
3.1. Phenotypic Analysis
3.2. Genotypic Analysis
3.3. Predictive Abilities for the PHS Traits within and across Seasons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Derera, N.F. The effects of preharvest rain. In Preharvest Field Sprouting Cereals; Derera, N.F., Ed.; CRC Press: Boca Raton, FL, USA, 1989; pp. 1–14. [Google Scholar]
- Tai, L.; Wang, H.J.; Xu, X.J.; Sun, W.H.; Ju, L.; Liu, W.T.; Li, W.Q.; Sun, J.Q.; Chen, K.M. Pre-harvest sprouting in cereals: Genetic and biochemical mechanisms. J. Exp. Bot. 2021, 72, 2857–2876. [Google Scholar] [CrossRef] [PubMed]
- Mares, D.J.; Mrva, K. Wheat grain pre-harvest sprouting and late maturity α-amylase. Planta 2014, 240, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ma, Y.Z.; Xu, Z.S.; Chen, X.M.; He, Z.H.; Yu, Z.; Wilkinson, M.; Jones, H.D.; Shewry, P.R.; Xia, L.Q. Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. J. Exp. Bot. 2007, 58, 2863–2871. [Google Scholar] [CrossRef] [PubMed]
- Mares, D.; Himi, E. The role of TaMYB10-A1 of wheat (Triticum aestivum L.) in determining grain coat colour and dormancy phenotype. Euphytica 2021, 217, 89. [Google Scholar] [CrossRef]
- Himi, E.; Kurihara-Yonemoto, S.; Abe, F.; Takahashi, H.; Tanaka, K.; Matsuura, T.; Maekawa, M.; Sasaki, T.; Rikiishi, K. Tamyb-D1 restores red grain color and increases grain dormancy via suppressing expression of TaLTP2.128, non-specific lipid transfer protein in wheat. Euphytica 2024, 220, 16. [Google Scholar] [CrossRef]
- Ashikawa, I.; Abe, F.; Nakamura, S. Ectopic expression of wheat and barley DOG1-like genes promotes seed dormancy in Arabidopsis. Plant Sci. 2010, 179, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Ashikawa, I.; Mori, M.; Nakamura, S.; Abe, F.A. A transgenic approach to controlling wheat seed dormancy level by using Triticeae DOG1-like genes. Transgenic Res. 2014, 23, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Abe, F.; Kawahigashi, H.; Nakazono, K.; Tagiri, A.; Matsumoto, T.; Utsugi, S.; Ogawa, T.; Handa, H.; Ishida, H.; et al. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 2011, 23, 3215–3229. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.B.; Sehgal, S.K.; Li, J.R.; Lin, M.; Trick, H.N.; Yu, J.M.; Gill, B.S.; Bai, G.H. Cloning and characterization of a critical regulator for pre-harvest sprouting in wheat. Genetics 2013, 195, 263–273. [Google Scholar] [CrossRef]
- Mares, D.J.; Mrva, K. Mapping quantitative trait loci associated with variation in grain dormancy in Australian wheat. Aust. J. Agric. Res. 2001, 52, 1257–1265. [Google Scholar] [CrossRef]
- Torada, A.; Koike, M.; Ogawa, T.; Takenouchi, Y.; Tadamura, K.; Wu, J.; Matsumoto, T.; Kawaura, K.; Ogihara, Y. A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase. Curr. Biol. 2016, 26, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Shorinola, O.; Balcárková, B.; Hyles, J.; Tibbits, J.F.G.; Hayden, M.J.; Holušova, K.; Valárik, M.; Distelfeld, A.; Torada, A.; Barrero, J.M.; et al. Haplotype Analysis of the Pre-harvest Sprouting Resistance Locus Phs-A1 Reveals a Causal Role of TaMKK3-A in Global Germplasm. Front. Plant Sci. 2017, 8, 1555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Miao, X.L.; Xia, X.C.; He, Z.H. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theor. Appl. Genet. 2014, 127, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Xia, X.C.; He, Z.H. The seed dormancy allele TaSdr-A1a associated with pre-harvest sprouting tolerance is mainly present in Chinese wheat landraces. Theor. Appl. Genet. 