Projected Direct Carbon Dioxide Emission Reductions as a Result of the Adoption of Electric Vehicles in Gauteng Province of South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Estimation of Carbon Dioxide (CO2) Emissions
- ○
- Collect fuel statistics as well as average distance travelled by passengers;
- ○
- Estimate CO2 emissions using the appropriate methodology.
2.2.2. Forecasting of Vehicle Population
- ○
- Use of statistical tools to forecast vehicle population until 2030;
- ○
- Assumptions on the desired proportions of EVs in the future based on government policy;
- ○
- Estimation of the number of EVs based on desired proportions until 2030;
- ○
- Calculate direct emissions reduction based on the desired EV proportions.
- Mitigation case (constant number of vehicles);
- Business as usual (rate of increase in vehicles based on autoregressive moving averages of data from year 2000 to 2017);
- High economic growth case (upper boundary of the 95% confidence interval around the moving averages).
2.2.3. Developing Future Electric Vehicle Scenarios
2.3. Data
2.3.1. Data Sources
2.3.2. Data Analysis
3. Results and Discussion
3.1. Carbon Dioxide Emissions from 2000 to 2018
3.2. Emission Scenarios
3.2.1. Projected CO2 Emissions for Mitigation Case
3.2.2. Projected CO2 Emissions for Business as Usual Case
3.2.3. Projected CO2 Emissions for High Economic Growth Case
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barker, T. Climate Change 2007: An Assessment of the Intergovernmental Panel on Climate Change. Change 2007, 446, 12–17. [Google Scholar]
- Hoegh-Guldberg, O.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.L.; Engelbrecht, F.; Guiot, J.; Hijioka, Y.; Mehrotra, S.; et al. Impacts of 1.5 °C Global Warming on Natural and Human Systems. In Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; MassonDelmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Contestabile, M.; Alajaji, M. Will current electric vehicle policy lead to cost-effective electrification of passenger car transport? Green Energy Technol. 2018, 110, 75–99. [Google Scholar]
- Sims, R.; Schaeffer, R.; Creutzig, F.; Cruz-Núñez, X.; D’Agosto, M.; Dimitriu, D.; Figueroa Meza, M.J.; Fulton, L.; Kobayashi, S.; Lah, O.; et al. Transport. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Palander, T.; Kärhä, K. Improving energy efficiency in a synchronized road-transportation system by using a TFMC (transportation fleet-management control) in Finland. Energies 2019, 12, 670. [Google Scholar] [CrossRef] [Green Version]
- Alton, T.; Arndt, C.; Davies, R.; Hartley, F.; Makrelov, K.; Thurlow, J.; Ubogu, D. Introducing carbon taxes in South Africa. Appl. Energy 2014, 116, 344–354. [Google Scholar] [CrossRef] [Green Version]
- UNFCCC Paris Agreement. United Nations Framework Convention on Climate Change; UNFCCC Paris Agreemen, Bonn, Germany. 2015. Available online: https://unfccc.int/files/essential_background/convention/application/pdf/english_paris_agreement.pdf (accessed on 14 July 2018).
