Future Changes in the Global and Regional Sea Level Rise and Sea Surface Temperature Based on CMIP6 Models
Abstract
:1. Introduction
2. Data and Methodology
2.1. Observation and CMIP6 Model
2.2. Contributions to Mean Sea Level
3. Results
3.1. Present Day Trend
3.2. Future Projection
3.2.1. Global and East Asia Region
3.2.2. Marginal Seas around the Korean Peninsula
3.3. Contributions to 21st Century Sea Level Change
4. Conclusions
- For the present-day period, the estimated global mean SLR trend is larger in CMIP6 simulations than in the observed. In the future, the trend is expected to be 0.28 m (0.17–0.38 m) and 0.65 m (0.52–0.78 m) for SSP1-2.6, SSP5-8.5, respectively. Spatially, there are significantly large changes over the Southern Ocean. Regional SLR of KO projects 0.25 m (0.15–0.35 m) and 0.63 m (0.50–0.76 m) for SSP1-2.6 and SSP5-8.5, respectively, which are similar to the global mean results. In the marginal seas around KO, projections in SSP5-8.5 are expected to increase to 0.68 m, 0.61 m, and 0.66 m for the ES, WS, and SS, respectively.
- Discrepancy between the global and regional changes is distinct in future SST warming rather than future SLR. Global mean SST is expected to rise to 0.39 °C per decade for SSP5-8.5, while the local trends are 0.59 °C per decade, 0.59 °C per decade, and 0.49 °C per decade for the ES, WS, and SS, respectively. These results are approximately 1.5 times greater than the global trend, indicating that marginal seas around KO are expected to be more vulnerable in the 21st century. In addition, seasonal change in summer is larger than in the winter.
- Ocean-related processes and glacier melting are major contributors to SLR in CMIP6 models. Glacier melting based on CMIP6 models (32–52%) is more significant than CMIP5 models (15–35%). In the local seas (ES, WS, and SS), the contribution of ocean-related components is 58–64% in SSP1-2.6 and 48–50% in SSP5-8.5, which is larger than their contribution to the global region. In addition, glacier melting is 38–40% in SSP1-2.6 and 49–52% in SSP5-8.5. This result implies that the proportion of ocean-related processes contributing to SLR decreases and glacier melting increases in higher emission scenarios.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Impacts, Adaptation, and Vulnerability Part B: Regional Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridege, UK; New York, NY, USA, 2014. [Google Scholar]
- Slangen, A.B.A.; Carson, M.; Katsman, C.A.; van de Wal, R.S.W.; Köhl, A.; Vermeersen, L.L.A.; Stammer, D. Projecting twenty-first-century regional sea-level changes. Clim. Chang. 2014, 124, 317–332. [Google Scholar] [CrossRef]
- Slangen, A.B.A.; Meyssignac, B.; Agosta, C.; Champollion, N.; Church, J.A.; Fettweis, X.; Ligtenberg, S.R.M.; Marzeion, B.; Melet, A.; Palmer, M.D.; et al. Evaluating model simulations of twentieth-century sea level rise. Part 1: Global mean sea level change. J. Clim. 2017, 30, 8539–8563. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Church, J.; Woodworth, P.L.; Aarup, T.; Wilson, S. Understanding Sea-Level Rise and Variability; Wiley: London, UK, 2010. [Google Scholar]
- Nicholls, R.J. Synthesis of vulnerability analysis studies. In Proceedings of WORLD COAST 1993; Coastal Zone Management Cetre: Rijkswaterstaat, The Netherlands, 1995; pp. 181–216. [Google Scholar]
- Cazenave, A.; Llovel, W. Contemporary sea level rise. Annu. Rev. Mar. Sci. 2010, 2, 145–173. [Google Scholar] [CrossRef] [Green Version]
