Short-Term Effects of “Polish Smog” on Cardiovascular Mortality in the Green Lungs of Poland: A Case-Crossover Study with 4,500,000 Person-Years (PL-PARTICLES Study)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Region
2.2. Mortality Data
2.3. Pollution and Meteorological Data
2.4. Study Design and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization, Global Health Observatory Data Repository. Available online: https://apps.who.int/gho/data/node.main.BODAMBIENTAIRDTHS?lang=en (accessed on 27 July 2020).
- Wielgosiński, G.; Czerwińska, J. Smog Episodes in Poland. Atmosphere 2020, 11, 277. [Google Scholar] [CrossRef] [Green Version]
- Zalewska-Adamiec, M.; Bachorzewska-Gajewska, H.; Malyszko, J.; Tomaszuk-Kazberuk, A.; Nowak, K.; Hirnle, T.; Dobrzycki, S. Impact of diabetes on mortality and complications after coronary artery by-pass graft operation in patients with left main coronary artery disease. Adv. Med. Sci. 2014, 59, 250–255. [Google Scholar] [CrossRef]
- Niemann, B.; Rohrbach, S.; Miller, M.R. Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series. J. Am. Coll. Cardiol. 2017, 70, 230–251. [Google Scholar] [CrossRef]
- Miller, M.R.; Raftis, J.B.; Langrish, J.P. Inhaled Nanoparticles Accumulate at Sites of Vascular Disease. ACS Nano. 2017, 11, 4542–4552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuźma, Ł.; Małyszko, J.; Bachórzewska-Gajewska, H.; Kralisz, P.; Dobrzycki, S. Exposure to air pollution and renal function. Sci Rep. 2021, 11, 11419. [Google Scholar] [CrossRef]
- Münzel, T.; Gori, T.; Al-Kindi, S. Effects of gaseous and solid constituents of air pollution on endothelial function. Eur. Heart J. 2018, 39, 3543–3550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuźma, Ł.; Pogorzelski, S.; Struniawski, K.; Dobrzycki, S.; Bachórzewska-Gajewska, H. Effect of air pollution on the number of hospital admissions for acute coronary syndrome in elderly patients. Pol. Arch. Intern. Med. 2020, 130, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Claeys, M.J.; Rajagopalan, S.; Nawrot, T.S. Climate and environmental triggers of acute myocardial infarction. Eur. Heart J. 2017, 38, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Wang, X.; Liu, T.; Li, X.; Xiao, J.; Zeng, W.; Ma, W. Air Pollution and Mortality in China. Adv. Exp. Med. Biol. 2017, 1017, 103–121. [Google Scholar] [CrossRef]
- Kuźma, Ł.; Struniawski, K.; Pogorzelski, S.; Bachórzewska-Gajewska, H.; Dobrzycki, S. Gender Differences in Association between Air Pollution and Daily Mortality in the Capital of the Green Lungs of Poland-Population-Based Study with 2,953,000 Person-Years of Follow-Up. J. Clin. Med. 2020, 9, 2351. [Google Scholar] [CrossRef]
- Kuźma, Ł.; Pogorzelski, S.; Struniawski, K.; Bachórzewska-Gajewska, H.; Dobrzycki, S. Exposure to air pollution-a trigger for myocardial infarction? A nine-year study in Bialystok-the capital of the Green Lungs of Poland (BIA-ACS registry). Int. J. Hyg. Environ. Health 2020, 229, 113578. [Google Scholar] [CrossRef] [PubMed]
- Kuźma, Ł.; Wańha, W.; Kralisz, P.; Kazmierski, M.; Bachórzewska-Gajewska, H.; Wojakowski, W.; Dobrzycki, S. Impact of short-term air pollution exposure on acute coronary syndrome in two cohorts of industrial and non-industrial areas: A time series regression with 6,000,000 person-years of follow-up (ACS-Air Pollution Study). Environ. Res. 2021, 197, 111154. [Google Scholar] [CrossRef] [PubMed]
- Low-Emission Development Strategy for the City of Białystok. Available online: https://bip.Białystok.pl/resource/file/download-file/id.22975 (accessed on 21 November 2020).
- Low-Emission Development Strategy for the City of Suwałki. Available online: http://bip.um.Suwałki.pl/resource/file/download-file/id.30336 (accessed on 21 November 2020).