- Ahjum, F.; Merven, B.; Stone, A.; Caetano, T. Road transport vehicles in South Africa towards 2050: Factors influencing technology choice and implications for fuel supply. J. Energy S. Afr. 2018, 29, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Delucchi, M.A.; Yang, C.; Burke, A.F.; Ogden, J.M.; Kurani, K.; Kessler, J.; Sperling, D. An assessment of electric vehicles: Technology, infrastructure requirements, greenhouse-gas emissions, petroleum use, material use, lifetime cost, consumer acceptance and policy initiatives. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120325. [Google Scholar] [CrossRef] [Green Version]
- Department of Environmental Affairs. GHG Inventory for South Africa 2000-2010; Department of Environmental Affairs: Pretoria, South Africa, 2014. [Google Scholar]
- Tongwane, M.; Piketh, S.; Stevens, L.; Ramotubei, T. Greenhouse gas emissions from road transport in South Africa and Lesotho between 2000 and 2009. Transp. Res. Part D Transp. Environ. 2015, 37, 1–13. [Google Scholar] [CrossRef]
- Department of Transport. Green Transport Strategy 2018–2050; Department of Transport: Pretoria, South Africa, 2018. [Google Scholar]
- Ou, S.; Hao, X.; Lin, Z.; Wang, H.; Bouchard, J.; He, X.; Przesmitzki, S.; Wu, Z.; Zheng, J.; Lv, R.; et al. Light-duty plug-in electric vehicles in China: An overview on the market and its comparisons to the United States. Renew. Sustain. Energy Rev. 2019, 112, 747–761. [Google Scholar] [CrossRef]
- Liu, L.; Kong, F.; Liu, X.; Peng, Y.; Wang, Q. A review on electric vehicles interacting with renewable energy in smart grid. Renew. Sustain. Energy Rev. 2015, 51, 648–661. [Google Scholar] [CrossRef]
- Li, X.; Chen, P.; Wang, X. Impacts of renewables and socioeconomic factors on electric vehicle demands–Panel data studies across 14 countries. Energy Policy 2017, 109, 473–478. [Google Scholar] [CrossRef]
- IEA. Global EV outlook to Electric Mobility; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Posada, F. South Africa’s New Passenger Vehicle CO2 Emission Standards: Baseline Determination and Benefits Assessment; International Council on Clean Transportation: Washington, DC, USA, 2018. [Google Scholar]
- Schotte, S.; Zizzamia, R.; Leibbrandt, M. A poverty dynamics approach to social stratification: The South African case. World Dev. 2018, 110, 88–103. [Google Scholar] [CrossRef]
- Pillay, N.S.; Brent, A.C.; Musango, J.K.; van Geems, F. Using a System Dynamics Modelling Process to Determine the Impact of eCar, eBus and eTruck Market Penetration on Carbon Emissions in South Africa. Energies 2020, 13, 575. [Google Scholar] [CrossRef] [Green Version]
- Statistics South Africa. Mid-Year Population Estimates 2018; Statistics South Africa: Pretoria, South Africa, 2018. [Google Scholar]
- Gauteng Info, “Gauteng Information,” Johannesburg, South Africa. 2018. Available online: https://www.gauteng-info.co.za/provinces/info (accessed on 23 May 2018).
- Goyns, P.H. Modelling Real-World Driving, Fuel Consumption and Emissions of Passenger Vehicles: A Case Study in Johannesburg. Ph.D. Thesis, University of Johannesburg, Johannesburg, South Africa, 2008; p. 223. [Google Scholar]
- Tongwane, M. Transport Sector Greenhouse Gas Inventory for South Africa for the base year 2009; University of Witwatersrand: Johannesburg, South Africa, 2013. [Google Scholar]
- IPCC. Emissions: Enery, Road Transport. Good Pract. Guid. Uncertain. Manag. Natl. Greenh. Gas Invent. 2007, 55–70. [Google Scholar]
- van Rensburg, J.; Krygsman, S. Running dry-assessing the fuel levy as a long-term, economically efficient road-use fund. In Proceedings of the 34th Annual Southern African Transport Conference, Pretoria, South Africa, 6–9 July 2015; pp. 25–26. [Google Scholar]
- XLSTAT. ARIMA. 2018. Available online: https://www.xlstat.com/en/solutions/features/arima (accessed on 17 September 2018).
- Government of South Africa. South Africa’s Intended Nationally Determined Contribution; Government of South Africa: Pretoria, South Africa, 2015. [Google Scholar]
- Smith, S. By the numbers: We take a closer look at the BMW i brand. Car Mag News 2018, 1–8. [Google Scholar]
- Dugmore, H. SA’s Groundbreaking Solar Charging System for Electric Vehicles. Available online: https://heatherdugmore.co.za/sas-groundbreaking-solar-charging-system-for-electric-vehicles/ (accessed on 24 April 2020).
- ESI-Africa SA Unveils Funding Scheme to Drive EV Charging Infrastructure. Available online: https://www.esi-africa.com/news/sa-unveils-funding-scheme-to-drive-ev-charging-infrastructure/ (accessed on 24 April 2020).
- eNaTIS. 30 September 2018—Live Vehicle Population as per the National Traffic Information System. 2018. Available online: http://www.enatis.com/ (accessed on 12 June 2019).
- eNaTIS. Live Vehicle Population as per the National Traffic Information System. 2010. Available online: http://www.enatis.com/ (accessed on 26 September 2017).
