Ethical Aspects of Human Genome Research in Sports—A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Evolution and Athletic Talent and Identification and Ethical Challenges in Sports Genetics
3.2. Human Rights and Legal Frameworks
3.3. The Role of International Declarations: The Human Genome Project and Its Ethical Implications
3.4. Ethical Considerations on Genetic Doping in Sports
3.5. Ethical Debate on Performance Enhancement
3.6. Ensuring Informed Consent and Data Protection
Genetic Data Sharing (GDS)
3.7. Patentability and Intellectual Property Issues
3.8. Ethical Considerations Surrounding the Use of Genetic Technologies in Sports
3.9. Human Genome Research in Sports: Implications of Genetic Advancements in Athletics and the Integrity of Sports
3.10. Seeking New Study Areas Not Yet Addressed
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baker, J.; Schorer, J.; Wattie, N. Compromising Talent: Issues in Identifying and Selecting Talent in Sport. Quest 2018, 70, 48–63. [Google Scholar] [CrossRef]
- Zhao, J.; Xiang, C.; Kamalden, T.F.T.; Dong, W.; Luo, H.; Ismail, N. Differences and relationships between talent detection, identification, development and selection in sport: A systematic review. Heliyon 2024, 10, e27543. [Google Scholar] [CrossRef] [PubMed]
- Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Genes and Athletic Performance: The 2023 Update. Genes 2023, 14, 1235. [Google Scholar] [CrossRef] [PubMed]
- Ginevičienė, V.; Utkus, A.; Pranckevičienė, E.; Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Perspectives in Sports Genomics. Biomedicines 2022, 10, 298. [Google Scholar] [CrossRef]
- Ahmetov, I.I.; John, G.; Semenova, E.A.; Hall, E.C.R. Genomic predictors of physical activity and athletic performance. Adv. Genet. 2024, 111, 311–408. [Google Scholar] [CrossRef]
- Naureen, Z.; Perrone, M.; Paolacci, S.; Maltese, P.E.; Dhuli, K.; Kurti, D.; Dautaj, A.; Miotto, R.; Casadei, A.; Fioretti, B.; et al. Genetic test for the personalization of sport training. Acta Biomed. 2020, 91, e2020012. [Google Scholar] [CrossRef]
- Aasdahl, L.; Nilsen, T.I.L.; Meisingset, I.; Nordstoga, A.L.; Evensen, K.A.I.; Paulsen, J.; Mork, P.J.; Skarpsno, E.S. Genetic variants related to physical activity or sedentary behaviour: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 15. [Google Scholar] [CrossRef]
- John, R.; Dhillon, M.S.; Dhillon, S. Genetics and the Elite Athlete: Our Understanding in 2020. Indian J. Orthop. 2020, 54, 256–263. [Google Scholar] [CrossRef]
- Jones, N.; Kiely, J.; Suraci, B.; Collins, D.J.; de Lorenzo, D.; Pickering, C.; Grimaldi, K.A. A genetic-based algorithm for personalized resistance training. Biol. Sport 2016, 33, 117–126. [Google Scholar] [CrossRef]
- Dlamini, S.B.; Saunders, C.J.; Laguette, M.J.N.; Gibbon, A.; Gamieldien, J.; Collins, M.; September, A.V. Application of an in silico approach identifies a genetic locus within ITGB2, and its interactions with HSPG2 and FGF9, to be associated with anterior cruciate ligament rupture risk. Eur. J. Sport Sci. 2023, 23, 2098–2108. [Google Scholar] [CrossRef]
- Guest, N.S.; Horne, J.; Vanderhout, S.M.; El-Sohemy, A. Sport nutrigenomics: Personalized nutrition for athletic performance. Front. Nutr. 2019, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Reynoso-Sanchez, L.F. Tech-Driven Talent Identification in Sports: Advancements and Implications. Heal. Nexus 2023, 1, 77–82. [Google Scholar] [CrossRef]
