Microbial Monitoring as a Tool for Preventing Infectious Risk in the Operating Room: Results of 10 Years of Activity
Abstract
:1. Introduction
2. Methods
2.1. Setting
2.2. Microbiological Testing of the Air
2.3. Microbiological Testing of Surfaces
2.4. Statistical Analysis
3. Results
3.1. Microbiological Monitoring of the Air
3.2. Microbiological Monitoring of Surfaces
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Guidelines on the Prevention of Surgical Site Infection. 2016. Available online: https://www.who.int/gpsc/ssi-guidelines/en/ (accessed on 16 November 2020).
- Zingg, W.; Demartines, N.; Imhof, A.; Senn, G.; Ruef, C. Rapid colonization with methicillin-resistant Coagulase-Negative staphylococci after surgery. World J. Surg. 2009, 33, 2058–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control. Healthcare-Associated Infections: Surgical Site Infections; Annual Epidemiological Report for 2017; ECDC: Stockholm, Sweden, 2019. [Google Scholar]
- Marchi, M.; Pan, A.; Gagliotti, C.; Morsillo, F.; Parenti, M.; Resi, D.; Moro, M.L.; The Sorveglianza Nazionale Infezioni in Chirurgia [SNICh) Study Group. The Italian national surgical site infection surveillance programme and its positive impact, 2009 to 2011. Euro Surveill. 2014, 19, 20815. Available online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20815 (accessed on 16 November 2020). [CrossRef] [PubMed] [Green Version]
- GlobalSurg Collaborative. Determining the worldwide epidemiology of surgical site infections after gastrointestinal resection surgery: Protocol for a multicentre, international, prospective cohort study (GlobalSurg 2). BMJ Open 2017, 7, e012150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owens, C.; Stoessel, K. Surgical site infections: Epidemiology, microbiology and prevention. J. Hosp. Infect. 2008, 70, 3–10. [Google Scholar] [CrossRef]
- Leaper, D.J.; van Goor, H.; Reilly, J.; Petrosillo, N.; Geiss, H.K.; Torres, A.J.; Berger, A. Surgical site infection—A European perspective of incidence and economic burden. Int. Wound J. 2004, 1, 247–273. [Google Scholar] [CrossRef]
- Atata, R.F.; Ibrahim, Y.K.E.; Olurinola, P.F.; Giwa, A.; Akanbi Ii, A.A.; Sani, A.A. Clinical bacterial isolates from hospital environment as agents of surgical wound nosocomial infections. J. Pharm. Bioresour. 2011, 7, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Ishida, T.; Nakano, K.; Nakatani, H.; Gomi, A. Bacteriological evaluation of the cardiac surgery environment accompanying hospital relocation. Surg. Today 2006, 36, 504–507. [Google Scholar] [CrossRef]
- Lutz, B.D.; Jin, J.; Rinaldi, M.G.; Wickes, B.L.; Huycke, M.M. Outbreak of invasive Aspergillus infection in xurgical patients, zssociated with a contaminated air-handling system. Clin. Infect. Dis. 2003, 37, 786–793. [Google Scholar] [CrossRef] [Green Version]
- Mangram, A.J.; Horan, T.C.; Pearson, M.L.; Silver, L.C.; Jarvis, W.R. Guideline for prevention of surgical site infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am. J. Infect. Control 1999, 27, 97–132. [Google Scholar] [CrossRef]
- Charnley, J.; Eftekhar, M. Postoperative infection in total prosthetic replacement arthroplasty of the hip-joint with special reference to the bacterial content of air in the operating room. Br. J. Surg. 1969, 56, 641–649. [Google Scholar] [CrossRef]
- Lidwell, O.M.; Lowbory, E.J.L.; Whyte, W.; Blowers, R.; Stanley, S.J.; Lowe, D. Airborne contamination of wounds in joint replacement operations: The rela-tionship to sepsis rates. J. Hosp. Infect. 1983, 4, 11–31. [Google Scholar] [CrossRef]
- Pasqualotto, A.C.; Denning, D.W. Post-operative aspergillosis. Clin. Microbiol. Infect. 2006, 12, 1060–1076. [Google Scholar] [CrossRef] [PubMed]
- Pitzurra, M.; Pasquarella, C.; D’alessandro, D.; Savino, A. La Prevenzione dei Rischi in Sala Operatoria; Società Editrice Universo: Roma, Italy, 1999. [Google Scholar]
- Istituto Superiore Per la Prevenzione E la Sicurezza del Lavoro (ISPESL)—Dipartimento Igiene del Lavoro. Linee Guida Sugli Standard di Sicurezza e di Igiene del Lavoro nel Reparto Operatorio. Available online: https://www.inail.it/cs/internet/docs/linee-guida-igiene-reparto-operatorio.pdf?section=attivita (accessed on 16 November 2020).
