Identification of Long-Range Transport Pathways and Potential Source Regions of PM2.5 and PM10 at Akedala Station, Central Asia
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Location and Data
2.2. Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Model
2.3. Trajectory Clustering
2.4. Potential Source Contribution Function (PSCF) Method
2.5. Concentration-Weight Trajectory (CWT) Method
3. Results and Discussions
3.1. Variation in PM10 and PM2.5 Concentrations
3.2. Transport Pathways
3.3. PSCF Analyses
3.4. CWT Analyses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heal, M.R.; Kumar, P.; Harrison, R.M. Particles, air quality, policy and health. Chem. Soc. Rev. 2012, 41, 6606–6630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timonen, K.L.; Vanninen, E.; de Hartog, J.; Ibald-Mulli, A.; Brunekreef, B.; Gold, D.R.; Heinrich, J.; Hoek, G.; Lanki, T.; Peters, A.; et al. Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: The ULTRA study. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 332–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cyrys, J.; Heinrich, J.; Hoek, G.; Meliefste, K.; Lewne, M.; Gehring, U.; Bellander, T.; Fischer, P.; van Vliet, P.; Brauer, M.; et al. Comparison between different traffic-related particle indicators: Elemental carbon (EC), PM2.5 mass, and absorbance. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 134–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, L.; Ott, W. Personal exposure to ultrafine particles. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Jiang, Z.; Li, J.; Chu, Y.; Tan, W.; Li, C. Impacts of meteorology and emission control on the abnormally low particulate matter concentration observed during the winter of 2017. Atmos. Environ. 2020, 225, 117377. [Google Scholar] [CrossRef]
- Wan Mahiyuddin, W.R.; Sahani, M.; Aripin, R.; Latif, M.T.; Thach, T.-Q.; Wong, C.-M. Short-term effects of daily air pollution on mortality. Atmos. Environ. 2013, 65, 69–79. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Air pollution and public health: Emerging hazards and improved understanding of risk. Environ. Geochem. Health 2015, 37, 631–649. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Zheng, H.-J. Evidence for regional heterogeneous atmospheric particulate matter distribution in China: Implications for air pollution control. Environ. Chem. Lett. 2019, 17, 1839–1847. [Google Scholar] [CrossRef]
- Huang, K.; Yang, X.; Liang, F.; Liu, F.; Li, J.; Xiao, Q.; Chen, J.; Liu, X.; Cao, J.; Shen, C.; et al. Long-term exposure to fine particulate matter and hypertension incidence in China. Hypertension 2019, 73, 1195–1201. [Google Scholar] [CrossRef]
- Volná, V.; Hladký, D. Detailed assessment of the effects of meteorological conditions on PM10 concentrations in the northeastern part of the Czech Republic. Atmosphere 2020, 11, 497. [Google Scholar] [CrossRef]
- Challa, V.S.; Indrcanti, J.; Baham, J.M.; Patrick, C.; Rabarison, M.K.; Young, J.H.; Hughes, R.; Swanier, S.J.; Hardy, M.G.; Yerramilli, A. Sensitivity of atmospheric dispersion simulations by HYSPLIT to the meteorological predictions from a meso-scale model. Environ. Fluid. Mech. 2008, 8, 367–387. [Google Scholar] [CrossRef]