- Varillas-Delgado, D.; Del Coso, J.; Gutiérrez-Hellín, J.; Aguilar-Navarro, M.; Muñoz, A.; Maestro, A.; Morencos, E. Genetics and sports performance: The present and future in the identification of talent for sports based on DNA testing. Eur. J. Appl. Physiol. 2022, 122, 1811–1830. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.I.; Hall, E.C.R.; Semenova, E.A.; Pranckevičienė, E.; Ginevičienė, V. Advances in sports genomics. Adv. Clin. Chem. 2022, 107, 215–263. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. Can genetic testing predict talent?A case study of five elite athletes. Int. J. Sports Physiol. Perform. 2021, 16, 429–434. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. The frequency of, and attitudes towards, genetic testing amongst athletes and support staff. Perform. Enhanc. Heal. 2021, 8, 100184. [Google Scholar] [CrossRef]
- Varley, I.; Patel, S.; Williams, A.G.; Hennis, P.J. The current use, and opinions of elite athletes and support staff in relation to genetic testing in elite sport within the UK. Biol. Sport 2018, 35, 13–19. [Google Scholar] [CrossRef]
- Loland, S. Against Genetic Tests for Athletic Talent: The Primacy of the Phenotype. Sport. Med. 2015, 45, 1229–1233. [Google Scholar] [CrossRef]
- Webborn, N.; Williams, A.; McNamee, M.; Bouchard, C.; Pitsiladis, Y.; Ahmetov, I.; Ashley, E.; Byrne, N.; Camporesi, S.; Collins, M.; et al. Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement. Br. J. Sport. Med. 2015, 49, 1486–1491. [Google Scholar] [CrossRef]
- Camporesi, S.; McNamee, M.J. Ethics, genetic testing, and athletic talent: Children’s best interests, and the right to an open (athletic) future. Physiol. Genom. 2016, 48, 191–195. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J.; Grgic, J.; Lucia, A.; Del Coso, J. Can genetic testing identify talent for sport? Genes 2019, 10, 972. [Google Scholar] [CrossRef] [PubMed]
- Vlahovich, N.; Fricker, P.A.; Brown, M.A.; Hughes, D. Ethics of genetic testing and research in sport: A position statement from the Australian Institute of Sport. Br. J. Sports Med. 2017, 51, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Tournas, L.; Johnson, W.G.; Bowman, D.M. Germline doping for heightened performance in sport. Aust. New Zeal. Sport. Law J. 2019, 12, 1–24. [Google Scholar]
- Pandey, P.; Balekar, N. Target-specific delivery: An insight. In Drug Targeting and Stimuli Sensitive Drug Delivery Systems; Grumezescu, A.M., Ed.; William Andrew Publishing: Bucharest, Romania, 2018; pp. 117–154. [Google Scholar]
- Prakash, D. Genetic Manipulation to Improve Athletes Performance—A Critical Review. J. Genet. Eng. Biotechnol. Res. 2020, 2, 36–40. [Google Scholar]
- Petranović, M.Z.; Erhardt, J.; Škerbić, M.M.; Jermen, N.; Korać, P. Genome editing and selection based on genes associated with sports athletic performance—Some bio-ethical issues. Synth. Philos. 2019, 34, 323–340. [Google Scholar] [CrossRef]
- Patel, S.; Varley, I. Exploring the Regulation of Genetic Testing in Sport. Entertain. Sport. Law J. 2019, 17, 1–13. [Google Scholar] [CrossRef]
- Hood, L.; Rowen, L. The human genome project: Big science transforms biology and medicine. Genome Med. 2013, 5, 79. [Google Scholar] [CrossRef]
- Theissinger, K.; Fernandes, C.; Formenti, G.; Bista, I.; Berg, P.R.; Bleidorn, C.; Bombarely, A.; Crottini, A.; Gallo, G.R.; Godoy, J.A.; et al. How genomics can help biodiversity conservation. Trends Genet. 2023, 39, 545–559. [Google Scholar] [CrossRef]
- Gaydarska, H.; Takashima, K.; Shahrier, S.; Raz, A.; Minari, J. The interplay of ethics and genetic technologies in balancing the social valuation of the human genome in UNESCO declarations. Eur. J. Hum. Genet. 2024, 32, 725–730. [Google Scholar] [CrossRef]
- Benatar, D. Bioethics and health and human rights: A critical view. J. Med. Ethics 2006, 32, 17–20. [Google Scholar] [CrossRef]
