Characterizing Greenhouse Gas Emissions and Global Warming Potential of Wheat-Maize Cropping Systems in Response to Organic Amendments in Eutric Regosols, China
Abstract
:1. Introduction
2. Experiments
2.1. Site Conditions
2.2. Experimental Design
2.3. Soil Measurements
2.4. Crop Yield Measurements
2.5. Soil CH4 and N2O Emission Measurements
2.6. Calculations
2.7. Statistical Analysis
3. Results
3.1. Seasonal Variations in Environmental Factors
3.2. CH4 Fluxes
3.3. N2O Emissions
3.4. Changes in Soil Substrates
3.5. Global Warming Potential (GWP)
3.6. Grain Yield
3.7. Yield-Scaled GWP
3.8. Relationships between CH4 Uptake and N2O Emissions, Environmental Factors, and Soil Substrates
4. Discussion
4.1. On CH4 Fluxes
4.2. On N2O Emissions
4.3. GWP and Yield-Scaled GWP
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cassman, K.G.; Dobermann, A.; Walters, D.T.; Yang, H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 2003, 28, 315–358. [Google Scholar] [CrossRef] [Green Version]
- Linquist, B.; Van Groenigen, K.J.; Adviento-Borbe, M.A.; Pittelkow, C.; Van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chang. Biol. 2012, 18, 194–209. [Google Scholar] [CrossRef]
- Odhiambo, J.J.; Magandini, V.N. An assessment of the use of mineral and organic fertilizers by smallholder farmers in Vhembe district, Limpopo province, South Africa. Afr. J. Agric. Res. 2008, 3, 357–362. [Google Scholar]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse gas mitigation in agriculture. Philos.Trans. R. Soc. B 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solution for cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reay, D.S.; Davidson, E.A.; Smith, K.A.; Smith, P.; Melillo, J.M.; Dentener, F.; Crutzen, P.J. Global agriculture and nitrous oxide emissions. Nat. Clim. Chang. 2012, 2, 410–416. [Google Scholar] [CrossRef]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Zhu, B.; Wang, X.G.; Wang, Y.Q. Long-term field measurements of annual methane and nitrous oxide emissions from a Chinese subtropical wheat-rice rotation system. Soil Biol. Biochem. 2017, 115, 21–34. [Google Scholar] [CrossRef]
- Htun, Y.M.; Tong, Y.; Gao, P.; Xiaotang, J. Coupled effects of straw and nitrogen management on N2O and CH4 emissions of rain-fed agriculture in Northwest China. Atmos. Environ. 2017, 157, 156–166. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Adviento-Borbe, M.A.A.; Haddix, M.L.; Binder, D.L.; Walters, D.T.; Dobermann, A. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Glob. Chang. Biol. 2007, 13, 1972–1988. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Bruggemann, N.; Dannenmann, M.; Bergman, J.; Wang, Y.Q.; Butterbach-Bahl, K. N2O and CH4 emissions, and NO3 leaching on a crop-yield basis from a subtropical rain-fed wheat-maize rotation in response to different types of nitrogen fertilizer. Ecosystems 2014, 17, 286–301. [Google Scholar] [CrossRef]
- Huang, T.; Gao, B.; Christie, P.; Ju, X. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. Biogeosciences 2013, 10, 7897–7911. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Zhu, B.; Zeng, Z. The influence of N-fertilization regimes on N2O emissions and denitrification in rain-fed cropland during the rainy season. Environ. Sci. Proc. Impacts 2014, 16, 2545–2553. [Google Scholar] [CrossRef] [PubMed]
- Saggar, S. Estimation of nitrous oxide emission from ecosystems and its mitigation technologies. Agric. Ecosyst. Environ. 2010, 136, 189–191. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Wang, Z.; Zhang, X. Phosphorus fractions and release potential of ditch sediments from different land uses in a small catchment of the upper Yangtze River. J. Soils Sed. 2012, 12, 278–290. [Google Scholar] [CrossRef]