- eNaTIS. Live Vehicle Population as per the National Traffic Information System. 2014. Available online: http://www.enatis.com/ (accessed on 26 September 2017).
- eNaTIS. “31 December 2013—Live vehicle population as per the National Traffic Information System.” 2013, pp. 55–60. Available online: http://www.enatis.com/ (accessed on 26 September 2017).
- eNaTIS. 31 December 2011—Live vehicle population as per the National Traffic Information System. 2011. Available online: http://www.enatis.com/ (accessed on 26 September 2017).
- RTMC. Vehicle Population. 2010. Available online: http://www.rtmc.co.za/RTMC/TReports.jsp (accessed on 25 March 2011).
- Woodcock, J.; Edwards, P.; Tonne, C.; Armstrong, B.G.; Ashiru, O.; Banister, D.; Beevers, S.; Chalabi, Z.; Chowdhury, Z.; Cohen, A.; et al. Public health benefits of strategies to reduce greenhouse-gas emissions: Urban land transport. Lancet 2009, 374, 1930–1943. [Google Scholar] [CrossRef]
- Bharadwaj, S.; Ballare, S.; Rohit, C.M.; Chandel, M.K. Impact of congestion on greenhouse gas emissions for road transport in Mumbai metropolitan region. Transp. Res. Procedia 2017, 25, 3542–3555. [Google Scholar] [CrossRef]
- Rush-hour truck ban: SA economy at risk ? Wheels24 News 2015, 1–6.
- Castro, J.T.; Kuse, Y.; Hyodo, T. A Study on the Impact and Effectiveness of the Truck Ban Scheme in Metro Manila. J. East. Asia Soc. Transp. Stud. 2003, 5, 2177–2192. [Google Scholar]
- Wang, J.; Chi, L.; Hu, X.; Zhou, H. Urban traffic congestion pricing model with the consideration of carbon emissions cost. Sustainability 2014, 6, 676–691. [Google Scholar] [CrossRef] [Green Version]
- Bureau, B. Distributional effects of a carbon tax on car fuels in France. Energy Econ. 2011, 33, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Lewis, R.; Zako, R.; Biddle, A.; Isbell, R. Reducing Greenhouse Gas Emissions from Transportation and Land Use: Lessons from West Coast States. J. Transp. Land Use 2018, 11, 343–366. [Google Scholar] [CrossRef]
Vehicle Class | Number of Vehicles | Number Using Fuel Type (%) | Emission Factor (g CO2/km) | |||
---|---|---|---|---|---|---|
Diesel | Petrol | Diesel | Petrol | Diesel | Petrol | |
Hybrid (HEV) | - | - | - | - | - | 110 |
Plug-in Hybrid (PHEV) | - | - | - | - | - | 50 |
Mini | 0 | 238,381 | 0 | 8 | - | 125 |
Small | 167,165 | 816,157 | 5.61 | 27.39 | 120 | 140 |
Lower medium | 106,378 | 519,373 | 3.57 | 17.43 | 118 | 148 |
Medium | 35,459 | 173,124 | 1.19 | 5.81 | 118 | 138 |
Upper medium | 5066 | 24,732 | 0.17 | 0.83 | 135 | 165 |
Sport | 10,131 | 49,464 | 0.34 | 1.66 | 130 | 180 |
Off-road | 15,197 | 74,196 | 0.51 | 2.49 | 128 | 149 |
Multi-purpose vehicle (MPV) | 20,262 | 98,928 | 0.68 | 3.32 | 165 | 198 |