- Holm, S. Bioethics Without Theory? Camb. Q. Healthc. Ethics 2024, 33, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.M.; Ossorio, P.N.; Berry, S.A.; Greely, H.T.; McGuire, A.L.; Penny, M.A.; Terry, S.F. Integrating Rules for Genomic Research, Clinical Care, Public Health Screening and DTC Testing: Creating Translational Law for Translational Genomics. J. Law Med. Ethics 2020, 48, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Hillebrecht, C. Implementing International Human Rights Law at Home: Domestic Politics and the European Court of Human Rights. Hum. Rights Rev. 2012, 13, 279–301. [Google Scholar] [CrossRef]
- Constantin, A. Human subject research: International and regional human rights standards. Health Hum. Rights 2018, 20, 137–148. [Google Scholar]
- Mende, J. Are human rights western—And why does it matter? A perspective from international political theory. J. Int. Polit. Theory 2021, 17, 38–57. [Google Scholar] [CrossRef]
- Rindermann, H.; Carl, N. Human Rights: Why Countries Differ. Comp. Sociol. 2018, 17, 29–69. [Google Scholar] [CrossRef]
- Polakiewicz, J. A Council of Europe perspective on the European Union: Crucial and complex cooperation. Eur. World Law Rev. 2021, 5, 1. [Google Scholar] [CrossRef]
- Society, A.; Law, I.; Society, A.; Law, I.; Materials, I.L. Council of Europe: Convention on Human Rights and Biomedicine and Explanatory Report. Am. Soc. Int. Law 1997, 36, 817–841. [Google Scholar] [CrossRef]
- Vidalis, T. Genome Editing in Human Gametes and Embryos: The Legal Dimension in Europe. BioTech 2023, 12, 1. [Google Scholar] [CrossRef]
- Busby, H.; Hervey, T.; Mohr, A. Ethical EU law? The influence of the European group on ethics in science and new technologies. Eur. Law Rev. 2008, 33, 803–842. [Google Scholar]
- Dolan, D.D.; Lee, S.S.J.; Cho, M.K. Three decades of ethical, legal, and social implications research: Looking back to chart a path forward. Cell Genom. 2022, 2, 100150. [Google Scholar] [CrossRef] [PubMed]
- Dommel, F.W.; Alexander, D. The Convention on Human Rights and Biomedicine of the Council of Europe. Kennedy Inst. Ethics J. 1997, 7, 259–276. [Google Scholar] [CrossRef] [PubMed]
- Schrijver, N. A new Convention on the human right to development: Putting the cart before the horse? Netherlands Q. Hum. Rights 2020, 38, 84–93. [Google Scholar] [CrossRef]
- Oviedo Convention and Its Protocols 2024. Available online: https://www.coe.int/en/web/bioethics/oviedo-convention (accessed on 25 June 2024).
- Nawrot, O. The biogenetical revolution of the Council of Europe—Twenty years of the Convention on Human Rights and Biomedicine (Oviedo Convention). Life Sci. Soc. Policy 2018, 14, 11. [Google Scholar] [CrossRef]
- Doppelfeld, E. Council of Europe in the field of bioethics: The Convention on Human Rights and Biomedicine and other legal instruments. Intensive Care Med. 2008, 34, 939–941. [Google Scholar] [CrossRef]
- Roscam Abbing, H.D.C. The Convention on Human Rights and Biomedicine: An appraisal of the Council of Europe Convention. Eur. J. Health Law 1998, 5, 377–387. [Google Scholar] [CrossRef]
- Patel, R.A.; Ungar, R.A.; Pyke, A.L.; Adimoelja, A.; Chakraborty, M.; Cotter, D.J.; Freund, M.; Goddard, P.; Gomez-Stafford, J.; Greenwald, E.; et al. Increasing equity in science requires better ethics training: A course by trainees, for trainees. Cell Genomics 2024, 4, 1–12. [Google Scholar] [CrossRef]
- Sacristán, J.A. Patient-centered medicine and patient-oriented research: Improving health outcomes for individual patients. BMC Med. Inform. Decis. Mak. 2013, 13, 6. [Google Scholar] [CrossRef]
- Farrugia, P.; Petrisor, B.A.; Farrokhyar, F.; Bhandari, M. Practical tips for surgical research: Research questions, hypotheses and objectives. Can. J. Surg. 2010, 53, 278–281. [Google Scholar]
- Cameron, N.M.D.S.; Henderson, A. V Brave New World at the General Assembly: The United Nations Declaration on Human Cloning. Minnesota J. Law Sci. Technol. 2007, 9, 145–238. [Google Scholar]
- The Human Genome Project 2024. Available online: https://www.genome.gov/human-genome-project (accessed on 25 June 2024).