- Air Protection Programme for the City of Łomża. Available online: http://www.lomza.pl/bip/zalaczniki/art/130321091612.pdf (accessed on 7 May 2020).
- World Health Organization, International Classification of Diseases, 10th Revision (ICD-10). Geneva. Available online: http://www.who.int/classifications/icd/en/ (accessed on 1 July 2020).
- World Health Organization, Revision of the European Standard Population Report of Eurostat’s Task Force. Available online: https://ec.europa.eu/eurostat/documents/3859598/5926869/KS-RA-13-028-EN.PDF/e713fa79-1add-44e8-b23d-5e8fa09b3f8f (accessed on 1 July 2020).
- Maclure, M.; Mittleman, M.A. Should we use a case-crossover design? Annu. Rev. Public Health 2000, 21, 193–221. [Google Scholar] [CrossRef] [PubMed]
- Maclure, M. The case-crossover design: A method for studying transient effects on the risk of acute events. Am. J. Epidemiol. 1991, 133, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; Bland, J.M. Statistics Notes Interaction revisited: The difference between two estimates. BMJ 2003, 326, 219. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.Q.; Ye, Y.J.; Zhang, J.Y.; Sun, H.; Zhou, L.; Ding, Z.; Xu, Y. Multi-site analysis of acute effects of air pollutants combination exposure on mortality in Jiangsu Province, China. Zhonghua Yu Fang Yi Xue Za Zhi 2019, 53, 86–92. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Yu, H.; Wang, L.; Zhu, X.; Chen, M.; Zhou, L.; Deng, R.; Zhang, Y.; Pu, X.; Pan, J. The burden of overall and cause-specific respiratory morbidity due to ambient air pollution in Sichuan Basin, China: A multi-city time-series analysis. Environ. Res. 2018, 167, 428–436. [Google Scholar] [CrossRef]
- Eurostat: Causes and Occurrence of Deaths in the EU. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20190716-1 (accessed on 1 November 2019).
- Liu, C.; Chen, R.; Sera, F. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef]
- Qu, Y.; Pan, Y.; Niu, H.; He, Y.; Li, M.; Li, L.; Liu, J.; Li, B. Short-term effects of fine particulate matter on non-accidental and circulatory diseases mortality: A time series study among the elder in Changchun. PLoS ONE. 2018, 13, e0209793. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Al-Kindi, S.G.; Brook, R.D. Air Pollution and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2054–2070. [Google Scholar] [CrossRef]
- Kim, S.Y.; Peel, J.L.; Hannigan, M.P.; Dutton, S.J.; Sheppard, L.; Clark, M.L.; Vedal, S. The temporal lag structure of short-term associations of fine particulate matter chemical constituents and cardiovascular and respiratory hospitalizations. Environ. Health Perspect 2012, 120, 1094–1099. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Routledge, M.N. The contribution of PM2.5 to cardiovascular disease in China. Environ. Sci Pollut Res. Int. 2020, 27, 37502–37513. [Google Scholar] [CrossRef] [PubMed]