- Li, D.; Liu, J.; Zhang, J.; Gui, H.; Du, P.; Yu, T.; Wang, J.; Lu, Y.; Liu, W.; Cheng, Y. Identification of long-range transport pathways and potential sources of PM2.5 and PM10 in Beijing from 2014 to 2015. J. Environ. Sci. (China) 2017, 56, 214–229. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Chang, M.; Guo, P.; Gu, M.; Li, Y. Analysis of air quality characteristics of Beijing-Tianjin-Hebei and its surrounding air pollution transport channel cities in China. J. Environ. Sci. (China). 2020, 87, 213–227. [Google Scholar] [CrossRef]
- Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Prospero, J.; Kinne, S.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; et al. Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys. 2011, 11, 7781–7816. [Google Scholar] [CrossRef] [Green Version]
- Salvador, P.; Artinano, B.; Querol, X.; Alastuey, A. A combined analysis of backward trajectories and aerosol chemistry to characterise long-range transport episodes of particulate matter: The Madrid air basin, a case study. Sci. Total Environ. 2008, 390, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Querol, X.; Tobías, A.; Pérez, N.; Karanasiou, A.; Amato, F.; Stafoggia, M.; Pérez García-Pando, C.; Ginoux, P.; Forastiere, F.; Gumy, S.; et al. Monitoring the impact of desert dust outbreaks for air quality for health studies. Environ. Int. 2019, 130, 104867. [Google Scholar] [CrossRef]
- Li, C.; Dai, Z.; Liu, X.; Wu, P. Transport Pathways and Potential Source Region Contributions of PM2.5 in Weifang: Seasonal Variations. Appl. Sci. 2020, 10, 2835. [Google Scholar] [CrossRef] [Green Version]
- Escudero, M.; Stein, A.; Draxler, R.R.; Querol, X.; Alastuey, A.; Castillo, S.; Avila, A. Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) model. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Escudero, M.; Stein, A.F.; Draxler, R.R.; Querol, X.; Alastuey, A.; Castillo, S.; Avila, A. Source apportionment for African dust outbreaks over the Western Mediterranean using the HYSPLIT model. Atmos. Res. 2011, 99, 518–527. [Google Scholar] [CrossRef]
- Shan, W.; Yin, Y.; Lu, H.; Liang, S. A meteorological analysis of ozone episodes using HYSPLIT model and surface data. Atmos. Environ. 2009, 93, 767–776. [Google Scholar] [CrossRef]
- Wang, Y.; Stein, A.F.; Draxler, R.R.; de la Rosa, J.D.; Zhang, X. Global sand and dust storms in 2008: Observation and HYSPLIT model verification. Atmos. Environ. 2011, 45, 6368–6381. [Google Scholar] [CrossRef]
- Wang, F.; Chen, D.S.; Cheng, S.Y.; Li, J.B.; Li, M.J.; Ren, Z.H. Identification of regional atmospheric PM10 transport pathways using HYSPLIT, MM5-CMAQ and synoptic pressure pattern analysis. Environ. Model. Softw. 2010, 25, 927–934. [Google Scholar] [CrossRef]
- McGowan, H.; Clark, A. Identification of dust transport pathways from Lake Eyre, Australia using Hysplit. Atmos. Environ. 2008, 42, 6915–6925. [Google Scholar] [CrossRef]
- Hu, X.; Yin, Y.; Duan, L.; Wang, H.; Song, W.; Xiu, G. Temporal and spatial variation of PM2.5 in Xining, Northeast of the Qinghai–Xizang (Tibet) Plateau. Atmosphere 2020, 11, 953. [Google Scholar] [CrossRef]
- Hsu, Y.K.; Holsen, T.M.; Hopke, P.K. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Arimoto, R. The contribution from distant dust sources to the atmospheric particulate matter loadings at XiAn, China during spring. Sci. Total Environ. 2006, 368, 875–883. [Google Scholar] [CrossRef]
- Hao, T.; Cai, Z.; Chen, S.; Han, S.; Yao, Q.; Fan, W. Transport pathways and potential source regions of PM2.5 on the west coast of Bohai Bay during 2009–2018. Atmosphere 2019, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Dvorská, A.; Lammel, G.; Holoubek, I. Recent trends of persistent organic pollutants in air in central Europe-Air monitoring in combination with air mass trajectory statistics as a tool to study the effectivity of regional chemical policy. Atmos. Environ. 2009, 43, 1280–1287. [Google Scholar] [CrossRef]