- National Health Service—Health Technical Memorandum 2025. Ventilation in Healthcare Premises. Available online: https://www.mintie.com/assets/img/education/NHS%20Estates%20-%20HVAC.pdf (accessed on 1 December 2020.).
- Pasquarella, C.; Masia, M.D.; Nnanga, N.; Sansebastiano, G.E.; Savino, A.; Signorelli, C.; Veronesi, L. Confronto tra due metodi di cam-pionamento nel monitoraggio microbiologico in sala operatoria: Campionamento attivo e passive/Microbial air monitoring in operating theatre: Active and passive samplings. Ann. Ig. 2004, 16, 375–386. [Google Scholar] [PubMed]
- Centers for Disease Control and Prevention (CDC). Guidelines for Environmental Infection Control in Health-Care Facilities—Recommendation of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC); U.S. Department of Health and Human Services: Atlanta, GA, USA, 2003.
- Streifel, A.J. Air cultures for fungi. In Clinical Microbiology Procedures Handbook; Gilchrist, M., Ed.; American Society for Microbiology Press: Washington, DC, USA, 1992; pp. 11.8.1–11.8.7. [Google Scholar]
- De Werra, C.; Schiavone, D.; Di Micco, R.; Triassi, M. Le infezioni del sito chirurgico in Italia. Infez. Med. 2009, 4, 205–218. [Google Scholar]
- Giacometti, A.; Cirioni, O.; Schimizzi, A.M.; Del Prete, M.S.; Barchiesi, F.; D’Errico, M.M.; Petrelli, E.; Scalise, G. Epidemiology and Microbiology of Surgical Wound Infections. J. Clin. Microbiol. 2000, 38, 918–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marthi, B.; Fieland, V.P.; Walter, M.; Seidler, R.J. Survival of bacteria during aerosolization. Appl. Environ. Microbiol. 1990, 56, 3463–3467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.W. The effect of environmental parameters on the survival of airborne infectious agents. J. R. Soc. Interface 2009, 6, 737–746. [Google Scholar] [CrossRef] [Green Version]
- Bonadonna, L.; Briancesco, R.; Coccia, A.M.; Della Libera, S.; Fuselli, S.; Gucci, P.M.B.; Iacovacci, P.; Lacchetti, I.; La Rosa, G.; Meloni, P.; et al. Strategie di Monitoraggio Dell’Inquinamento di Origine Biologica Dell’Aria in Ambienti Indoor; Rapporti Istisan 13/37; Istituto Superiore di Sanità: Roma, Italy, 2013.
- Davane, M. Pseudomonas aeruginosa from hospital environment. J. Microbiol. Infect. Dis. 2014, 4, 42–43. [Google Scholar] [CrossRef] [Green Version]
- Ensayef, S.; Al Shalchi, S.; Sabbar, M. Microbial contamination in the operating theatre: A study in a hospital in Baghdad. East. Mediterr. Health J. 2009, 15, 219–223. [Google Scholar] [CrossRef]
- Beggs, C.B. The Airborne Transmission of Infection in Hospital Buildings: Fact or Fiction? Indoor Built Environ. 2003, 12, 9–18. [Google Scholar] [CrossRef]
- Sands, K.E.F.; Goldmann, D.A. Epidemiology of staphylococcus and group A streptococci. In Hospital Infections, 4th ed.; Bennett, J.V., Brachman, P.S., Eds.; Lippincott-Raven Publishers: Philadelphia, PA, USA, 1998; Chapter 41. [Google Scholar]
- Dohmen, P. Influence of Skin Flora and Preventive Measures on Surgical Site Infection during Cardiac Surgery. Surg. Infect. 2006, 7, s13–s17. [Google Scholar] [CrossRef] [PubMed]
- Dossier Infad—Anno 2, n. 17, Febbraio 2007. Available online: https://medtriennalisl.campusnet.unito.it/att/ecceinfad200_infbatresistenti.0.pdf (accessed on 16 November 2020).