- Hayes, R.B.; Lim, C.; Zhang, Y.; Cromar, K.; Shao, Y.; Reynolds, H.; Silverman, D.T.; Jones, R.R.; Park, Y.; Jerrett, M.; et al. PM2.5 air pollution and cause-specific cardiovascular disease mortality. Int. J. Epidemiol. 2020, 49, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Ban, J.; Wang, Q.; Ma, R.; Zhang, Y.; Shi, W.; Zhang, Y.; Chen, C.; Sun, Q.; Wang, Y.; Guo, X.; et al. Associations between short-term exposure to PM2.5 and stroke incidence and mortality in China: A case-crossover study and estimation of the burden. Environ. Pollut. 2020, 268 (Pt A), 115743. [Google Scholar] [CrossRef]
- Shah, A.S.; Lee, K.K.; McAllister, D.A.; Hunter, A.; Nair, H.; Whiteley, W.; Langrish, J.P.; Newby, D.E.; Mills, N. Short term exposure to air pollution and stroke: Systematic review and meta-analysis. BMJ 2015, 350, h1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhinehart, Z.J.; Kinnee, E.; Essien, U.R.; Saul, M.; Guhl, E.; Clougherty, J.E.; Magnani, J.W. Association of Fine Particulate Matter and Risk of Stroke in Patients With Atrial Fibrillation. JAMA Netw Open. 2020, 3, e2011760. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Pan, S.C.; Chen, B.Y. Atrial fibrillation hospitalization is associated with exposure to fine particulate air pollutants. Environ. Health 2019, 18, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Xu, X.; Chu, M.; Guo, Y.; Wang, J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016, 8, E8–E19. [Google Scholar] [CrossRef]
- Wu, T.; Ma, Y.; Wu, X.; Bai, M.; Peng, Y.; Cai, W.; Wang, Y.; Zhao, J.; Zhang, Z. Association between particulate matter air pollution and cardiovascular disease mortality in Lanzhou, China. Environ. Sci. Pollut Res. Int. 2019, 26, 15262–15272. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, J.; Wang, S.; Rumchev, K.; Mead-Hunter, R.; Morawska, L.; Hao, J. Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication. Sci. Total Environ. 2017, 576, 347–361. [Google Scholar] [CrossRef] [Green Version]
- Křůmal, K.; Mikuška, P.; Horák, J.; Hopan, F.; Krpec, K. Comparison of emissions of gaseous and particulate pollutants from the combustion of biomass and coal in modern and old-type boilers used for residential heating in the Czech Republic, Central Europe. Chemosphere 2019, 229, 51–59. [Google Scholar] [CrossRef]
- Qu, W.; Yan, Z.; Qu, G.; Ikram, M. Household Solid Fuel Use and Cardiovascular Disease in Rural Areas in Shanxi, China. Iran. J. Public Health 2015, 44, 625–638. [Google Scholar] [PubMed]
- Liu, Y.; Qin, N.; Liang, W.; Chen, X.; Hou, R.; Kang, Y.; Guo, Q.; Cao, S.; Duan, X. Polycycl. Aromatic Hydrocarbon Exposure of Children in Typical Household Coal Combustion Environments: Seasonal Variations, Sources, and Carcinogenic Risks. Int. J. Environ. Res. Public Health 2020, 17, 6520. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Shen, X.; Hao, X.; Cao, X.; Li, X.; Yao, X.; Shi, Y.; Lv, T.; Yao, Z. Polycyclic and nitro-polycyclic aromatic hydrocarbon pollution characteristics and carcinogenic risk assessment of indoor kitchen air during cooking periods in rural households in North China. Environ. Sci. Pollut. Res. Int. 2020. [Google Scholar] [CrossRef] [PubMed]
- Holme, J.A.; Brinchmann, B.C.; Refsnes, M. Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environ. Health 2019, 18, 74. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Li, L.; Xu, H. PM 2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment. J. Environ. Sci. 2019, 77, 11–19. [Google Scholar] [CrossRef]