- Rodríguez, S.; Alastuey, A.; Alonso-Pérez, S.; Querol, X.; Cuevas, E.; Abreu-Afonso, J.; Viana, M.; Pérez, N.; Pandolfi, M.; de la Rosa, J. Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer. Atmos. Chem. Phys. 2011, 11, 6663–6685. [Google Scholar] [CrossRef] [Green Version]
- Gama, C.; Tchepel, O.; Baldasano, J.M.; Basart, S.; Ferreira, J.; Pio, C.; Cardoso, J.; Borrego, C. Seasonal patterns of Saharan dust over Cape Verde–a combined approach using observations and modelling. Tellus B Chem. Phys. Meteo. 2015, 67, 24410. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Luo, X.S.; Xu, J.; Zhao, Z.; Chen, Y.; Wu, L.; Chen, Q.; Zhang, D. Spatio-temporal variations and factors of a provincial PM2.5 pollution in eastern China during 2013-2017 by geostatistics. Sci. Rep. 2019, 9, 3613. [Google Scholar] [CrossRef] [Green Version]
- Cabello, M.; Orza, J.A.G.; Dueñas, C.; Liger, E.; Gordo, E.; Cañete, S. Back-trajectory analysis of African dust outbreaks at a coastal city in southern Spain: Selection of starting heights and assessment of African and concurrent Mediterranean contributions. Atmos. Environ. 2016, 140, 10–21. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, X.; Shi, H.; Cai, X.; Song, Y. Transport pathways and potential sources of PM10 in Beijing. Atmos. Environ. 2011, 45, 594–604. [Google Scholar] [CrossRef]
- Xin, Y.J.; Wang, G.C.; Chen, L. Identification of long-range transport pathways and potential sources of PM10 in Tibetan Plateau uplift area: Case study of Xining, China in 2014. Aerosol Air Qual. Res. 2016, 16, 1044–1054. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; He, Q.; Liu, T.; Chen, F.; Liu, X.; Zhong, Y.; Yang, S. Characteristics and source of black carbon aerosols at Akedala station, Central Asia. Meteoro. Atmos. Phys. 2012, 118, 189–197. [Google Scholar] [CrossRef]
- Wang, H.; Ma, J.; Shen, Y.; Wang, Y. Assessment of ozone variations and meteorological influences at a rural site in Northern Xinjiang. Bull. Environ. Contam. Toxicol. 2015, 94, 240–246. [Google Scholar] [CrossRef]
- Zhang, G.; Cui, C.; Li, Y.; Li, J. Simulation on air flow 3-dimension trajectories of the boundary layer at Akedala background atmosphere station. J. Des. Res. 2008, 154–160. (In Chinese). Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-ZGSS200801026.htm (accessed on 12 September 2020).
- Liu, N.; Lin, W.; Ma, J.; Xu, W.; Xu, X. Seasonal variation in surface ozone and its regional characteristics at global atmosphere watch stations in China. J. Environ. Sci. (China) 2019, 77, 291–302. [Google Scholar] [CrossRef]
- Gao, N.; Hopke, P.K.; Reid, W.N. Possible sources for some trace elements found in airborne particles and precipitation in dorset, Ontario. J. Air. Waste. Manag. Assoc. 1996, 46, 1035–1047. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Yuan, Z.; Fung, J.C.; Lau, A.K. A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci. Total Environ. 2015, 506–507, 527–537. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Sirois, A.; Bottenheim, J.W. Use of backward trajectories to interpret the 5-year record of PAN and O3 ambient air concentrations at Kejimkujik National Park, Nova Scotia. J. Geophys. Res. Atmos. 1995, 100, 2867–2881. [Google Scholar] [CrossRef]