2017, 130, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Min, X.; Shan, S.; Jiang, H.; Cao, J.; Li, L.; Wang, J.; Wang, S.; Zhu, Y.; Lu, J.; et al. Isolation and characterization of TaQsd1 genes for period of dormancy in common wheat (Triticum aestivum L.). Mol. Breed. 2019, 39, 150–165. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, M.; Wang, Z.; Zhao, X.; Han, B.; Xing, Y.; Wang, M.; Yang, Y. A 4-bp deletion in the 5′UTR of TaAFP-B is associated with seed dormancy in common wheat (Triticum aestivum L.). BMC Plant Biol. 2019, 19, 349. [Google Scholar] [CrossRef] [PubMed]
- Vetch, J.M.; Stougaard, R.N.; Martin, J.M.; Giroux, M.J. Review: Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.). Plant Sci. 2019, 281, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Mohler, V.; Albrecht, T.; Mrva, K.; Schweizer, G.; Hartl, L. Genetic analysis of falling number in three bi-parental common winter wheat populations. Plant Breed. 2014, 133, 448–453. [Google Scholar] [CrossRef]
- Albrecht, T.; Oberforster, M.; Kempf, H.; Ramgraber, L.; Schacht, J.; Kazman, E.; Zechner, E.; Neumayer, A.; Hartl, L.; Mohler, V. Genome-wide association mapping of preharvest sprouting resistance in a diversity panel of European winter wheats. J. Appl. Genet. 2015, 56, 277–285. [Google Scholar] [CrossRef]
- Albrecht, T.; Oberforster, M.; Hartl, L.; Mohler, V. Genome-based prediction of falling number stability in wheat breeding material. In Proceeding of the 13th International Wheat Genetics Symposium, Tulln, Austria, 23–28 April 2017; p. 459. [Google Scholar]
- Börner, A.; Nagel, M.; Agacka-Moldoch, M.; Gierke, P.U.; Oberforster, M.; Albrecht, T.; Mohler, V. QTL analysis of falling number and seed longevity in wheat (Triticum aestivum L.). J. Appl. Genet. 2018, 59, 35–42. [Google Scholar] [CrossRef]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Albrecht, M.T. Genome-Based Prediction of Testcross Performance in Maize (Zea mays L.). Ph.D. Dissertation, Technical University of Munich, Munich, Germany, 19 January 2015. Available online: https://nbn-resolving.org/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20150119-1227384-0-0 (accessed on 11 June 2024).
- Rasul, G.; Humphreys, D.G.; Brûlé-Babel, A.; McCartney, C.A.; Knox, R.E.; DePauw, R.M.; Somers, D.J. Mapping QTLs for pre-harvest sprouting traits in the spring wheat cross ‘RL4452/AC Domain’. Euphytica 2009, 168, 363–378. [Google Scholar] [CrossRef]
- Schachschneider, R.; Heinze, M. Neue Methode zur Ermittlung der Fallzahlstabilität. Praxisnah 2009, 3, 6–7. [Google Scholar]
- Wimmer, V.; Albrecht, T.; Auinger, H.J.; Schön, C.C. Synbreed: A framework for the analysis of genomic prediction data using R. Bioinformatics 2012, 28, 2086–2087. [Google Scholar] [CrossRef]
- Mohler, V.; Schmolke, M.; Paladey, E.; Seling, S.; Hartl, L. Association analysis of Puroindoline-D1 and Puroindoline b-2 loci with 13 quality traits in European winter wheat (Triticum aestivum L.). J. Cereal Sci. 2012, 56, 623–628. [Google Scholar] [CrossRef]
- International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 2014, 345, 1251788. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Wang, L.; Rimbert, H.; Rodriguez, J.C.; Deal, K.R.; De Oliveira, R.; Choulet, F.; Keeble-Gagnère, G.; Tibbits, J.; Rogers, J.; et al. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J. 2021, 107, 303–314. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 13 June 2024).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R.V. Least-Squares Means: The R Package Lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, S.; Sandhu, K.S.; Kumar, N.; Saripalli, G.; Prakash, R.; Nambardar, A.; Sharma, H.; Gautam, T.; Balyan, H.S.; et al. GWAS and Genomic Prediction for Pre-Harvest Sprouting Tolerance in Spring Wheat. Mol. Breed. 2023, 43, 14. [Google Scholar] [CrossRef]