- Li, Z.M.; Zhang, X.W.; He, Y.R.; Tang, S.J. Purple Soil in China; Science Press: Beijing, China, 1991. [Google Scholar]
- Zhu, B.; Wang, T.; Kuang, F.; Luo, Z.; Tang, J.; Xu, T. Measurement of nitrate leaching from a hill slope cropland in the Central Sichuan Basin, China. Soil Sci. Soc. Am. J. 2009, 73, 1419–1426. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, B.; Zhang, J.; Müller, C.; Cai, Z. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biol. Biochem. 2015, 91, 222–231. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Butterbach-bahl, K.; Zheng, X.; Wang, T.; Wang, Y. Nitrous oxide emissions and nitrate leaching from a rain-fed wheat-maize rotation in the Sichuan Basin, China. Plant Soil 2013, 362, 149–159. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Velthof, G.L.; Oenema, O.; Van Groenigen, K.J.; Van Kessel, C. Towards an agronomic assessment of N2O emissions: A case study for arable crops. Eur. J. Soil Sci. 2010, 61, 903–913. [Google Scholar] [CrossRef]
- Parkin, T.B.; Venterea, R.T.; Follett, R.F. Chamber-based trace gas flux measurements. In Sampling Protocols; Follett, R.F., Ed.; USDA-Agricultural Research Service: Washington, DC, USA, 2010. [Google Scholar]
- Wang, Y.; Wang, Y. Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem. Adv. Atmos. Sci. 2003, 20, 842–844. [Google Scholar]
- Gao, B.; Ju, X.; Su, F.; Meng, Q.; Oenema, O.; Christie, P.; Chen, X.; Zhang, F. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study. Sci. Total Environ. 2014, 472, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, K.; Zheng, X. Responses of N2O and CH4 fluxes to fertilizer nitrogen addition rates in an irrigated wheat-maize cropping system in northern China. Biogeosciences 2012, 9, 839–850. [Google Scholar] [CrossRef] [Green Version]
- Hu, R.G. Effects of fertilization on the potential of methane oxidation in upland soil. Ecol. Environ. 2004, 13, 74–77. [Google Scholar]
- Aronson, E.L.; Helliker, B.R. Methane flux in non-wetland soils in response to nitrogen addition: A meta-analysis. Ecology 2010, 91, 3242–3251. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Lu, F.; He, P.J.; Shao, L.M. Response of methanotrophs and methane oxidation on ammonium application in landfill soils. Appl. Microbiol. Biotechnol. 2011, 92, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.F.; Zhao, H.; Lu, Y.Z.; Fei, L.U.; Wang, X.K. The effects of nitrogen fertilizer application on methane and nitrous oxide emission/uptake in Chinese croplands. J. Integr. Agric. 2016, 15, 440–450. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.Y.; Yao, Z.S.; Wang, K.; Zheng, X.H. Three-year measurements of nitrous oxide emissions from cotton and wheat-maize rotational cropping systems. Atmos. Environ. 2014, 96, 201–208. [Google Scholar] [CrossRef]
- Hu, X.K.; Su, F.; Ju, X.T.; Gao, B.; Oenema, O.; Christie, P.; Huang, B.X.; Jiang, R.F.; Zhang, F.S. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes. Environ. Pollut. 2013, 176, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.M.; Liu, H.B.; Zhang, J.Z.; Huang, J.; Wang, B.R. Long-term application of organic manure and mineral fertilizer on N2O and CO2 emissions in a red soil from cultivated maize-wheat rotation in China. Agric. Sci. China 2011, 10, 1748–1757. [Google Scholar] [CrossRef]
- Ding, W.X.; Luo, J.F.; Li, J.; Yu, H.Y.; Fan, J.L.; Liu, D.Y. Effect of long-term compost and inorganic fertilizer application on background N2O and fertilizer-induced N2O emissions from an intensively cultivated soil. Sci. Total Environ. 2013, 465, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, X.; Hu, F.; Shi, W. Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Glob. Chang. Biol 2013, 19, 2956–2964. [Google Scholar] [CrossRef] [PubMed]
