The Role of Samalas Mega Volcanic Eruption in European Summer Hydroclimate Change
Abstract
1. Introduction
2. Model and Data Description
2.1. Model and Experiments
2.2. Reconstruction Data
3. Results
3.1. Summer Hydroclimate Change over Europe after Samalas Mega Volcanic Eruption
3.1.1. Comparison of Reconstruction and Simulation
3.1.2. Summer Precipitation Response to Samalas Mega Volcanic Eruption over Europe
3.1.3. Summer Temperature Response to Samalas Mega Volcanic Eruption over Europe
3.2. Mechanisms of European Summer Hydroclimate Changes after the Samalas Mega Volcanic Eruption
4. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Timmreck, C. Modeling the climatic effects of large explosive volcanic eruptions. WIREs Clim. Chang. 2012, 3, 545–564. [Google Scholar] [CrossRef]
- Hegerl, G.; Luterbacher, J.; González-Rouco, F.; Tett, S.F.B.; Crowley, T.; Xoplaki, E. Influence of human and natural forcing on European seasonal temperatures. Nat. Geosci. 2011, 4, 99–103. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A. Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett. 2007, 34, L15702. [Google Scholar] [CrossRef]
- Robock, A.; Oman, L.; Stenchikov, G.L. Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res. Atmos. 2008, 113, D16101. [Google Scholar] [CrossRef]
- Liu, B.; Wang, B.; Liu, J.; Chen, D.; Ning, L.; Yan, M.; Sun, W.; Chen, K. Global and Polar Region Temperature Change Induced by Single Mega Volcanic Eruption Based on Community Earth System Model Simulation. Geophys. Res. Lett. 2020, 47, e2020GL089416. [Google Scholar] [CrossRef]
- Guillet, S.; Corona, C.; Stoffel, M.; Khodri, M.; Lavigne, F.; Ortega, P.; Eckert, N.; Sielenou, P.D.; Daux, V.; Churakova, O.V.; et al. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nat. Geosci. 2017, 10, 123–128. [Google Scholar] [CrossRef]
- Lavigne, F.; Degeai, J.P.; Komorowski, J.C.; Guillet, S.; Robert, V.; Lahitte, P.; Oppenheimer, C.; Stoffel, M.; Vidal, C.M.; Surono; et al. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proc. Natl. Acad. Sci. USA 2013, 110, 16742–16747. [Google Scholar] [CrossRef]
- Vidal, C.M.; Komorowski, J.-C.; Métrich, N.; Pratomo, I.; Kartadinata, N.; Prambada, O.; Michel, A.; Carazzo, G.; Lavigne, F.; Rodysill, J.; et al. Dynamics of the major plinian eruption of Samalas in 1257 A.D. (Lombok, Indonesia). Bull. Volcanol. 2015, 77, 73. [Google Scholar] [CrossRef]
- Vidal, C.M.; Metrich, N.; Komorowski, J.C.; Pratomo, I.; Michel, A.; Kartadinata, N.; Robert, V.; Lavigne, F. The 1257 Samalas eruption (Lombok, Indonesia): The single greatest stratospheric gas release of the Common Era. Sci. Rep. 2016, 6, 34868. [Google Scholar] [CrossRef]
- Zhong, Y.; Miller, G.H.; Otto-Bliesner, B.L.; Holland, M.M.; Bailey, D.A.; Schneider, D.P.; Geirsdottir, A. Centennial-scale climate change from decadally-paced explosive volcanism: A coupled sea ice-ocean mechanism. Clim. Dyn. 2010, 37, 2373–2387. [Google Scholar] [CrossRef]
- Miller, G.H.; Geirsdóttir, Á.; Zhong, Y.; Larsen, D.J.; Otto-Bliesner, B.L.; Holland, M.M.; Bailey, D.A.; Refsnider, K.A.; Lehman, S.J.; Southon, J.R.; et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 2012, 39, L02708. [Google Scholar] [CrossRef]
- Stothers, R.B. Climatic and Demographic Consequences of the Massive Volcanic Eruption of 1258. Clim. Chang. 2000, 45, 361–374. [Google Scholar] [CrossRef]
- Stothers, R.B. Volcanic Dry Fogs, Climate Cooling, and Plague Pandemics in Europe and the Middle East. Clim. Chang. 1999, 42, 713–723. [Google Scholar] [CrossRef]
- Connell, B.; Gray, J.A.; Redfern, R.; Walker, D. A bioarchaeological study of medieval burials on the site of St Mary Spital: Excavations at Spitalfields Market, London E1, 1991–2007. Mus. Lond. Archaeol. 2012, Monograph Series 60, 1–303. [Google Scholar] [CrossRef]