- Gibbs, R.A. The Human Genome Project changed everything. Nat. Rev. Genet. 2020, 21, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Kabata, F.; Thaldar, D. The human genome as the common heritage of humanity. Front. Genet. 2023, 14, 1282515. [Google Scholar] [CrossRef] [PubMed]
- Ossorio, P.N. The human genome as common heritage: Common sense or legal nonsense? J. Law Med. Ethics 2017, 35, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Birney, E. The International Human Genome Project. Hum. Mol. Genet. 2021, 30, R161–R163. [Google Scholar] [CrossRef]
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; et al. The complete sequence of a human genome. Science 2022, 376, 44–53. [Google Scholar] [CrossRef]
- Butler, D. Human genome at ten: Science after the sequence. Nature 2010, 465, 1000–1001. [Google Scholar] [CrossRef]
- Mayor, F. Universal Declaration on the Human Genome and Human Rights. Comptes Rendus Biol. 2003, 326, 1121–1125. [Google Scholar] [CrossRef]
- Walker, R.; Morrissey, C. Bioethics methods in the ethical, legal, and social implications of the human genome project literature. Bioethics 2014, 28, 481–490. [Google Scholar] [CrossRef]
- Pullman, D.; Etchegary, H. Ethical, Legal, and Social Issues (ELSI) in Clinical Genetics Research. Methods Mol. Biol. 2021, 2249, 65–82. [Google Scholar] [CrossRef]
- Gyngell, C. Gene editing and the health of future generations. J. R. Soc. Med. 2017, 110, 276–279. [Google Scholar] [CrossRef]
- Abuhammad, S.; Khabour, O.F.; Alzoubi, K.H. Researchers views about perceived harms and benefits of gene editing: A study from the MENA region. Heliyon 2021, 7, e06860. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.M.; Karas, M.; Ramadan, Y.; Joubran, E.; Jacobs, R.J. Ethical Perspectives of Therapeutic Human Genome Editing From Multiple and Diverse Viewpoints: A Scoping Review. Cureus 2022, 14, e31927. [Google Scholar] [CrossRef] [PubMed]
- Maeder, M.L.; Gersbach, C.A. Genome-editing technologies for gene and cell therapy. Mol. Ther. 2016, 24, 430–446. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, G.R.; Parisotto, R. Gene Doping: A Review of Performance-Enhancing Genetics. Pediatr. Clin. N. Am. 2007, 54, 807–822. [Google Scholar] [CrossRef] [PubMed]
- Cantelmo, R.A.; da Silva, A.P.; Mendes-Junior, C.T.; Dorta, D.J. Gene doping: Present and future. Eur. J. Sport Sci. 2020, 20, 1093–1101. [Google Scholar] [CrossRef]
- López, S.; Meirelles, J.; Rayol, V.; Poralla, G.; Woldmar, N.; Fadel, B.; Figueiredo, M.; Da Costa Padilha, M.; De Aquino Neto, F.R.; Gualberto Pereira, H.M.; et al. Gene doping and genomic science in sports: Where are we? Bioanalysis 2020, 12, 801–811. [Google Scholar] [CrossRef]
- Luis, J.; Triviño, P.; Luis, J. Gene Doping and the Ethics of Sport: Between Enhancement and Posthumanism. Int. J. Sport. 2011, 1, 1–8. [Google Scholar] [CrossRef]
- Haisma, H.J.; Hon, O. de Gene doping. Int. J. Sports Med. 2006, 27, 257–266. [Google Scholar] [CrossRef]
- Wells, D.J. Gene doping: The hype and the reality. Br. J. Pharmacol. 2008, 154, 623–631. [Google Scholar] [CrossRef]