- Xue, H.; Liu, G.; Zhang, H.; Hu, R.; Wang, X. Similarities and differences in PM10 and PM2.5 concentrations, chemical compositions and sources in Hefei City, China. Chemosphere 2019, 220, 760–765. [Google Scholar] [CrossRef]
- Al-Naiema, I.M.; Yoon, S.; Wang, Y.Q.; Zhang, Y.-X.; Sheesley, R.J.; Stone, E.A. Source apportionment of fine particulate matter organic carbon in Shenzhen, China by chemical mass balance and radiocarbon methods. Environ. Pollut. 2018, 240, 34–43. [Google Scholar] [CrossRef]
- Park, C.G.; Cho, H.K.; Shin, H.J.; Park, K.H.; Bin Lim, H. Comparison of Mutagenic Activities of Various Ultra-Fine Particles. Toxicol Res. 2018, 34, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Bourdrel, T.; Bind, M.-A.; Béjot, Y. Cardiovascular effects of air pollution. Arch. Cardiovasc Dis. 2017, 110, 634–642. [Google Scholar] [CrossRef]
- Cao, Y.; Long, J.; Ji, Y. Foam cell formation by particulate matter (PM) exposure: A review. Inhal Toxicol. 2016, 28, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Dettori, M.; Deiana, G.; Balletto, G.; Borruso, G.; Murgante, B.; Arghittu, A.; Azara, A.; Castiglia, P. Air pollutants and risk of death due to COVID-19 in Italy. Environ. Res. 2021, 192, 110459. [Google Scholar] [CrossRef] [PubMed]
- Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy? Environ. Pollut. 2020, 261, 114465. [Google Scholar] [CrossRef] [PubMed]
Białystok | Łomża | Suwałki | p | |
---|---|---|---|---|
Total deaths, N | 34005 | 8082 | 7486 | |
Male, % (N) | 52.49 (17851) | 54.54 (4408) | 54.12 (4055) | <0.001 |
Mean age (SD) | 71.99 (16.59) | 72.66 (15.68) | 71.68 (16.56) | 0.005 |
CDR 3, (100,000 population/year) | 1153.01 | 1288.13 | 1079.51 | <0.001 |
SDR 5, (100,000 population/year) | 1480.95 | 1944.57 | 1638.06 | <0.001 |
Cardiovascular mortality rate, %, (N) | 40.73 (13851) | 39.94 (3228) | 36.36 (2723) | <0.001 |
Male, % (N) | 46.99 (6508) | 46.97 (1563) | 46.55 (1268) | 0.915 |
Mean age (SD) | 77.70 (11.88) | 78.19 (11.28) | 76.40 (12.37) | 0.125 |
CVD 4 CDR, (100,000 population/year) | 469.65 | 530.36 | 392.72 | <0.001 |
CVD SDR, (100,000 population/year) | 637.59 | 871.42 | 644.84 | <0.001 |
Acute coronary syndromes rate, %, (N) | 14.11 (4799) | 13.24 (1070) | 11.98 (897) | <0.001 |
Male, % (N) | 51.42 (2467) | 53.93 (577) | 53.40 (479) | 0.230 |
Mean age (SD) | 77.45 (10.18) | 77.11 (11.51) | 75.93 (11.76) | 0.013 |
ACS 1 CDR, (100,000 population/year) | 162.72 | 270.25 | 129.51 | <0.001 |
ACS SDR, (100,000 population/year) | 217.95 | 170.52 | 207.18 | <0.001 |
Cerebrovascular mortality rate, %, (N) | 8.02 (2727) | 9.21 (744) | 5.77 (432) | <0.001 |
Male, % (N) | 40.7 (1110) | 40.1 (298) | 37.0 (160) | <0.001 |
Mean age (SD) | 79.37 (13.3) | 79.61 (9.4) | 79.18 (10.3) | <0.001 |
CbVD 2 CDR, (100,000 population/year) | 92.46 | 118.73 | 62.16 | <0.001 |
CbVD SDR, (100,000 population/year) | 126.84 | 199.75 | 105.94 | <0.001 |
Białystok | PM2.5 7 µg/m3 | PM10 8 µg/m3 | NO2 5 µg/m3 | SO2 9 µg/m3 | Temp.6 °C | Hum.2 (%) | Atm.1 (hPa.) |
---|---|---|---|---|---|---|---|
Median | 16.2 | 23.0 | 13.1 | 2.7 | 7.8 | 83.1 | 1015.5 |