- Seng, R.; Kitti, T.; Thummeepak, R.; Kongthai, P.; Leungtongkam, U.; Wannalerdsakun, S.; Sitthisak, S. Biofilm formation of methicillin-resistant coagulase negative staphylococci (MR-CoNS) isolated from community and hospital environments. PLoS ONE 2017, 12, e0184172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Istituto Nazionale per l’Assicurazione Contro gli Infortuni sul Lavoro (INAIL). Il Monitoraggio Microbiologico Negli Ambienti di Lavoro. Campionamento e Analisi. Edizione 2010. Available online: https://www.inail.it/cs/internet/comunicazione/pubblicazioni/catalogo-generale/il-monitoraggio-microbiologico-negli-ambienti-di-lavoro.html (accessed on 1 November 2020.).
- Kaya, D.; Agartan, C.A.; Yucel, M. Fungal Agents as a Cause of Surgical Wound Infections: An Overview of Host Factors. Wounds 2007, 19, 218–222. [Google Scholar] [PubMed]
Year | No. ORs Monitored | Examinations | At Rest Evaluations | Operational Evaluations | AR+OP | AR Only | OP Only |
---|---|---|---|---|---|---|---|
2010 | 15 | 22 | 22 | 19 | 19 | 3 | 0 |
2011 | 16 | 21 | 21 | 17 | 17 | 4 | 0 |
2012 | 18 | 18 | 18 | 16 | 16 | 2 | 0 |
2013 | 18 | 27 | 27 | 21 | 21 | 6 | 0 |
2014 | 18 | 19 | 19 | 14 | 14 | 5 | 0 |
2015 | 18 | 19 | 18 | 16 | 15 | 3 | 1 |
2016 | 18 | 21 | 21 | 19 | 19 | 2 | 0 |
2017 | 14 | 15 | 14 | 13 | 12 | 2 | 1 |
2018 | 14 | 14 | 14 | 14 | 14 | 0 | 0 |
2019 | 12 | 12 | 12 | 11 | 11 | 1 | 0 |
Total | 188 | 186 | 160 | 158 | 28 | 2 |
Statistics | At Rest | Operational | ||
---|---|---|---|---|
Bed | Air Inlet | Bed | Air Inlet | |
Minimum | 37 | 36.1 | 180.8 | 37 |
Maximum | 320 | 330 | >1000 | 712.5 |
Mean (Standard Deviation) | 81.9 (50.3) | 79.1 (51.3) | 274.2 (174.8) | 101.6 (79.7) |
Median (Interquartile Range) | 67.5 (52.5–88.8) | 67.5 (50–85) | 231.5 (196.3–270.4) | 95 (53.9–122.5) |
Bed | Anaesthesia Trolley | Scialytic Lamp | Instrument Table | Floor | Wall | Anaesthesia Machine | Total | |
---|---|---|---|---|---|---|---|---|
Flora absent | 41.3% (52/126) | 27.6% (34/123) | 16% (20/125) | 38.4% (48/125) | 4% (5/125) | 50.4% (63/125) | 32.2% (39/121) | 30% (261/870) |
Flora present | 58.7% (74/126) | 72.4% (89/123) | 84% (105/125) | 61.6% (77/125) | 96% (120/125) | 49.6% (62/125) | 67.8% (82/121) | 70% (609/870) |
≤5 CFU/plate | 77% (57/74) | 69.6% (62/89) | 57.2% (60/105) | 71.4% (55/77) | 30.8% (37/120) | 80.6% (50/62) | 69.5% (57/82) | 62.1% (378/609) |
>5 and ≤15 CFU/plate | 16.2% (12/74) | 22.5% (20/89) | 23.8% (25/105) | 22.1% (17/77) | 31.7% (38/120) | 12.9% (8/62) | 22% (18/82) | 22.6% (138/609) |
>15 CFU/plate | 6.8% (5/74) | 7.9% (7/89) | 19% (20/105) | 5.2% (4/77) | 37.5% (45/120) | 6.5% (4/62) | 8.5% (7/82) | 15.1% (92/609) |
Patina | 0 | 0 | 0 | 1.3% (1/77) | 0 | 0 | 0 | 0.2% (1/609) |