- Martinez, M.L.; Intralawan, A.; Vazquez, G.; Perez-Maqueo, O.; Sutton, P.; Landgrave, R. The coasts of our world are of ecological, economic, and social importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis; Contribution of working group I to the fifth assess-ment report of IPCC the intergovernmental panel on climate change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridege, UK; New York, NY, USA, 2014; pp. 3–29. [Google Scholar]
- Kang, Y.Q.; Moon, S.R.; Oh, N.S. Coastal and Harbour Engineering: Sea level rise at the southwestern coast. KSCE J. Civ. Eng. 2005, 25, 151–156. (In Korean) [Google Scholar]
- Kang, S.K.; Cherniawsky, J.Y.; Foreman, M.G.G.; Min, H.S.; Kim, C.H.; Kang, H.W. Patterns of recent sea level rise in the East/Japan sea from satellite altimetry and in situ data. J. Geophys. Res. 2005, 110, C07002. [Google Scholar] [CrossRef]
- Ha, K.J.; Jeong, G.Y.; Jang, S.R.; Kim, K.Y. Variation of the sea surface height around the Korean peninsula with the use of multi-satellite data and its association with sea surface temperature. Korean J. Remote Sens. 2006, 22, 519–531. (In Korean) [Google Scholar]
- Oh, S.M.; Kwon, S.J.; Moon, I.J.; Lee, E.I. Sea level rise due to global warming in the northwestern pacific and seas around the Korean peninsula. J. Korean Soc. Coast. Ocean Eng. 2011, 23, 236–247. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Jeon, D.C. Relative sea-level change around the Korean peninsula. Ocean Polar Res. 2008, 30, 373–378. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.J.; Kim, S.I. Analysis of long period sea level variation on tidal station around the korea peninsula. J. Korean Soc. Hazard Mitig. 2012, 12, 299–305. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Jung, T.S. Change of mean sea level due to coastal development and climate change in the western coast of Korean peninsula. J. Korean Soc. Coast. Ocean Eng. 2014, 26, 120–130. (In Korean) [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, J.H. Study on Necessity of Creating New Sea City; Korea Maritime Institute: Busan, Korea, 2019. [Google Scholar]
- Cha, W.; Choi, J.; Lee, O.; Kim, S. Probabilistic Analysis of sea level rise in Korean major coastal regions under RCP 8.5 climate change scenario. J. Korean Soc. Hazard Mitig. 2016, 16, 389–396. [Google Scholar] [CrossRef]
- Lambeck, K.; Chappell, J. Sea level change through the last glacial cycle. Science 2001, 292, 679–686. [Google Scholar] [CrossRef]
- Hoffman, J.S.; Keyes, D.; Titus, J.G. Projecting Future Sea Level Rise: Methodology, Estimates to the Year 2100 and Research Needs; US Environmental Protection Agency: Washigton, DC, USA, 1983.
- Rahmstorf, S.; Cazenave, A.; Church, J.A.; Hansen, J.E.; Kelling, R.F.; Parker, D.E.; Somerville, R.C.J. Recent climate observations compared to projections. Science 2007, 316, 709. [Google Scholar] [CrossRef] [Green Version]
- Tebaldi, C.; Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Phil. Trans. R. Soc. A 2007, 365, 2053–2075. [Google Scholar] [CrossRef]
- Raper, S.C.B.; Cubasch, U. Emulation of the results from a coupled general circulation model using a simple climate model. Geophys. Res. Lett. 1996, 23, 1107–1110. [Google Scholar] [CrossRef]
- Yin, J.; Schlesinger, M.E.; Stouffer, R.J. Model projections of rapid sea-level rise on the northeast coast of the United States. Nat. Geosci. 2009, 2, 262–266. [Google Scholar] [CrossRef]
- Yin, J.; Griffies, S.M.; Stouffer, R.J. Spatial Variability of sea level rise in twenty first century projections. J. Clim. 2010, 23, 4585–4607. [Google Scholar] [CrossRef]