- Bernardo, R. Genomewide Selection When Major Genes Are Known. Crop Sci. 2014, 54, 68. [Google Scholar] [CrossRef]
- Moore, J.K.; Manmathan, H.K.; Anderson, V.A.; Poland, J.A.; Morris, C.F.; Haley, S.D. Improving genomic prediction for pre-harvest sprouting tolerance in wheat by weighting large-effect quantitative trait loci. Crop Sci. 2017, 57, 1315–1324. [Google Scholar] [CrossRef]
- Ogutu, J.O.; Piepho, H.-P.; Schulz-Streeck, T. A comparison of random forests, boosting and support vector machines for genomic selection. BMC Proc. 2011, 5, S11. [Google Scholar] [CrossRef] [PubMed]
- Ogutu, J.O.; Schulz-Streeck, T.; Piepho, H.P. Genomic selection using regularized linear regression models: Ridge regression, lasso, elastic net and their extensions. BMC Proc. 2012, 6, S10. [Google Scholar] [CrossRef]
- Technow, F.; Melchinger, A.E. Genomic prediction of dichotomous traits with Bayesian logistic models. Theor. Appl. Genet. 2013, 125, 1133–1143. [Google Scholar] [CrossRef]
- Montesinos-López, O.A.; Montesinos-López, A.; Pérez-Rodríguez, P.; Barrón-López, J.A.; Martini, J.W.R.; Fajardo-Flores, S.B.; Gaytan-Lugo, L.S.; Santana-Mancilla, P.C.; Crossa, J. A Review of Deep Learning Applications for Genomic Selection. BMC Genom. 2021, 22, 19. [Google Scholar] [CrossRef] [PubMed]
- Muqaddasi, Q.H.; Muqaddasi, R.K.; Ebmeyer, E.; Korzun, V.; Argillier, O.; Mirdita, V.; Reif, J.C.; Ganal, M.W.; Röder, M.S. Genetic control and prospects of predictive breeding for European winter wheat’s Zeleny sedimentation values and Hagberg-Perten falling number. Theor. Appl. Genet. 2023, 136, 229. [Google Scholar] [CrossRef]
- Michel, S.; Ametz, C.; Gungor, H.; Akgol, B.; Epure, D.; Grausgruber, H.; Loschenberger, F.; Buerstmayr, H. Genomic assisted selection for enhancing line breeding: Merging genomic and phenotypic selection in winter wheat breeding programs with preliminary yield trials. Theor. Appl. Genet. 2017, 130, 363–376. [Google Scholar] [CrossRef]
- Dallinger, H.G.; Loschenberger, F.; Azrak, N.; Ametz, C.; Michel, S.; Bürstmayr, H. Genome-wide association mapping for pre-harvest sprouting in European winter wheat detects novel resistance QTL, pleiotropic effects, and structural variation in multiple genomes. Plant Genome 2023, 17, e20301. [Google Scholar] [CrossRef]
- Cabral, A.L.; Jordan, M.C.; McCartney, C.A.; You, F.M.; Humphreys, D.G.; MacLachlan, R.; Pozniak, C.J. Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat (Triticum aestivum L.). BMC Plant Biol. 2014, 14, 340. [Google Scholar] [CrossRef] [PubMed]
- Fries, R.; Pausch, H. Individuelle Genomsequenzierung von Nutztieren—Auf dem Weg zur genomischen Selektion 2.0. Züchtungskunde 2011, 83, 371–381. [Google Scholar]
- Zhu, Y.; Lin, Y.; Fan, Y.; Wang, Y.; Li, P.; Xiong, J.; He, Y.; Cheng, S.; Ye, X.; Wang, F.; et al. CRISPR/Cas9-mediated restoration of Tamyb10 to create pre-harvest sprouting-resistant red wheat. Plant Biotechnol. J. 2023, 21, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.P.J.; Hu, Y.; Li, X.; Morris, C.F.; Delwiche, S.; Carter, A.H.; Steber, C.; Zhang, Z. An independent validation reveals the potential to predict Hagberg–Perten falling number using spectrometers. Plant Phenome J. 2023, 6, e20070. [Google Scholar] [CrossRef]
QTL Marker | Identifier | TCAP Code | Chromosome | Position (bp) a | Reference |