- Lu, Y.; Yan, J.; Ou, G.; Fu, L. A Review of Recent Progress in Drug Doping and Gene Doping Control Analysis. Molecules 2023, 28, 5483. [Google Scholar] [CrossRef]
- Brzeziańska, E.; Domańska, D.; Jegier, A. Gene doping in sport—Perspectives and risks. Biol. Sport 2014, 31, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Pincock, S. Feature: Gene doping. Lancet 2005, 366, 18–19. [Google Scholar] [CrossRef] [PubMed]
- Naumann, N.; Paßreiter, A.; Thomas, A.; Krug, O.; Walpurgis, K.; Thevis, M. Analysis of Potential Gene Doping Preparations for Transgenic DNA in the Context of Sports Drug Testing Programs. Int. J. Mol. Sci. 2023, 24, 15835. [Google Scholar] [CrossRef] [PubMed]
- Tavares, A.B.W.; Micmacher, E.; Biesek, S.; Assumpção, R.; Redorat, R.; Veloso, U.; Vaisman, M.; Farinatti, P.T.V.; Conceição, F. Effects of growth hormone administration on muscle strength in men over 50 years old. Int. J. Endocrinol. 2013, 2013, 942030. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Ahmad, K.; Lee, E.J.; Lee, Y.H.; Choi, I. Implications of Insulin-Like Growth Factor-1 in Skeletal Muscle and Various Diseases. Cells 2020, 9, 1773. [Google Scholar] [CrossRef]
- Haidet, A.M.; Rizo, L.; Handy, C.; Umapathi, P.; Eagle, A.; Shilling, C.; Boue, D.; Martin, P.T.; Sahenk, Z.; Mendell, J.R.; et al. Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. Proc. Natl. Acad. Sci. USA 2008, 105, 4318–4322. [Google Scholar] [CrossRef]
- Oliveira, R.S.; Collares, T.F.; Smith, K.R.; Collares, T.V.; Seixas, F.K. The use of genes for performance enhancement: Doping or therapy? Brazilian J. Med. Biol. Res. 2011, 44, 1194–1201. [Google Scholar] [CrossRef]
- Savulescu, J.; Foddy, B.; Clayton, M. Why we should allow performance enhancing drugs in sport. Br. J. Sports Med. 2004, 38, 666–670. [Google Scholar] [CrossRef]
- Veltmaat, A.; Dreiskämper, D.; Brueckner, S.; Bondarev, D.; Heyes, A.; Barkoukis, V.; Elbe, A.M.; Lazuras, L.; De Maria, A.; Zelli, A.; et al. Context matters: Athletes’ perception of dopers’ values, actions and vulnerabilities. Front. Sport. Act. Living 2023, 15, 1229679. [Google Scholar] [CrossRef]
- Loland, S. The ethics of performance-enhancing technology in sport. J. Philos. Sport 2009, 36, 152–161. [Google Scholar] [CrossRef]
- Palmi, I.; Berretta, P.; Tini, A.; Ricci, G.; Marinelli, S. The unethicality of doping in sports. Clin. Ter. 2019, 170, E100–E101. [Google Scholar] [CrossRef] [PubMed]
- Andorno, R. The Oviedo Convention: A European Legal Framework at the Intersection of Human Rights and Health Law. J. Int. Biotechnol. Law 2006, 2, 133–143. [Google Scholar] [CrossRef]
- Seatzu, F.; Simona, F. Corrigendum: The Experience of the European Court of Human Rights with the European Convention on Human Rights and Biomedicine. Utr. J. Int. Eur. Law 2015, 31, 112–113. [Google Scholar] [CrossRef]
- Frazer, K.A. Decoding the human genome. Genome Res. 2012, 22, 1599–1601. [Google Scholar] [CrossRef]
- Fulda, K.G.; Lykens, K. Ethical issues in predictive genetic testing: A public health perspective. J. Med. Ethics 2006, 32, 143–147. [Google Scholar] [CrossRef]