Sport utility vehicle (SUV) | 106,378 | 519,373 | 3.57 | 17.43 | 182 | 180 |
Total | 466,036 | 2,513,728 | 15.64 | 84.36 | - | - |
Coefficients | Scenario 1 | Scenario 2 | Scenario 3 | Scenario B | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HEV | PHEV | BEV | HEV | PHEV | BEV | HEV | PHEV | BEV | HEV | PHEV | BEV | |
y(1) | 0.037 | 0.008 | 0.012 | 0.037 | 0.008 | 0.012 | 0.037 | 0.008 | 0.012 | 0.037 | 0.008 | 0.012 |
y(12) | 5 | 5 | 10 | 5 | 10 | 5 | 10 | 5 | 5 | 0 | 0 | 0 |
a | 0.0246 | 0.0047 | 0.0067 | 0.0246 | 0.0044 | 0.0073 | 0.0232 | 0.0047 | 0.0073 | 0.0232 | 0.0047 | 0.0073 |
b | 1.505 | 1.710 | 1.751 | 1.505 | 1.812 | 1.653 | 1.595 | 1.710 | 1.653 | 1.595 | 1.710 | 1.653 |
Year | Number of Motorcars | Annual Distance Travelled (km) |
---|---|---|
2000 | 1,619,321 | 15,065 |
2001 | 1,656,851 | 14,866 |
2002 | 1,683,599 | 14,668 |
2003 | 1,733,474 | 14,752 |
2004 | 1,793,560 | 14,967 |
2005 | 1,907,656 | 14,452 |
2006 | 2,042,811 | 13,546 |
2007 | 2,155,748 | 12,982 |
2008 | 2,201,397 | 11,994 |
2009 | 2,256,780 | 11,878 |
2010 | 2,361,782 | 11,878 a |
2011 | 2,454,894 | 11,878 a |
2012 | 2,562,594 | 11,878 a |
2013 | 2,676,080 | 11,878 a |
2014 | 2,773,847 | 11,878 a |
2015 | 2,859,623 | 11,878 a |
2016 | 2,931,299 | 11,878 a |
2017 | 2,979,764 | - |
Year | Emissions by Motor Vehicle Class (Gg CO2/year) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | Total | |
2000 | 256.9 | 101.7 | 1068.3 | 63.7 | 718.7 | 21.2 | 223.4 | 3.5 | 38.2 | 6.7 | 83.2 | 9.9 | 103.4 | 17.0 | 183.1 | 98.2 | 874.1 | 3871.2 |
2001 | 262.9 | 104.1 | 1093.1 | 65.1 | 735.4 | 21.7 | 228.6 | 3.5 | 39.0 | 6.8 | 85.2 | 10.1 | 105.8 | 17.3 | 187.4 | 100.5 | 894.4 | 3960.9 |
2002 | 267.1 | 105.8 | 1110.8 | 66.2 | 747.2 | 22.1 | 232.2 | 3.6 | 39.7 | 6.9 | 86.6 | 10.3 | 107.5 | 17.6 | 190.4 | 102.1 | 908.8 | 4024.9 |
2003 | 275.1 | 108.9 | 1143.7 | 68.2 | 769.4 | 22.7 | 239.1 | 3.7 | 40.8 | 7.2 | 89.1 | 10.6 | 110.7 | 18.2 | 196.1 | 105.1 | 935.7 | 4144.1 |
2004 | 284.6 | 112.7 | 1183.3 | 70.5 | 796.0 | 23.5 | 247.4 | 3.8 | 42.3 | 7.4 | 92.2 | 10.9 | 114.5 | 18.8 | 202.9 | 108.8 | 968.2 | 4287.7 |
2005 | 302.7 | 119.9 | 1258.6 | 75.0 | 846.7 | 25.0 | 263.2 | 4.1 | 44.9 | 7.9 | 98.1 | 11.6 | 121.8 | 20.0 | 215.8 | 115.7 | 1029.7 | 4560.5 |
2006 | 324.1 | 128.4 | 1347.7 | 80.3 | 906.7 | 26.8 | 281.8 | 4.4 | 48.1 | 8.4 | 105.0 | 12.4 | 130.4 | 21.4 | 231.0 | 123.9 | 1102.7 | 4883.6 |
2007 | 342.1 | 135.5 | 1422.3 | 84.8 | 956.8 | 28.3 | 297.4 | 4.6 | 50.8 | 8.9 | 110.8 | 13.1 | 137.6 | 22.6 | 243.8 | 130.7 | 1163.7 | 5153.6 |
2008 | 349.3 | 138.3 | 1452.4 | 86.6 | 977.0 | 28.9 | 303.7 | 4.7 | 51.9 | 9.1 | 113.2 | 13.4 | 140.5 | 23.1 | 249.0 | 133.5 | 1188.3 | 5262.7 |