---|---|---|---|---|---|
PHS_1A | wsnp_Ex_c14866_22995097 | IWA1952 | 1A | 344966381 | [20] |
PHS_1D_1 | wPt-3790 | 1D | 20655831 | [20] | |
PHS_1D_2 | Kukri_c12758_2101 | IWB40888 | 1D | 412771500 | [21] |
PHS_2B_3 | BS00009060_51 | 2B | 747821525 | [21] | |
PHS_2B_5 | wsnp_Ex_rep_c103064_88104690 | IWA5081 | 2B | 759573938 | [21] |
PHS_3A_1 | CAP12_c1860_280 | IWB13256 | 3A | 8687027 | TaMFT-3A; [21] |
PHS_4A_1 | Kukri_c12563_52 | IWB40846 | 4A | 604639304 | Phs-A1; [21] |
PHS_4A_2 | BS00072025_51 | 4A | 604570739 | Phs-A1; [21] | |
PHS_4A_3 | RAC875_c21369_425 | IWA7058 | 4A | 605271799 | Phs-A1; [21] |
PHS_5A | wsnp_Ex_c18941_27840714 | IWA2363 | 5A | 548346335 | [21] |
PHS_5B_1 | wsnp_Ex_rep_c108314_91592072 | IWA5166 | 5B | 339326692 | [20] |
PHS_5B_2 | wsnp_Ku_c8270_14083963 | IWA7318 | 5B | 324715026 | [19] |
Pinb-D1b | Pinb-D1b | 5D | 3622739 | [28] | |
Pinb-D1c | Pinb-D1c | 5D | 3622739 | [28] | |
Pinb-D1d | Pinb-D1d | 5D | 3622739 | [28] | |
PHS_5D_3 | Kukri_rep_c73094_348 | IWB50247 | 5D | 281399038 | [21] |
PHS_7A | wsnp_Ku_c3929_7189422 | IWA7005 | 7A | 737404987 | [19] |
Environment | Repeatability rep² | ||||
---|---|---|---|---|---|
LS | GI | FN1 | FN2 | FNS | |
Season 2014/2015 | |||||
Rosenthal | - | 0.747 | 0.605 | 0.859 | 0.816 |
Feldkirchen | 0.690 | 0.386 | 0.676 | 0.712 | 0.757 |
Herzogenaurach | 0.547 | 0.769 | 0.652 | 0.796 | 0.725 |
Zwettl | 0.741 | 0.779 | - | 0.878 | 0.758 |
Fuchsenbigl | 0.700 | 0.547 | - | 0.743 | 0.611 |
Heritability h² | 0.671 | 0.684 | 0.656 | 0.764 | 0.848 |
Season 2015/2016 | |||||
Rosenthal | 0.573 | 0.827 | 0.596 | 0.235 | 0.349 |
Feldkirchen | 0.668 | 0.833 | - | 0.748 | 0.924 |
Herzogenaurach | 0.843 | 0.845 | 0.889 | 0.661 | 0.764 |
Zwettl | 0.799 | 0.847 | - | 0.879 | 0.954 |
Fuchsenbigl | 0.859 | 0.833 | - | 0.798 | 0.914 |
Heritability h² | 0.643 | 0.812 | 0.584 | 0.782 | 0.876 |
Prediction across Seasons | LS | GI | FN1 | FN2 | FNS | |||
ES | TS | NES | NTS | |||||
CS15 + VS15 | CS16 | 298 | 199 | 0.615 | 0.747 | 0.732 | 0.558 | 0.763 |
CS16 + VS16 | CS15 | 298 | 199 | 0.548 | 0.684 | 0.739 | 0.650 | 0.732 |
CS15 + VS15 | VS16 | 298 | 99 | 0.467 | 0.479 | 0.414 | 0.501 | 0.548 |
CS16 + VS16 | VS15 | 298 | 99 | 0.371 | 0.216 | 0.500 | 0.393 | 0.505 |
Correlation between seasons | ||||||||
OBV_CS15 | OBV_CS16 | 199 | 199 | 0.579 | 0.730 | 0.705 | 0.613 | 0.751 |
GEBV_CS15 | GEBV_CS16 | 199 | 199 | 0.630 | 0.817 | 0.796 | 0.642 | 0.778 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albrecht, T.; Oberforster, M.; Hartl, L.; Mohler, V. Assessing Falling Number Stability Increases the Genomic Prediction Ability of Pre-Harvest Sprouting Resistance in Common Winter Wheat. Genes 2024, 15, 794. https://doi.org/10.3390/genes15060794
Albrecht T, Oberforster M, Hartl L, Mohler V. Assessing Falling Number Stability Increases the Genomic Prediction Ability of Pre-Harvest Sprouting Resistance in Common Winter Wheat. Genes. 2024; 15(6):794. https://doi.org/10.3390/genes15060794
Chicago/Turabian StyleAlbrecht, Theresa, Michael Oberforster, Lorenz Hartl, and Volker Mohler. 2024. "Assessing Falling Number Stability Increases the Genomic Prediction Ability of Pre-Harvest Sprouting Resistance in Common Winter Wheat" Genes 15, no. 6: 794. https://doi.org/10.3390/genes15060794
APA StyleAlbrecht, T., Oberforster, M., Hartl, L., & Mohler, V. (2024). Assessing Falling Number Stability Increases the Genomic Prediction Ability of Pre-Harvest Sprouting Resistance in Common Winter Wheat. Genes, 15(6), 794. https://doi.org/10.3390/genes15060794