- Tucker, R.; Collins, M. What makes champions? a review of the relative contribution of genes and training to sporting success. Br. J. Sports Med. 2012, 46, 555–561. [Google Scholar] [CrossRef]
- Georgiades, E.; Klissouras, V.; Baulch, J.; Wang, G.; Pitsiladis, Y. Why nature prevails over nurture in the making of the elite athlete. BMC Genom. 2017, 18, 835. [Google Scholar] [CrossRef]
- Steca, P.; Baretta, D.; Greco, A.; D’Addario, M.; Monzani, D. Associations between personality, sports participation and athletic success. A comparison of Big Five in sporting and non-sporting adults. Pers. Individ. Dif. 2018, 121 (Suppl. S8), 176–183. [Google Scholar] [CrossRef]
- Shuai, Y.; Wang, S.; Liu, X.; Kueh, Y.C.; Kuan, G. The influence of the five-factor model of personality on performance in competitive sports: A review. Front. Psychol. 2023, 14, 1284378. [Google Scholar] [CrossRef]
- Collier, R. Testing the ethics of genetic testing in sports. Can. Med. Assoc. J. 2012, 184, E45–E46. [Google Scholar] [CrossRef]
- Pickering, C. A pragmatic approach to genetic testing in elite sport—are we there yet? Comment on McAuley et al. Curr. Issues Sport Sci. 2023, 8, 011. [Google Scholar] [CrossRef]
- Goffin, T.; Borry, P.; Dierickx, K.; Nys, H. Why eight EU Member States signed, but not yet ratified the Convention for Human Rights and Biomedicine. Health Policy 2008, 86, 222–233. [Google Scholar] [CrossRef]
- Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; de Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-wide association studies. Nat. Rev. Methods Prim. 2021, 1, 59. [Google Scholar] [CrossRef]
- Mehta, P.; Zimba, O.; Gasparyan, A.Y.; Seiil, B.; Yessirkepov, M. Ethics Committees: Structure, Roles, and Issues. J. Korean Med. Sci. 2023, 38, e198. [Google Scholar] [CrossRef] [PubMed]
- Sharp, R.R.; Taylor, H.A.; Brinich, M.A.; Boyle, M.M.; Cho, M.; Coors, M.; Danis, M.; Havard, M.; Magnus, D.; Wilfond, B. Research Ethics Consultation: Ethical and Professional Practice Challenges and Recommendations. Acad. Med. J. Assoc. Am. Med. Coll. 2015, 90, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, G.O.; Wertheimer, A. The right to withdraw from research. Kennedy Inst. Ethics J. 2010, 20, 329–352. [Google Scholar] [CrossRef] [PubMed]
- Spinello, R.A. Property rights in genetic information. Ethics Inf. Technol. 2004, 6, 29–42. [Google Scholar] [CrossRef]
- Ligtenberg, W.; Stolper, M.; Molewijk, B. Ethics support for ethics support: The development of the Confidentiality Compass for dealing with moral challenges concerning (breaching) confidentiality in moral case deliberation. BMC Med. Ethics 2024, 25, 49. [Google Scholar] [CrossRef]
- Godard, B.; Raeburn, S.; Pembrey, M.; Bobrow, M.; Farndon, P.; Aymé, S. Genetic information and testing in insurance and employment: Technical, social and ethical issues. Eur. J. Hum. Genet. 2003, 11, 123–142. [Google Scholar] [CrossRef]
- Oestreich, M.; Chen, D.; Schultze, J.L.; Fritz, M.; Becker, M. Privacy considerations for sharing genomics data. EXCLI J. 2021, 20, 1243–1260. [Google Scholar] [CrossRef]
- Trent, R.J.; Alexander, I.E. Gene therapy in sport. Br. J. Sports Med. 2006, 40, 4–5. [Google Scholar] [CrossRef] [PubMed]