- Eggleston, S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas. Inventorie; Institute for Global Environmental Strategies Hayama: Kanoyama Town, Japan, 2006; Volume 5. [Google Scholar]
- Huang, Y.; Zou, J.W.; Zheng, X.H.; Wang, Y.S.; Xu, X.K. Nitrous oxide emissions as influenced by amendment of plant residues with different C/N ratios. Soil Biol. Biochem. 2004, 36, 973–981. [Google Scholar] [CrossRef]
- Burger, M.; Jackson, L.E. Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biol. Biochem. 2003, 35, 29–36. [Google Scholar] [CrossRef]
- Ball, B.C.; Mctaggart, I.P.; Scott, A. Mitigation of greenhouse gas emissions from soil under silage production by use of organic manures or slow-release fertilizer. Soil Use Manag. 2004, 20, 287–295. [Google Scholar] [CrossRef]
- Meijide, A.; Diez, J.A.; Sanchez-Martin, L.; Lopez-Fernandez, S.; Vallejo, A. Nitrogen oxide emissions from an irrigated maize crop amended with treated pig slurries and composts in a Mediterranean climate. Agric. Ecosyst. Environ. 2007, 121, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.J.; Dalal, R.C.; Reeves, S.H.; Butterbach-Bahl, K.; Kiese, R. Greenhouse gas fluxes from an Australian subtropical cropland under long-term contrasting management regimes. Glob. Chang. Biol. 2011, 17, 3089–3101. [Google Scholar] [CrossRef]
- Pelster, D.; Rufino, M.; Rosenstock, T.; Mango, J.; Saiz, G.; Diaz-Pines, E.; Baldi, G.; Butterbach-Bahl, K. Smallholder farms in eastern African tropical highlands have low soil greenhouse gas fluxes. Biogeosciences 2017, 14, 187–202. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Wang, X.G.; Ke, Y.; Zhu, B. Effects of afforestation on soil nitrous oxide emissions in a subtropical montane agricultural landscape: A 3-year field experiment. Agric. For. Meteorol. 2019, 266–267, 221–230. [Google Scholar] [CrossRef]
- Yao, Z.S.; Liu, C.Y.; Dong, H.B.; Wang, R.; Zheng, X.H. Annual nitric and nitrous oxide fluxes from Chinese subtropical plastic greenhouse and conventional vegetable cultivations. Environ. Pollut. 2015, 196, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Schellenberg, D.L.; Alsina, M.M.; Muhammad, S.; Stockert, C.M.; Wolff, M.W.; Sanden, B.L.; Brown, P.H.; Smart, D.R. Yield-scaled global warming potential from N2O emissions and CH4 oxidation for almond (Prunus dulcis) irrigated with nitrogen fertilizers on arid land. Agric. Ecosyst. Environ. 2012, 155, 7–15. [Google Scholar] [CrossRef]
Year | Treatments | Wheat Season | Maize Season | Annual | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CH4 | N2O | EFd | CH4 | N2O | EFd | CH4 | N2O | EFd | ||
2016–2017 | CK | −1.79 ± 0.15a | 0.19 ± 0.01d | - | −0.83 ± 0.02a | 0.19 ± 0.06c | - | −2.81 ± 0.15a | 0.42 ± 0.09c | - |
NPK | −1.81 ± 0.07a | 0.73 ± 0.04b | 0.41 | −0.93 ± 0.04a | 0.69 ± 0.05b | 0.34 | −2.98 ± 0.05ab | 1.48 ± 0.08b | 0.38 | |
OMNPK | −2.05 ± 0.31a | 0.62 ± 0.02c | 0.33 | −0.89 ± 0.03a | 3.65 ± 0.02a | 2.31 | −3.52 ± 0.08c | 4.76 ± 0.04a | 1.55 | |
CRNPK | −2.38 ± 0.04b | 0.83 ± 0.05a | 0.49 | −0.79 ± 0.03a | 0.81 ± 0.09b | 0.42 | −3.27 ± 0.06bc | 1.77 ± 0.14b | 0.48 | |
2017–2018 | CK | −1.29 ± 0.10a | 0.19 ± 0.02d | - | −0.84 ± 0.02a | 0.23 ± 0.02d | - | −2.37 ± 0.08a | 0.46 ± 0.03d | - |
NPK | −1.74 ± 0.06b | 0.59 ± 0.04b | 0.31 | −1.05 ± 0.05b | 0.64 ± 0.05c | 0.27 | −2.96 ± 0.09b | 1.33 ± 0.09c | 0.31 | |
OMNPK | −1.45 ± 0.07ab | 0.50 ± 0.01c | 0.24 | −0.75 ± 0.01a | 2.92 ± 0.01a | 1.79 | −2.42 ± 0.04a | 4.40 ± 0.02a | 1.41 | |