- Yin, J. Century to multi-century sea level rise projections from CMIP5 models. Geophys. Res. Lett. 2012, 39, 39. [Google Scholar] [CrossRef]
- Slangen, A.B.A.; van de Wal, R.S.W. An assessment of uncertainties in using volume area modeling for computing the twenty first century glacier contribution to sea level change. Cryosphere 2011, 5, 673–686. [Google Scholar] [CrossRef] [Green Version]
- Heo, T.-K.; Kim, Y.; Boo, K.-O.; Byun, Y.-H.; Cho, C. Future sea-level projections over the seas around Korea from CMIP6 simulations. Atmosphere 2018, 28, 25–35. [Google Scholar]
- Pardaens, A.K.; Lowe, J.A.; Brown, S.; Nicholls, R.J.; de Gusmao, D. Sea-level rise and impacts projections under a future scenario with large greenhouse gas emission reductions. Geophys. Res. Lett. 2011, 38, 38. [Google Scholar] [CrossRef] [Green Version]
- Meyssignac, B.; Slangen, A.B.A.; Melet, A.; Church, J.A.; Fettweis, X.; Marzeion, B.; Agosta, C.; Ligtenberg, S.R.M.; Spada, G.; Richter, K.; et al. Evaluating model simulations of twentieth century sea level rise. Part II: Regional sea-level changes. J. Clim. 2017, 30, 8565–8593. [Google Scholar] [CrossRef]
- Bilbao, R.A.F.; Gregory, J.M.; Bouttes, N. Analysis of the regional pattern of sea level change due to ocean dynamics and density changes for 1993-2099 in observations and CMIP5 AOGCMs. Clim. Dynam. 2015, 45, 2647–2666. [Google Scholar] [CrossRef]
- Kim, Y.; Goo, T.-Y.; Moon, H.; Choi, J.; Byun, Y.-H. Projection of future sea level change based on HadGEM2-AO due to ice sheet and glaciers. Atmosphere 2019, 29, 367–380. [Google Scholar]
- Lee, C.-E.; Kim, S.U.; Lee, Y.S. Estimation of the regional future sea level rise using long-term tidal data in the Korean peninsula. J. Korea Water Resour. Assoc. 2014, 47, 753–766. [Google Scholar] [CrossRef] [Green Version]
- Belkin, I.M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 2009, 81, 207–213. [Google Scholar] [CrossRef]
- Hwang, J.D.; Suh, Y.S.; Ahn, J.S. Properties of sea surface temperature variations derived from NOAA satellite in North-eastern Asian Waters from 1990 to 2008. Korean J. Nat. Conserv. 2012, 6, 130–136. [Google Scholar]
- Hyun, J.-H.; Choi, K.-S.; Lee, K.-S.; Lee, S.H.; Kim, Y.K.; Kang, C.-K. Climate change and anthropogenic impact around the Korean coastal ecosystems: Korean Long-term Marine Ecological Research (K-LTMER). Estuaries Coasts 2020, 43, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Cai, W.; Zhang, L.; Nakamura, H.; Timmermann, A.; Joyce, T.; McPhaden, M.J.; Alexander, M.; Qiu, B.; Visbeck, M.; et al. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Chang. 2012, 2, 161–166. [Google Scholar] [CrossRef]
- Yeh, S.-W.; Kim, C.-H. Recent warming in the Yellow/East China Sea during winter and the associated atmospheric circulation. Cont. Shelf Res. 2010, 30, 1428–1434. [Google Scholar] [CrossRef]
- Nan, F.; Xue, H.; Yu, F. Kuroshio intrusion into the South China Sea: A review. Prog. Oceanogr. 2015, 137, 314–333. [Google Scholar] [CrossRef] [Green Version]
- Gordon, A.L.; Giulivi, C.F. Pacific decadal oscillation and sea level in the Japan/East Sea. Deep. Sea Res. Part I Oceanogr. Res. Papers 2004, 51, 653–663. [Google Scholar] [CrossRef]
- Min, H.S.; Kim, C.-H. Interannual variability and long-term trend of coastal sea surface temperature in Korea. Ocean Polar Res. 2006, 28, 415–423. (In Korean) [Google Scholar]