Room | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Total |
---|---|---|---|---|---|---|---|---|---|---|
K+/K | K+/K | K+/K | K+/K | K+/K | K+/K | K+/K | K+/K | K+/K | ||
1 | 0/6 | - | 2/8 | 0/7 | 2/7 | 1/7 | 1/7 | 0/7 | 0/7 | 6/56 (10.7%) |
2 | 1/6 | - | 4/7 | 1/7 | 2/7 | 1/7 | 0/7 | 1/7 | 0/7 | 10/55 (18.2%) |
3 | - | - | 1/7 | 3/7 | 0/7 | 0/7 | 1/7 | 2/7 | 0/7 | 7/49 (14.3%) |
4 | - | - | 1/7 | 0/7 | 0/7 | 0/7 | 1/7 | 1/7 | 0/7 | 3/49 (6.1%) |
5 | 1/6 | - | 2/7 | 1/7 | 3/14 | 2/7 | 0/7 | 1/7 | 1/7 | 11/62 (17.7%) |
6 | 0/6 | - | 1/7 | 1/7 | 1/7 | 0/7 | 1/7 | 1/7 | 2/7 | 7/55 (12.7%) |
7 | 1/6 | - | 2/7 | 1/7 | 3/7 | 2/7 | 0/7 | 0/7 | 2/7 | 11/55 (20.0%) |
8 | 2/6 | - | 3/7 | 1/7 | 1/7 | 2/7 | 0/7 | 1/7 | 1/7 | 11/55 (20.0%) |
9 | 2/6 | 3/6 | 2/15 | 3/7 | 4/7 | 1/14 | 3/7 | 2/7 | 1/7 | 21/76 (27.6%) |
10 | 3/6 | 2/7 | 2/15 | 3/7 | 3/7 | 1/14 | 1/7 | 0/7 | 1/7 | 16/77 (21.1%) |
11 | - | 2/6 | 1/15 | 4/7 | 3/7 | 1/14 | 2/7 | 1/7 | 0/7 | 14/70 (20.0%) |
12 | - | - | 3/7 | 4/7 | 1/7 | 1/7 | - | - | - | 9/28 (32.1%) |
13 | - | - | 2/7 | 1/7 | 4/7 | 0/7 | - | 1/7 | - | 8/35 (22.9%) |
14 | - | - | 2/7 | 1/7 | 3/7 | 2/7 | - | - | - | 8/28 (28.6%) |
15 | - | - | 1/7 | 4/7 | 2/7 | 1/8 | - | - | - | 8/29 (27.6%) |
16 | - | - | 1/7 | 0/7 | 2/7 | 1/7 | 1/7 | 0/7 | 0/7 | 5/49 (10.2%) |
17 | - | - | 1/7 | 2/7 | 2/7 | 2/7 | 1/7 | 0/7 | - | 8/42 (19.0%) |
Total | 10/48 (20.8%) | 7/19 (36.8%) | 31/144 (21.5%) | 30/119 (25.2%) | 36/126 (28.6%) | 18/141 (12.8%) | 12/91 (13.2%) | 11/98 (11.2%) | 8/84 (9.5%) | 163/870 (18.7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masia, M.D.; Dettori, M.; Deriu, G.M.; Soddu, S.; Deriu, M.; Arghittu, A.; Azara, A.; Castiglia, P. Microbial Monitoring as a Tool for Preventing Infectious Risk in the Operating Room: Results of 10 Years of Activity. Atmosphere 2021, 12, 19. https://doi.org/10.3390/atmos12010019
Masia MD, Dettori M, Deriu GM, Soddu S, Deriu M, Arghittu A, Azara A, Castiglia P. Microbial Monitoring as a Tool for Preventing Infectious Risk in the Operating Room: Results of 10 Years of Activity. Atmosphere. 2021; 12(1):19. https://doi.org/10.3390/atmos12010019
Chicago/Turabian StyleMasia, Maria Dolores, Marco Dettori, Grazia Maria Deriu, Serena Soddu, Michela Deriu, Antonella Arghittu, Antonio Azara, and Paolo Castiglia. 2021. "Microbial Monitoring as a Tool for Preventing Infectious Risk in the Operating Room: Results of 10 Years of Activity" Atmosphere 12, no. 1: 19. https://doi.org/10.3390/atmos12010019
APA StyleMasia, M. D., Dettori, M., Deriu, G. M., Soddu, S., Deriu, M., Arghittu, A., Azara, A., & Castiglia, P. (2021). Microbial Monitoring as a Tool for Preventing Infectious Risk in the Operating Room: Results of 10 Years of Activity. Atmosphere, 12(1), 19. https://doi.org/10.3390/atmos12010019