- Moody, J.L.; Galloway, J.N. Quantifying the relationship between atmospheric transport and the chemical composition of precipitation on Bermuda. Tellus B 1988, 40, 463–479. [Google Scholar] [CrossRef] [Green Version]
- Vellingiri, K.; Kim, K.-H.; Lim, J.-M.; Lee, J.-H.; Ma, C.-J.; Jeon, B.-H.; Sohn, J.-R.; Kumar, P.; Kang, C.-H. Identification of nitrogen dioxide and ozone source regions for an urban area in Korea using back trajectory analysis. Atmos. Res. 2016, 176–177, 212–221. [Google Scholar] [CrossRef]
- Seibert, P.; Kromp-Kolb, H.; Baltensperger, U.; Jost, D.T.; Schwikowski, M.; Kasper, A.; Puxbaum, H. Trajectory analysis of aerosol measurements at high alpine sites. In Transport and Transformation of Pollutants in the Troposphere; Borrel, P.M., Borrel, P., Cvitas, T., Seiler, W., Eds.; Academic Publishing: The Hague, The Netherlands, 1994; pp. 689–693. [Google Scholar]
- Stohl, A. Trajectory statistics-a new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos. Environ. 1996, 30, 579–587. [Google Scholar] [CrossRef]
- Environmental Protection Department, State Administration of Quality Supervision, Inspection and Quarantine. Ambient Air Quality Standards. In The State Standard of the People’s Republic of China GB; Environmental Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Xue, L.K.; Wang, T.; Zhang, J.M.; Zhang, X.C.; Deliger; Poon, C.N.; Ding, A.J.; Zhou, X.H.; Wu, W.S.; Tang, J.; et al. Source of surface ozone and reactive nitrogen speciation at Mount Waliguan in western China: New insights from the 2006 summer study. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhou, L.; Yao, B.; Zhang, X.; Xu, L.; Zhang, X.; Zhou, H.; Dong, F.; Zhou, L. In-situ measurement of atmospheric CFC-11 at the Shangdianzi Global Atmosphere Watch (GAW) Regional Station. Sci. China Earth Sci. 2010, 54, 298–304. [Google Scholar] [CrossRef]
- Qu, W.; Wang, D.; Wang, Y.; Sheng, L.; Fu, G. Seasonal variation, source, and regional representativeness of the background aerosol from two remote sites in western China. Environ. Monit. Assess. 2010, 167, 265–288. [Google Scholar] [CrossRef] [PubMed]
- Seibert, R.; Nikolova, I.; Volná, V.; Krejčí, B.; Hladký, D. Air Pollution Sources’ Contribution to PM2.5 Concentration in the Northeastern Part of the Czech Republic. Atmosphere 2020, 11, 522. [Google Scholar] [CrossRef]
- Pekney, N.J.; Davidson, C.I.; Zhou, L.; Hopke, P.K. Application of PSCF and CPF to PMF-Modeled Sources of PM2.5 in Pittsburgh. Aerosol Sci. Technol. 2006, 40, 952–961. [Google Scholar] [CrossRef] [Green Version]
- Rudoy, D.; Alimbaev, T.; Omarova, B.; Abzhapparova, B.; Ilyassova, K.; Yermagambetova, K.; Mazhitova, Z.; Ignateva, S. Environment of East Kazakhstan: State and main directions of optimization. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 175. [Google Scholar] [CrossRef]
- Mamtimin, A.; Wang, Y.; Sayit, H.; Yang, X.; Yang, F.; Huo, W.; Zhou, C. Seasonal variations of the near-surface atmospheric boundary layer structure in China’s Gurbantünggüt Desert. Adv. Meteorol. 2020, 2020, 6137237. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mischke, M.; Zhang, C.; Plessen, B. Lake Balkhash (Kazakhstan): Recent human impact and natural variability in the last 2900 years. J. Great Lakes Res. 2020, 46, 267–276. [Google Scholar] [CrossRef]
Season | Temperature (°C) | Relatively Humidity (%) | Total Precipitation (mm) | Average Wind Speed (m/s) | Air Pressure (hPa) |
---|---|---|---|---|---|