- Robock, A. Volcanic eruptions and climate. Rev. Geophys. 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Driscoll, S.; Bozzo, A.; Gray, L.J.; Robock, A.; Stenchikov, G. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res. Atmos. 2012, 117, D17105. [Google Scholar] [CrossRef]
- Zanchettin, D.; Timmreck, C.; Bothe, O.; Lorenz, S.J.; Hegerl, G.; Graf, H.-F.; Luterbacher, J.; Jungclaus, J.H. Delayed winter warming: A robust decadal response to strong tropical volcanic eruptions? Geophys. Res. Lett. 2013, 40, 204–209. [Google Scholar] [CrossRef]
- Shindell, D.T.; Schmidt, G.A.; Mann, M.E.; Faluvegi, G. Dynamic winter climate response to large tropical volcanic eruptions since 1600. J. Geophys. Res. Atmos. 2004, 109, D05104. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, C. European hydroclimate response to volcanic eruptions over the past nine centuries. Int. J. Climatol. 2017, 37, 4146–4157. [Google Scholar] [CrossRef]
- Luterbacher, J.; Dietrich, D.; Xoplaki, E.; Grosjean, M.; Wanner, H. European Seasonal and Annual Temperature Variability, Trends, and Extremes Since 1500. Science 2004, 303, 1499–1503. [Google Scholar] [CrossRef]
- Neale, R.B.; Richter, J.; Park, S.; Lauritzen, P.H.; Vavrus, S.J.; Rasch, P.J.; Zhang, M. The Mean Climate of the Community Atmosphere Model (CAM4) in Forced SST and Fully Coupled Experiments. J. Clim. 2013, 26, 5150–5168. [Google Scholar] [CrossRef]
- Danabasoglu, G.; Bates, S.C.; Briegleb, B.P.; Jayne, S.R.; Jochum, M.; Large, W.G.; Peacock, S.; Yeager, S.G. The CCSM4 Ocean Component. J. Clim. 2012, 25, 1361–1389. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Oleson, K.W.; Flanner, M.G.; Fletcher, C.G.; Lawrence, P.J.; Levis, S.; Swenson, S.C.; Bonan, G.B. The CCSM4 Land Simulation, 1850–2005: Assessment of Surface Climate and New Capabilities. J. Clim. 2012, 25, 2240–2260. [Google Scholar] [CrossRef]
- Caldeira, K.; Cvijanovic, I. Estimating the Contribution of Sea Ice Response to Climate Sensitivity in a Climate Model. J. Clim. 2014, 27, 8597–8607. [Google Scholar] [CrossRef]
- Lehner, F.; Joos, F.; Raible, C.C.; Mignot, J.; Born, A.; Keller, K.M.; Stocker, T.F. Climate and carbon cycle dynamics in a CESM simulation from 850–2100 CE. Earth Syst. Dyn. Discuss. 2015, 6, 351–406. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Brady, E.C.; Fasullo, J.; Jahn, A.; Landrum, L.; Stevenson, S.; Rosenbloom, N.; Mai, A.; Strand, G. Climate Variability and Change since 850 CE: An Ensemble Approach with the Community Earth System Model. Bull. Am. Meteorol. Soc. 2016, 97, 735–754. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Liu, B.; Liu, J. Global climate internal variability in a 2000-year control simulation with Community Earth System Model (CESM). Chin. Geogr. Sci. 2015, 25, 263–273. [Google Scholar] [CrossRef]
- Sun, W.; Wang, B.; Liu, J.; Chen, D.; Gao, C.; Ning, L.; Chen, L. How Northern High-Latitude Volcanic Eruptions in Different Seasons Affect ENSO. J. Clim. 2019, 32, 3245–3262. [Google Scholar] [CrossRef]
- Sun, W.; Liu, J.; Wang, B.; Chen, D.; Liu, F.; Wang, Z.; Ning, L.; Chen, M. A “La Niña-like” state occurring in the second year after large tropical volcanic eruptions during the past 1500 years. Clim. Dyn. 2019, 52, 7495–7509. [Google Scholar] [CrossRef]
- Gao, C.; Robock, A.; Ammann, C. Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res. Atmos. 2008, 113, D23111. [Google Scholar] [CrossRef]
- Cook, E.R.; Seager, R.; Kushnir, Y.; Briffa, K.R.; Büntgen, U.; Frank, D.; Krusic, P.J.; Tegel, W.; van der Schrier, G.; Andreu-Hayles, L.; et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 2015, 1, e1500561. [Google Scholar] [CrossRef]