- Knutson, T.R.; Sirutis, J.J.; Vecchi, G.A.; Garner, S.; Zho, M.; Kim, H.-S.; Bender, M.; Tuleya, R.E.; Held, I.M.; Villarini, G. Dynamical downscaling projections of twenty-first-century atlantic hurricane activity: CMIP3 and CMIP5 model based scenario. J. Clim. 2013, 26, 6591–6617. [Google Scholar] [CrossRef]
- Alexander, M.A.; Scott, J.D.; Friedland, K.D.; Mills, K.E.; Nye, J.A.; Pershing, A.J.; Thomas, A.C. Projected sea surface temperatures over the 21st century: Changes in the mean, variability, and extremes for large marine ecosystem regions of northern oceans. Elem. Sci. Anth. 2018, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- O’ Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. Scenario Model Intercomparison Project (ScenarioMIP) for CMip6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Thompson, P.R.; Hamlington, B.D.; Landerer, F.W.; Adhikari, S. Are long tide gauge records in the wrong place to measure global mean sea level rise? Geophys. Res. Lett. 2016, 43, 10403–10411. [Google Scholar] [CrossRef] [Green Version]
- Masters, D.; Nerem, R.S.; Choi, C.; Leuliette, E.; Beckley, B.; White, N.; Ablain, M. Comparison of Global Mean Sea Level Time Series From TOPEX/Poseidon, Jason-1, and Jason-2. Mar. Geod. 2012, 35, 20–41. [Google Scholar] [CrossRef]
- Henry, B.; Charmley, E.; Eckard, R.; Gaughan, J.B.; Hegarty, R. Livestock production in a changing climate: Adaptation and Mitigation Research in Australia. Crop Pasture Sci. 2012, 63, 191–202. [Google Scholar] [CrossRef]
- Tamisiea, M.E.; Mitrovia, J.X. The moving boundaries of sea level change: Understanding the origins of geographic variability. Oceanography 2011, 24, 24–39. [Google Scholar] [CrossRef]
- Wada, Y.; Bierkens, M.F.P.; de Roo, A.; Dirmeyer, P.A.; Famiglietti, J.S.; Hanasaki, N.; Konar, M.; Liu, J.; Schmied, H.M.; Oki, T.; et al. Human-water interface in hydrological modeling: Current status and future directions. Hydrol. Earth Syst. Sci. 2017, 21, 4169–4193. [Google Scholar] [CrossRef] [Green Version]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Sun, M.-A.; Kim, B.-H.; Moon, H.; Sung, H.M.; Kim, J.; Byun, Y.-H. Evaluation of the Korea Meteorological Administration Advanced Community Earth-system Model (K-ACE). Asia Pac. J. Atmos. Sci. 2020, 56, 381–395. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.M.; Kim, J.; Shim, S.; Seo, J.; Kwon, S.-H.; Sun, M.-A.; Moon, H.; Lee, J.-H.; Lim, Y.-J.; Boo, K.-O.; et al. Evaluation of the NIMS/KMA CMIP6 model and future climate change scenarios based on new GHG concentration pathways. APJAS 2020. Accepted. [Google Scholar]
- Walters, D.; Baran, A.J.; Boutle, I.; Brooks, M.; Earnshaw, P.; Edwards, J.; Furtado, K.; Hill, P.G.; Lock, A.; Manners, J.; et al. The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geosci. Model Dev. 2019, 12, 1909–1963. [Google Scholar] [CrossRef] [Green Version]
- Sellar, A.A.; Jones, C.G.; Mulcahy, J.P.; Tang, Y.; Yool, A.; Wiltshire, A.; O’ConnoriD, F.M.; Stringer, M.; Hill, R.; Palmieri, J.; et al. UKESM1: Description and evaluation of the U.K. Earth system model. J. Adv. Model. Earth Syst. 2019, 11, 4513–4558. [Google Scholar] [CrossRef] [Green Version]
- Ziehn, T.; Chamberlain, M.A.; Law, R.M.; Lenton, A.; Bodman, R.W.; Dix, M.; Stevens, L.; Wang, Y.-P.; Srbinovsky, J. Australian Earth System Model: ACCESS-ESM1.5. J. South Hemisph. Earth Sys. Sci. 2020, 193–214. [Google Scholar] [CrossRef]
- Swart, N.C.; Cole, J.N.S.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. The Canadian Earth System Model version 5 (CanESM5). Geosci. Model Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef] [Green Version]