Winter | −16.5 | 76.3 | 49.1 | 2.2 | 964.2 |
Spring | 7.3 | 57.7 | 92.6 | 3.8 | 953.4 |
Summer | 22.2 | 52.6 | 109.1 | 3.1 | 943.9 |
Autumn | 6.4 | 61.6 | 92.0 | 3.0 | 956.7 |
PM2.5 (µg/m3) | PM10 (µg/m3) | PM2.5/PM10 | |
---|---|---|---|
Winter | 17.63 ± 12.63 | 23.08 ± 14.28 | 0.76 ± 0.18 |
Spring | 10.42 ± 7.79 | 20.62 ± 15.19 | 0.58 ± 0.25 |
Summer | 9.08 ± 6.01 | 16.95 ± 11.04 | 0.57 ± 0.19 |
Autumn | 8.79 ± 5.34 | 18.96 ± 15.94 | 0.54 ± 0.20 |
Season | Clusters | The Number of All Trajectories | The Percentage of All Trajectories (%) | The Source Area of Air Masses | Mean Concentrations and Standard Deviation of PM2.5 (µg/m3) | Mean Concentrations and Standard Deviation of PM10 (µg/m3) |
---|---|---|---|---|---|---|
Winter | 1 | 761 | 11.7 | southern Russia | 14.32 ± 9.78 | 18.98 ± 11.09 |
2 | 1584 | 24.4 | eastern Kazakhstan | 21.33 ± 15.23 | 26.33 ± 19.14 | |
3 | 546 | 8.4 | eastern Kazakhstan | 19.02 ± 14.30 | 23.03 ± 16.69 | |
4 | 2557 | 39.5 | northeast Xinjiang, China | 13.94 ± 11.97 | 20.18 ± 15.47 | |
5 | 489 | 7.5 | northern Xinjiang, China | 30.84 ± 21.89 | 36.95 ± 25.81 | |
6 | 543 | 8.5 | northern Xinjiang, China | 15.64 ± 16.34 | 20.60 ± 20.51 | |
Spring | 1 | 1488 | 25.2 | eastern Kazakhstan | 10.07 ± 8.69 | 19.02 ± 27.98 |
2 | 1091 | 18.5 | northeast Xinjiang, China | 14.00 ± 13.81 | 21.90 ± 19.50 | |
3 | 602 | 10.2 | eastern Kazakhstan | 7.15 ± 4.78 | 15.40 ± 16.84 | |
4 | 2054 | 34.8 | northeast Kazakhstan | 10.40 ± 8.98 | 21.64 ± 37.25 | |
5 | 227 | 3.8 | southern Russia | 10.46 ± 7.81 | 19.24 ± 21.87 | |
6 | 442 | 7.5 | northern Xinjiang, China | 10.97 ± 9.76 | 28.27 ± 45.73 | |
Summer | 1 | 656 | 12.7 | eastern Kazakhstan | 9.60 ± 7.59 | 18.28 ± 17.08 |
2 | 165 | 3.2 | northern Xinjiang, China | 7.70 ± 3.74 | 16.82 ± 12.32 | |
3 | 1983 | 38.4 | southern Russia | 9.51 ± 7.98 | 17.19 ± 18.96 | |
4 | 994 | 19.3 | southeast Kazakhstan | 8.70 ± 8.00 | 18.18 ± 34.53 | |
5 | 93 | 1.8 | northeast Xinjiang, China | 7.36 ± 3.54 | 13.27 ± 7.30 | |
6 | 1267 | 24.6 | eastern Kazakhstan | 9.56 ± 8.09 | 16.49 ± 16.43 | |
Autumn | 1 | 729 | 14.3 | northern Xinjiang, China | 8.79±6.20 | 18.83 ± 14.99 |
2 | 1512 | 29.7 | northeast Kazakhstan | 7.25 ± 5.07 | 13.92 ± 21.74 | |
3 | 825 | 16.2 | northeast Xinjiang, China | 9.88 ± 6.44 | 26.22 ± 28.67 | |
4 | 389 | 7.6 | southern Russia | 7.32 ± 4.34 | 14.60 ± 13.94 | |
5 | 1287 | 25.4 | Southeast Kazakhstan | 8.75 ± 6.99 | 16.77 ± 17.24 | |
6 | 346 | 6.8 | eastern Kazakhstan | 9.76 ± 6.31 | 17.64 ± 14.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; He, Q.; Liu, X. Identification of Long-Range Transport Pathways and Potential Source Regions of PM2.5 and PM10 at Akedala Station, Central Asia. Atmosphere 2020, 11, 1183. https://doi.org/10.3390/atmos11111183
Li H, He Q, Liu X. Identification of Long-Range Transport Pathways and Potential Source Regions of PM2.5 and PM10 at Akedala Station, Central Asia. Atmosphere. 2020; 11(11):1183. https://doi.org/10.3390/atmos11111183
Chicago/Turabian StyleLi, Hanlin, Qing He, and Xinchun Liu. 2020. "Identification of Long-Range Transport Pathways and Potential Source Regions of PM2.5 and PM10 at Akedala Station, Central Asia" Atmosphere 11, no. 11: 1183. https://doi.org/10.3390/atmos11111183
APA StyleLi, H., He, Q., & Liu, X. (2020). Identification of Long-Range Transport Pathways and Potential Source Regions of PM2.5 and PM10 at Akedala Station, Central Asia. Atmosphere, 11(11), 1183. https://doi.org/10.3390/atmos11111183