- Huard, J.; Li, Y.; Peng, H.; Fu, F.H. Gene therapy and tissue engineering for sports medicine. J. Gene Med. 2003, 5, 93–108. [Google Scholar] [CrossRef]
- Nauth, A.; Miclau, T.; Li, R.; Schemitsch, E.H. Gene therapy for fracture healing. J. Orthop. Trauma 2010, 24, S17–S24. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Lazaro, C.I.; García-González, J.M.; Adams, D.P.; Fernandez-Lazaro, D.; Mielgo-Ayuso, J.; Caballero-Garcia, A.; Moreno Racionero, F.; Córdova, A.; Miron-Canelo, J.A. Adherence to treatment and related factors among patients with chronic conditions in primary care: A cross-sectional study. BMC Fam. Pract. 2019, 20, 132. [Google Scholar] [CrossRef] [PubMed]
- Davey, A.; Newson, A.; O’Leary, P. Communication of genetic information within families: The case for familial comity. J. Bioeth. Inq. 2006, 3, 161–166. [Google Scholar] [CrossRef]
- Clarke, A.J.; Wallgren-Pettersson, C. Ethics in genetic counselling. J. Community Genet. 2019, 10, 3–33. [Google Scholar] [CrossRef]
- Kalokairinou, L.; Howard, H.C.; Slokenberga, S.; Fisher, E.; Flatscher-Thöni, M.; Hartlev, M.; van Hellemondt, R.; Juškevičius, J.; Kapelenska-Pregowska, J.; Kováč, P.; et al. Legislation of direct-to-consumer genetic testing in Europe: A fragmented regulatory landscape. J. Community Genet. 2018, 9, 117–132. [Google Scholar] [CrossRef]
- Branicki, W. DNA testing for investigative purposes: Search for the perpetrator’s DNA profile and kinship analysis. Probl. Forensic Sci. 2024, 137, 5–16. [Google Scholar] [CrossRef]
- Laurie, G. Recognizing the Right Not to Know: Conceptual, Professional, and Legal Implications. J. Law Med. Ethics 2014, 42, 53–63. [Google Scholar] [CrossRef]
- Morente-Sánchez, J.; Zabala, M. Doping in Sport: A Review of Elite Athletes’ Attitudes, Beliefs, and Knowledge. Sport. Med. 2013, 43, 395–411. [Google Scholar] [CrossRef]
- Murray, T.H. Ethical considerations in anti-doping analysis. Bioanalysis 2012, 4, 1537–1539. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.B.; Greene, A.C.; Prasad, V.D.; Jiang, X.; Greene, C.S. Responsible, practical genomic data sharing that accelerates research. Physiol. Behav. 2020, 21, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Powell, K. The broken promise that undermines human genome research. Nature 2021, 590, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Hendricks-Sturrup, R.M.; Lu, C.Y. Direct-to-consumer genetic testing data privacy: Key concerns and recommendations based on consumer perspectives. J. Pers. Med. 2019, 9, 25. [Google Scholar] [CrossRef]
- Maxmen, A. The great gene-patent debate. Nature 2012, 11044. [Google Scholar] [CrossRef]
- Hawkins, N. Europe PMC Funders Group The Impact of Human Gene Patents on Genetic Testing in the UK. Genet. Med. 2011, 13, 320–324. [Google Scholar] [CrossRef]
- Roth, S.M. Critical overview of applications of genetic testing in sport talent identification. Recent Pat. DNA Gene Seq. 2012, 6, 247–255. [Google Scholar] [CrossRef]
- North, K. ACTN3 Genotype Screen for Athletic Performance. 2009. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=EP14348760&_cid=P20-M16RZD-35670-1 (accessed on 9 July 2024).