- Wells, N.; Goddard, S.; Hayes, M.J. A Self-Calibrating Palmer Drought Severity Index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Zanchettin, D.; Timmreck, C.; Toohey, M.; Jungclaus, J.H.; Bittner, M.; Lorenz, S.J.; Rubino, A. Clarifying the Relative Role of Forcing Uncertainties and Initial-Condition Unknowns in Spreading the Climate Response to Volcanic Eruptions. Geophys. Res. Lett. 2019, 46, 1602–1611. [Google Scholar] [CrossRef]
- Fischer, E.M.; Luterbacher, J.; Zorita, E.; Tett, S.F.B.; Casty, C.; Wanner, H. European climate response to tropical volcanic eruptions over the last half millennium. Geophys. Res. Lett. 2007, 34, L05707. [Google Scholar] [CrossRef]
- Wegmann, M.; Brönnimann, S.; Bhend, J.; Franke, J.; Folini, D.; Wild, M.; Luterbacher, J. Volcanic Influence on European Summer Precipitation through Monsoons: Possible Cause for “Years without Summer”*. J. Clim. 2014, 27, 3683–3691. [Google Scholar] [CrossRef]
- Rao, M.P.; Cook, B.I.; Cook, E.R.; D’Arrigo, R.D.; Krusic, P.J.; Anchukaitis, K.J.; LeGrande, A.N.; Buckley, B.M.; Davi, N.K.; Leland, C.; et al. European and Mediterranean hydroclimate responses to tropical volcanic forcing over the last millennium. Geophys. Res. Lett. 2017, 44, 5104–5112. [Google Scholar] [CrossRef]
- Luterbacher, J.; Werner, J.P.; Smerdon, J.E.; Fernández-Donado, L.; González-Rouco, F.J.; Barriopedro, D.; Ljungqvist, F.C.; Büntgen, U.; Zorita, E.; Wagner, S.; et al. European summer temperatures since Roman times. Environ. Res. Lett. 2016, 11, 024001. [Google Scholar] [CrossRef]
- Myhre, G.; Samset, B.H.; Hodnebrog, Ø.; Andrews, T.; Boucher, O.; Faluvegi, G.; Fläschner, D.; Forster, P.M.; Kasoar, M.; Kharin, V.; et al. Sensible heat has significantly affected the global hydrological cycle over the historical period. Nat. Commun. 2018, 9, 1922. [Google Scholar] [CrossRef]
- Zambri, B.; Robock, A.; Mills, M.J.; Schmidt, A. Modeling the 1783–1784 Laki Eruption in Iceland: 1. Aerosol Evolution and Global Stratospheric Circulation Impacts. J. Geophys. Res. Atmos. 2019, 124, 6750–6769. [Google Scholar] [CrossRef]
- Van Loon, H.; Rogers, J.C. The Seesaw in Winter Temperatures between Greenland and Northern Europe. Part I: General Description. Mon. Weather Rev. 1978, 106, 296–310. [Google Scholar] [CrossRef]
- Hurrell, J.W. Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Trigo, R.M.; Osborn, T.J.; Corte-Real, J.M. The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms. Clim. Res. 2002, 20, 9–17. [Google Scholar] [CrossRef]
- Folland, C.K.; Knight, J.; Linderholm, H.W.; Fereday, D.; Ineson, S.; Hurrell, J.W. The Summer North Atlantic Oscillation: Past, Present, and Future. J. Clim. 2009, 22, 1082–1103. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Liu, J.; Ning, L.; Sun, W.; Yan, M.; Zhao, C.; Chen, K.; Wang, X. The Role of Samalas Mega Volcanic Eruption in European Summer Hydroclimate Change. Atmosphere 2020, 11, 1182. https://doi.org/10.3390/atmos11111182
Liu B, Liu J, Ning L, Sun W, Yan M, Zhao C, Chen K, Wang X. The Role of Samalas Mega Volcanic Eruption in European Summer Hydroclimate Change. Atmosphere. 2020; 11(11):1182. https://doi.org/10.3390/atmos11111182
Chicago/Turabian StyleLiu, Bin, Jian Liu, Liang Ning, Weiyi Sun, Mi Yan, Chen Zhao, Kefan Chen, and Xiaoqing Wang. 2020. "The Role of Samalas Mega Volcanic Eruption in European Summer Hydroclimate Change" Atmosphere 11, no. 11: 1182. https://doi.org/10.3390/atmos11111182
APA StyleLiu, B., Liu, J., Ning, L., Sun, W., Yan, M., Zhao, C., Chen, K., & Wang, X. (2020). The Role of Samalas Mega Volcanic Eruption in European Summer Hydroclimate Change. Atmosphere, 11(11), 1182. https://doi.org/10.3390/atmos11111182