IQR 3 (1Q–3Q) | 15.9 10.9–26.8 | 17.2 15.8–33.0 | 7.8 9.9–17.7 | 2.8 1.5–4.2 | 13.3 1.5–7.7 | 17.0 73.6–81.4 | 10.7 1010–1021 |
Median—cold season | 25.5 | 28.0 | 14.7 | 3.8 | 1.6 | 89.0 | 1016.5 |
IQR—cold season | 19.8 16.8–36.6 | 21.5 18.6–40.0 | 8.8 10.5–19.3 | 3.4 2.3–5.6 | 6.8 −1.9–4.9 | 11.9 82.1–94.0 | 14.6 1009.3–1024 |
Median—warm season | 11.9 | 19.4 | 12.1 | 1.9 | 14.8 | 75.6 | 1015.1 |
IQR—warm season | 7.3 8.6–15.9 | 12.2 14.1–26.3 | 8.7 9.4–15.7 | 1.8 1.1–2.9 | 6.2 11.5–17.7 | 15.3 68.8–84.1 | 8.0 1011–1019 |
Łomża | PM2.5 µg/m3 | PM10 µg/m3 | NO2 µg/m3 | SO2 µg/m3 | Temp. °C | Hum. (%) | Atm. (hPa.) |
Median | 13.3 | 23.8 | 13.4 | 5.8 | 7.7 | 83.3 | n.d. 4 |
IQR | 9.1 9.6–18.7 | 16.9 17.1–34.0 | 9.5 9.0–18.5 | 5.8 3.5–9.4 | 13.7 1.6–7.7 | 18.0 73.0–83.3 | n.d. |
Median—cold season | 22.4 | 32.7 | 15.2 | 9.1 | 1.8 | 89.8 | n.d. |
IQR—cold season | 16.6 15.4–32.0 | 23.8 22.3–46.1- | 10.4 10.5–20.9 | 6.4 6.2–12.6 | 6.8 −1.8–5.0 | 11.0 83.5–94.5 | n.d. |
Median—warm season | 12.2 | 20.9 | 11.8 | 4.0 | 15.2 | 75.3 | n.d. |
IQR—warm season | 8.2 9.1–16.2 | 11.8 15.2–27.1 | 8.0 8.0–16.0 | 3.0 2.5–5.5 | 6.6 11.6–18.2 | 16.0 67.0–83.0 | n.d. |
Suwałki | PM2.5 µg/m3 | PM10 µg/m3 | NO2 µg/m3 | SO2 µg/m3 | Temp. °C | Hum. (%) | Atm. (hPa.) |
Median | 9.8 | 18.0 | n.d. | n.d. | 7.2 | 83.8 | 1015.4 |
IQR | 8.7 6.5–15.2 | 14.3 12.4-26.7 | n.d. | n.d. | 13.9 1.1–14.6 | 17.7 73.9–91.6 | 11.1 1009.9–1021 |
Median—cold season | 12.3 | 19.7 | n.d. | n.d. | 1.3 | 90.6 | 1016.1 |
IQR—cold season | 12.1 7.1–19.3 | 17.3 12.7–30.0 | n.d. | n.d. | 6.8 −2.2–4.6 | 11.0 83.9–94.9 | 15.5 1008–1023.9 |
Median—warm season | 8.7 | 17.1 | n.d. | n.d. | 14.6 | 76.3 | 1015.1 |
IQR—warm season | 5.6 6.2–11.7 | 11.4 12.2–23.6 | n.d. | n.d. | 6.3 11.2–17.5 | 15.1 68.3–83.4 | 8.4 1011–1019.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuźma, Ł.; Kurasz, A.; Dąbrowski, E.J.; Dobrzycki, S.; Bachórzewska-Gajewska, H. Short-Term Effects of “Polish Smog” on Cardiovascular Mortality in the Green Lungs of Poland: A Case-Crossover Study with 4,500,000 Person-Years (PL-PARTICLES Study). Atmosphere 2021, 12, 1270. https://doi.org/10.3390/atmos12101270
Kuźma Ł, Kurasz A, Dąbrowski EJ, Dobrzycki S, Bachórzewska-Gajewska H. Short-Term Effects of “Polish Smog” on Cardiovascular Mortality in the Green Lungs of Poland: A Case-Crossover Study with 4,500,000 Person-Years (PL-PARTICLES Study). Atmosphere. 2021; 12(10):1270. https://doi.org/10.3390/atmos12101270
Chicago/Turabian StyleKuźma, Łukasz, Anna Kurasz, Emil Julian Dąbrowski, Sławomir Dobrzycki, and Hanna Bachórzewska-Gajewska. 2021. "Short-Term Effects of “Polish Smog” on Cardiovascular Mortality in the Green Lungs of Poland: A Case-Crossover Study with 4,500,000 Person-Years (PL-PARTICLES Study)" Atmosphere 12, no. 10: 1270. https://doi.org/10.3390/atmos12101270
APA StyleKuźma, Ł., Kurasz, A., Dąbrowski, E. J., Dobrzycki, S., & Bachórzewska-Gajewska, H. (2021). Short-Term Effects of “Polish Smog” on Cardiovascular Mortality in the Green Lungs of Poland: A Case-Crossover Study with 4,500,000 Person-Years (PL-PARTICLES Study). Atmosphere, 12(10), 1270. https://doi.org/10.3390/atmos12101270