- Chuang, C.S.; Lau, D.T. Patenting Human Genes: The Myriad Controversy. Clin. Ther. 2010, 32, 2054–2056. [Google Scholar] [CrossRef]
- Kesselheim, A.S.; Cook-Deegan, R.M.; Winickoff, D.E.; Mello, M.M. Gene Patenting—The Supreme Court Finally Speaks. N. Engl. J. Med. 2014, 369, 869–875. [Google Scholar] [CrossRef]
- Resnik, D.B. Are DNA patents bad for medicine? Health Policy 2003, 65, 181–197. [Google Scholar] [CrossRef]
- Collins, M.R.; Schwellnus, M.P.; Raleigh, S.M.; Ribbans, W.J.; Smith, R.K.W. Oligonucleotides and Methods for Determining Susceptibility To Soft Tissue Injuries. 2012. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=US73450872&_cid=P10-LYG5Y8-70180-1 (accessed on 9 July 2024).
- Ma, Y.; Zhang, L.; Huang, X. Genome modification by CRISPR/Cas9. FEBS J. 2014, 281, 5186–5193. [Google Scholar] [CrossRef] [PubMed]
- Bruins, D.; Onstwedder, S.M.; Cornel, M.C.; Ausems, M.G.E.M.; van Mil, M.H.W.; Rigter, T. Information Provision Regarding Health-Related Direct-to-Consumer Genetic Testing for Dutch Consumers: An in-Depth Content Analysis of Sellers’ Websites. Genes 2024, 15, 517. [Google Scholar] [CrossRef] [PubMed]
- Covolo, L.; Rubinelli, S.; Ceretti, E.; Gelatti, U. Internet-based direct-to-consumer genetic testing: A systematic review. J. Med. Internet Res. 2015, 17, e279. [Google Scholar] [CrossRef] [PubMed]
- King, J. “Becoming part of something bigger”: Direct to consumer genetic testing, privacy, and personal disclosure. Proc. ACM Hum.-Comput. Interact. 2019, 3, 1–33. [Google Scholar] [CrossRef]
- Vayena, E.; Gourna, E.; Streuli, J.; Hafen, E.; Prainsack, B. Experiences of early users of direct-to-consumer genomics in Switzerland: An exploratory study. Public Health Genom. 2012, 15, 352–362. [Google Scholar] [CrossRef]
- Bunnik, E.M.; Janssens, A.C.J.W.; Schermer, M.H.N. Informed Consent in Direct-to-Consumer Personal Genome Testing: The Outline of A Model between Specific and Generic Consent. Bioethics 2014, 28, 343–351. [Google Scholar] [CrossRef]
- Martins, M.F.; Murry, L.T.; Telford, L.; Moriarty, F. Direct-to-consumer genetic testing: An updated systematic review of healthcare professionals’ knowledge and views, and ethical and legal concerns. Eur. J. Hum. Genet. 2022, 30, 1331–1343. [Google Scholar] [CrossRef]
- Hall, J.A.; Gertz, R.; Amato, J.; Pagliari, C. Transparency of genetic testing services for health, wellness and lifestyle’: Analysis of online prepurchase information for UK consumers. Eur. J. Hum. Genet. 2017, 25, 908–917. [Google Scholar] [CrossRef]
- Majumder, M.A.; Guerrini, C.J.; McGuire, A.L. Direct-to-Consumer Genetic Testing: Value and Risk. Annu. Rev. Med. 2021, 72, 151–166. [Google Scholar] [CrossRef]
- McNamee, M.J.; Müller, A.; Van Hilvoorde, I.; Holm, S. Genetic testing and sports medicine ethics. Sport. Med. 2009, 39, 339–344. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bojarczuk, A. Ethical Aspects of Human Genome Research in Sports—A Narrative Review. Genes 2024, 15, 1216. https://doi.org/10.3390/genes15091216
Bojarczuk A. Ethical Aspects of Human Genome Research in Sports—A Narrative Review. Genes. 2024; 15(9):1216. https://doi.org/10.3390/genes15091216
Chicago/Turabian StyleBojarczuk, Aleksandra. 2024. "Ethical Aspects of Human Genome Research in Sports—A Narrative Review" Genes 15, no. 9: 1216. https://doi.org/10.3390/genes15091216
APA StyleBojarczuk, A. (2024). Ethical Aspects of Human Genome Research in Sports—A Narrative Review. Genes, 15(9), 1216. https://doi.org/10.3390/genes15091216