- Wyser, K.; Kjellstrom, E.; Koenigk, T.; Martins, H.; Doscher, R. Warmer climate projections in EC-Earth3-Veg: The role of changes in greenhouse gas concentrations from CMIP5 to CMIP6. Envion. Res. Lett. 2020, 15, 054020. [Google Scholar] [CrossRef]
- Volodin, E.; Mortikov, E.V.; Kostrykin, S.V.; Galin, V.Y.; Lykossov, V.N.; Gritsun, A.S.; Diansky, N.A.; Gusev, A.V.; Iakovlev, N.G. Simulation of the present-day climate with the climate model INMCM5. Clim. Dyn. 2017, 49, 3715–3734. [Google Scholar] [CrossRef]
- Boucher, O.; Servonnat, J.; Albright, A.L.; Aumont, O.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bonnet, R.; Bony, S.; Bopp, L.; et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Sys. 2020, 12. [Google Scholar] [CrossRef]
- Mauriten, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPI-M Earth System Model Version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef] [Green Version]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteor. Soc. Jpn. 2019, 97, 931–965. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.; Balaji, B.; Cinquini, L.; Denvil, S.; Duffy, D.; Evans, B.; Ferraro, R.; Hansen, R.; Lautenschlager, M.; Trenham, C. A global repository for planet-sized experiments and observations. Bull. Am. Meteorol. Soc. 2016, 97, 803–816. [Google Scholar] [CrossRef]
- Griffies, S.M.; Greatbatch, R.J. Physical processes that impact the evolution of global mean sea level in ocean climate models. Ocean Modell. 2012, 51, 37–72. [Google Scholar] [CrossRef]
- Marzeion, B.; Champollion, N.; Haeberli, W.; Langley, K.; Leclercq, P.; Paul, F. Observation based estimates of global glacier mass change and its contribution to sea-level change. Surv. Geophys. 2017, 38, 105–130. [Google Scholar] [CrossRef] [Green Version]
- Radic, V.; Hock, R. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res. 2010. [Google Scholar] [CrossRef]
- Frezzotti, M.; Scarchilli, C.; Becagli, S.; Proposito, M.; Urbini, S. Synthesis of the Antarctic surface mass balance during the last 800 yr. Cryosphere 2013, 7, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Fettweis, X.; Box, J.E.; Agosta, C.; Amory, C.; Kittel, C.; Lang, C.; Van As, D.; Machguth, H.; Gallée, H. Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 2017, 11, 1015–1033. [Google Scholar] [CrossRef] [Green Version]
- Cook, A.J.; Vaughan, D.G. Overview of area changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 2010, 4, 77–98. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, H.D.; Ligtenberg, S.R.M.; Fricker, H.A.; Vaughan, D.G.; Broeke, M.R.V.D.; Padman, L. Antarctic ice sheet loss driven by basal melting of ice shelves. Nature 2012, 484, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Nick, F.M.; Vieli, A.; Andersen, M.L.; Joughin, I.R.; Payne, A.; Edwards, T.L.; Pattyn, F.; Van De Wal, R.S.W. Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature 2010, 497, 235–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goelzer, H.; Huybrechts, P.; Furst, J.J.; Nick, F.; Andersen, M.; Edwards, T.; Fettweis, X.; Payne, A.; Shannon, S. Sensitivity of Greenland ice sheet projections to model formulations. J. Glaciol. 2013, 59, 733–749. [Google Scholar] [CrossRef] [Green Version]
- Slangan, A.B.A.; Katsman, C.A.; van de Wal, R.S.W.; Vermeersen, L.L.A.; Riva, R.E.M. Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios. Clim. Dyn. 2012, 38, 1191–1209. [Google Scholar] [CrossRef] [Green Version]
- Peltier, W.R. Global glacial isostasy and the surface of the ice-age earth: The ICE-5G(VM2) model and GRACE. Annu. Rev. Earth Planet Sci. 2004, 32, 111–149. [Google Scholar] [CrossRef]