2009 | 358.1 | 141.8 | 1488.9 | 88.7 | 1001.6 | 29.6 | 311.3 | 4.8 | 53.2 | 9.3 | 116.0 | 13.7 | 144.1 | 23.6 | 255.2 | 136.9 | 1218.2 | 5395.1 |
2010 | 374.7 | 148.4 | 1558.2 | 92.9 | 1048.2 | 31.0 | 325.8 | 5.1 | 55.6 | 9.7 | 121.4 | 14.4 | 150.8 | 24.7 | 267.1 | 143.2 | 1274.9 | 5646.2 |
2011 | 389.5 | 154.3 | 1619.6 | 96.5 | 1089.6 | 32.2 | 338.6 | 5.3 | 57.8 | 10.1 | 126.2 | 15.0 | 156.7 | 25.7 | 277.6 | 148.9 | 1325.1 | 5868.8 |
2012 | 406.6 | 161.0 | 1690.7 | 100.8 | 1137.4 | 33.6 | 353.5 | 5.5 | 60.4 | 10.6 | 131.7 | 15.6 | 163.6 | 26.8 | 289.8 | 155.4 | 1383.3 | 6126.2 |
2013 | 424.6 | 168.1 | 1765.5 | 105.2 | 1187.7 | 35.1 | 369.2 | 5.7 | 63.1 | 11.0 | 137.6 | 16.3 | 170.8 | 28.0 | 302.7 | 162.3 | 1444.5 | 6397.5 |
2014 | 440.1 | 174.3 | 1830.0 | 109.1 | 1231.1 | 36.4 | 382.6 | 5.9 | 65.4 | 11.4 | 142.6 | 16.9 | 177.1 | 29.0 | 313.7 | 168.2 | 1497.3 | 6631.3 |
2015 | 453.7 | 179.7 | 1886.6 | 112.4 | 1269.2 | 37.5 | 394.5 | 6.1 | 67.4 | 11.8 | 147.0 | 17.4 | 182.5 | 29.9 | 323.4 | 173.4 | 1543.6 | 6836.3 |
2016 | 465.1 | 184.2 | 1933.9 | 115.3 | 1301.0 | 38.4 | 404.4 | 6.3 | 69.1 | 12.1 | 150.7 | 17.9 | 187.1 | 30.7 | 331.5 | 177.8 | 1582.3 | 7007.7 |
2017 | 472.8 | 187.2 | 1965.9 | 117.2 | 1322.5 | 39.1 | 411.1 | 6.4 | 70.2 | 12.3 | 153.2 | 18.2 | 190.2 | 31.2 | 337.0 | 180.7 | 1608.5 | 7123.5 |
2018 | 481.6 | 190.7 | 2002.5 | 119.3 | 1347.1 | 39.8 | 418.7 | 6.5 | 71.5 | 12.5 | 156.0 | 18.5 | 193.7 | 31.8 | 343.3 | 184.1 | 1638.4 | 7256.1 |
Kendall’s tau | 1 |
---|---|
S | 153.000 |
Var(S) | 697.000 |
p-value (Two-tailed) | <0.0001 |
alpha | 0.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moeletsi, M.E.; Tongwane, M.I. Projected Direct Carbon Dioxide Emission Reductions as a Result of the Adoption of Electric Vehicles in Gauteng Province of South Africa. Atmosphere 2020, 11, 591. https://doi.org/10.3390/atmos11060591
Moeletsi ME, Tongwane MI. Projected Direct Carbon Dioxide Emission Reductions as a Result of the Adoption of Electric Vehicles in Gauteng Province of South Africa. Atmosphere. 2020; 11(6):591. https://doi.org/10.3390/atmos11060591
Chicago/Turabian StyleMoeletsi, Mokhele Edmond, and Mphethe Isaac Tongwane. 2020. "Projected Direct Carbon Dioxide Emission Reductions as a Result of the Adoption of Electric Vehicles in Gauteng Province of South Africa" Atmosphere 11, no. 6: 591. https://doi.org/10.3390/atmos11060591
APA StyleMoeletsi, M. E., & Tongwane, M. I. (2020). Projected Direct Carbon Dioxide Emission Reductions as a Result of the Adoption of Electric Vehicles in Gauteng Province of South Africa. Atmosphere, 11(6), 591. https://doi.org/10.3390/atmos11060591