CRNPK | −1.66 ± 0.11b | 0.83 ± 0.02a | 0.50 | −0.78 ± 0.02a | 0.87 ± 0.05b | 0.42 | −2.58 ± 0.13a | 1.82 ± 0.02b | 0.49 | |
Mean (2016–2018) | CK | −1.54 ± 0.07a | 0.19 ± 0.01d | - | −0.84 ± 0.01a | 0.21 ± 0.04d | - | −2.60 ± 0.06a | 0.44 ± 0.05d | - |
NPK | −1.77 ± 0.01b | 0.66 ± 0.04b | 0.36 | −0.99 ± 0.05b | 0.67 ± 0.04c | 0.30 | −2.97 ± 0.06b | 1.40 ± 0.07c | 0.34 | |
OMNPK | −1.75 ± 0.05b | 0.56 ± 0.00c | 0.28 | −0.82 ± 0.02a | 3.28 ± 0.02a | 2.05 | −2.97 ± 0.04b | 4.58 ± 0.01a | 1.48 | |
CRNPK | −2.02 ± 0.04c | 0.83 ± 0.02a | 0.50 | −0.78 ± 0.03a | 0.84 ± 0.06b | 0.42 | −2.93 ± 0.06b | 1.80 ± 0.07b | 0.49 |
Year | Treatments | Wheat Season | Maize Season | Annual | |||||
---|---|---|---|---|---|---|---|---|---|
GWP | Yield | Yield-Scaled GWP | GWP | Yield | Yield-Scaled GWP | GWP | Yield-Scaled GWP | ||
2016–2017 | CK | 0.01 ± 0.01c | 0.73 ± 0.13c | 22.24 ± 16.22b | 0.05 ± 0.02c | 1.35 ± 0.10b | 34.07 ± 16.86b | 0.07 ± 0.03c | 33.20 ± 14.48c |
NPK | 0.24 ± 0.01a | 2.29 ± 0.28b | 107.82 ± 21.65a | 0.25 ± 0.02b | 4.22 ± 0.33a | 60.26 ± 1.09b | 0.50 ± 0.03b | 77.31 ± 4.41bc | |
OMNPK | 0.18 ± 0.01b | 3.14 ± 0.12a | 58.11 ± 3.48ab | 1.49 ± 0.01a | 4.38 ± 0.50a | 347.20 ± 36.94a | 1.85 ± 0.01a | 249.41 ± 21.66a | |
CRNPK | 0.26 ± 0.02a | 2.51 ± 0.12b | 103.13 ± 12.36a | 0.31 ± 0.04b | 4.88 ± 0.09a | 63.64 ± 8.85b | 0.62 ± 0.06b | 83.86 ± 9.80b | |
2017–2018 | CK | 0.03 ± 0.01c | 0.55 ± 0.06b | 54.66 ± 10.75b | 0.07 ± 0.01d | 0.56 ± 0.16b | 134.20 ± 32.72b | 0.10 ± 0.01d | 98.04 ± 24.85b |
NPK | 0.18 ± 0.02b | 3.56 ± 0.21a | 51.08 ± 5.98b | 0.23 ± 0.02c | 5.14 ± 0.49a | 44.82 ± 4.51c | 0.44 ± 0.04c | 51.42 ± 5.55c | |
OMNPK | 0.15 ± 0.00b | 3.87 ± 0.15a | 39.55 ± 2.47b | 1.19 ± 0.01a | 5.27 ± 0.25a | 226.28 ± 11.72a | 1.74 ± 0.01a | 190.98 ± 7.00a | |
CRNPK | 0.29 ± 0.01a | 3.68 ± 0.06a | 77.65 ± 2.50a | 0.33 ± 0.02b | 5.26 ± 0.46a | 63.88 ± 3.44c | 0.66 ± 0.01b | 74.29 ± 4.08bc | |
Mean (2016–2018) | CK | 0.02 ± 0.01d | 0.64 ± 0.05c | 38.45 ± 12.04c | 0.06 ± 0.02d | 0.96 ± 0.13b | 84.14 ± 22.43b | 0.08 ± 0.02d | 65.62 ± 18.99b |
NPK | 0.21 ± 0.02b | 2.93 ± 0.16b | 79.45 ± 13.08ab | 0.24 ± 0.02c | 4.68 ± 0.39a | 52.54 ± 1.72b | 0.47 ± 0.03c | 64.37 ± 4.44b | |
OMNPK | 0.17 ± 0.00c | 3.50 ± 0.10a | 48.83 ± 1.39bc | 1.34 ± 0.01a | 4.83 ± 0.13a | 286.74 ± 12.62a | 1.80 ± 0.00a | 220.19 ± 8.19a | |
CRNPK | 0.27 ± 0.01a | 3.09 ± 0.09b | 90.39 ± 6.16a | 0.32 ± 0.02b | 5.07 ± 0.19a | 63.76 ± 2.89b | 0.64 ± 0.03b | 79.08 ± 3.54b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bah, H.; Ren, X.; Wang, Y.; Tang, J.; Zhu, B. Characterizing Greenhouse Gas Emissions and Global Warming Potential of Wheat-Maize Cropping Systems in Response to Organic Amendments in Eutric Regosols, China. Atmosphere 2020, 11, 614. https://doi.org/10.3390/atmos11060614
Bah H, Ren X, Wang Y, Tang J, Zhu B. Characterizing Greenhouse Gas Emissions and Global Warming Potential of Wheat-Maize Cropping Systems in Response to Organic Amendments in Eutric Regosols, China. Atmosphere. 2020; 11(6):614. https://doi.org/10.3390/atmos11060614
Chicago/Turabian StyleBah, Hamidou, Xiao Ren, Yanqiang Wang, Jialiang Tang, and Bo Zhu. 2020. "Characterizing Greenhouse Gas Emissions and Global Warming Potential of Wheat-Maize Cropping Systems in Response to Organic Amendments in Eutric Regosols, China" Atmosphere 11, no. 6: 614. https://doi.org/10.3390/atmos11060614
APA StyleBah, H., Ren, X., Wang, Y., Tang, J., & Zhu, B. (2020). Characterizing Greenhouse Gas Emissions and Global Warming Potential of Wheat-Maize Cropping Systems in Response to Organic Amendments in Eutric Regosols, China. Atmosphere, 11(6), 614. https://doi.org/10.3390/atmos11060614