- Frederikse, T.; Riva, R.E.M.; King, M.A. Ocean bottom deformation due to present-day mass redistribution and its impact on sea-level observations. Geophys. Res. Lett. 2017, 44, 12306–12314. [Google Scholar] [CrossRef] [Green Version]
- Martinec, Z.; Klemann, V.; Vander Wal, W.; Riva, R.E.; Spada, G.; Sun, Y.; Melini, D.; Kachuck, S.; Barletta, V.; Simon, K.; et al. A benchmark study of numerical implementations of the sea level equation in GIA modeling. Geophys. Res. Lett. 2018, 215, 389–414. [Google Scholar]
- IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate; Portner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegria, A., Nicolai, M., Lkem, A., et al., Eds.; Cambridge University Press: Cambridege, UK; New York, NY, USA, 2019; in press. [Google Scholar]
- Bouttes, N.; Gregory, J.M. Attribution of the spatial pattern of CO2 forced sea level change to ocean surface flux changes. Environ. Res. Lett. 2014, 9, 034004. [Google Scholar] [CrossRef] [Green Version]
- Little, C.M.; Horton, R.M.; Kopp, R.E.; Oppenheimer, M.; Yip, S. Uncertainty in twenty-first-century CMIP5 sea level projections. J. Clim. 2015, 28, 838–852. [Google Scholar] [CrossRef]
- Yoon, J.; Yeh, S.-W. Study of the Relationship between the East Asian marginal SST and the two different types of El Niño. Ocean Polar Res. 2009, 31, 51–61. [Google Scholar] [CrossRef]
ESGF ID | Coupled Model Name | Ocean/Sea-Ice | Ocean | Vertical |
---|---|---|---|---|
K-ACE | Korea Meteorological Administration-Advanced Community Earth System Model | MOM4/CICE | 360 × 200 | 50 |
UKESM1 | U.K. Earth System Model | NEMO/CICE | 360 × 330 | 75 |
ACCESS-ESM1.5 | Australian Community Climate and Earth System Simulator-Earth System Model version 1.5 | MOM5/CICE | 360 × 300 | 50 |
CanESM5 | Canadian Earth System Model version 5 | NEMO/LIM | 361 × 290 | 45 |
EC-Earth3-Veg | European Centre Earth Model version 3 | NEMO/LIM | 362 × 292 | 75 |
INM-CM5-0 | Institute for Numerical Mathematics Climate Model version 5 | INM-OM/INM-ICE | 720 × 720 | 40 |
IPSL-CM6A-LR | Institute Pierre-Simon Laplace Climate Model version 6 | NEMO/LIM | 362 × 332 | 75 |
MPI-ESM1-2-LR | Max Planck Institute for Meteorology Earth System Model version 1.2 | MPIOM/Hibler79 | 256 × 220 | 40 |
MRI-ESM2-0 | Meteorological Research Institute Earth System Model version 2.0 | MRI-COM | 360 × 364 | 61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, H.M.; Kim, J.; Lee, J.-H.; Shim, S.; Boo, K.-O.; Ha, J.-C.; Kim, Y.-H. Future Changes in the Global and Regional Sea Level Rise and Sea Surface Temperature Based on CMIP6 Models. Atmosphere 2021, 12, 90. https://doi.org/10.3390/atmos12010090
Sung HM, Kim J, Lee J-H, Shim S, Boo K-O, Ha J-C, Kim Y-H. Future Changes in the Global and Regional Sea Level Rise and Sea Surface Temperature Based on CMIP6 Models. Atmosphere. 2021; 12(1):90. https://doi.org/10.3390/atmos12010090
Chicago/Turabian StyleSung, Hyun Min, Jisun Kim, Jae-Hee Lee, Sungbo Shim, Kyung-On Boo, Jong-Chul Ha, and Yeon-Hee Kim. 2021. "Future Changes in the Global and Regional Sea Level Rise and Sea Surface Temperature Based on CMIP6 Models" Atmosphere 12, no. 1: 90. https://doi.org/10.3390/atmos12010090
APA StyleSung, H. M., Kim, J., Lee, J.-H., Shim, S., Boo, K.-O., Ha, J.-C., & Kim, Y.-H. (2021). Future Changes in the Global and Regional Sea Level Rise and Sea Surface Temperature Based on CMIP6 Models. Atmosphere, 12(1), 90. https://doi.org/10.3390/atmos12010090