Diurnal Variability of Surface Temperature over Lakes: Case Study for Lake Huron
Abstract
:1. Introduction
2. Data Used in Current Study
2.1. LST As Provided by JPL
2.2. MODIS Daily Products
2.3. UMD GOES-E LST
2.4. Spatial and Temporal Matching
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spigel, R.H.; Coulter, J.B. The Limnology Climatology and Paleoclimatology of the East African Lakes; Johnson, T.C., Okada, E.O., Eds.; Gordon and Breach Publishers: Amsterdam, The Netherlands, 2007; pp. 103–140. [Google Scholar]
- Verburg, P.; Hecky, R.E.; Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 2003, 25, 505–507. [Google Scholar] [CrossRef] [Green Version]
- Gronewold, A.D.; Stow, C.A. Water loss from the Great Lakes. Science 2014, 343, 1084–1085. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, I.; Odermatt, D.; Anneville, O.; Wüest, A.; Bouffard, D. Application of remote sensing for the optimization of in-situ sampling for monitoring of phytoplankton abundance in a large lake. Sci. Total Environ. 2015, 527, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Steissberg, T.E.; Hook, S.J.; Schladow, S.G. Characterizing partial upwellings and surface circulation at Lake Tahoe, California-Nevada, USA with thermal infrared images. Remote Sens. Environ. 2005, 99, 2–15. [Google Scholar] [CrossRef]
- Hook, S.J.; Vaughan, R.G.; Tonooka, H.; Schladow, S.G. Absolute radiometric in-flight validation of mid infrared and thermal infrared data from ASTER and MODIS on the terra spacecraft using the Lake Tahoe, CA/NV, USA, automated validation site. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1798–1807. [Google Scholar] [CrossRef]
- Thome, K.J. In-flight inter-sensor radiometric calibration using vicarious approaches. In Post-Launch Calibration of Satellite Sensors; Morain, S.A., Budge, A.M., Eds.; Taylor and Francis: London, UK, 2004; pp. 95–102. [Google Scholar]
- Chou, S.-H.; Ferguson, M.P. Heat fluxes and roll circulations over the western Gulf Stream during an intense cold-air outbreak. Bound. Layer Meteorol. 1991, 55, 255–281. [Google Scholar] [CrossRef]
- Becker, F.; Li, Z.L. Toward a local split window method over land surface. Int. J. Remote Sens. 1990, 11, 369–393. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Li, Z.L.; Stoll, M.P.; Becker, F. Improvements in the split window technique for land surface temperature determination. IEEE Trans. Geosci. Remote Sens. 1994, 32, 243–253. [Google Scholar] [CrossRef]
- Wan, Z.M.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Sun, D.; Pinker, R.T.; Kafatos, M. Diurnal temperature range over the United States: A satellite view. Geophys. Res. Lett. 2006, 33, L05705. [Google Scholar] [CrossRef] [Green Version]
- Easterling, D.R.; Horton, B.; Jones, P.D.; Peterson, T.C.; Karl, T.R. Maximum and minimum temperature trends for the globe. Science 1997, 277, 364–367. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Karoly, D.J. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 2004, 31, L13217. [Google Scholar]
- Karl, T.R.; Knight, R.W.; Gallo, K.P.; Peterson, T.C.; Jones, P.D.; Kukla, G.; Plummer, N.; Razuvayev, V.; Lindseay, J.; Charlson, R.J. A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperature. Bull. Am. Meteorol. Soc. 1993, 74, 1007–1023. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Kukla, G.; Razuvayev, V.N. Global warming: Evidence for asymmetric diurnal temperature change. Geophys. Res. Lett. 1991, 18, 2253–2256. [Google Scholar] [CrossRef]
- Karl, T.R.; Kukla, G.; Gavin, J. Decreasing diurnal temperature range in the United States. J. Clim. Appl. Meteorol. 1984, 23, 1489–1504. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Kukla, G.; Gavin, J. Recent temperature changes during overcast and clear skies on the United States. J. Clim. Appl. Meteorol. 1987, 26, 698–711. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Coats, R.; Perez-Losada, J.; Schladow, G.; Richards, R.; Goldman, C. The warming of Lake Tahoe. Clim. Chang. 2006, 76, 121–148. [Google Scholar] [CrossRef]
- Livingstone, D.M. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Chang. 2003, 57, 205–225. [Google Scholar] [CrossRef]
- Magee, M.R.; Wu, C.H.; Robertson, D.M.; Lathrop, R.C.; Hamilton, D.P. Trends and abrupt changes in 104 years of ice cover and water temperature in a dimictic lake in response to air temperature, wind speed, and water clarity drivers. Hydrol. Earth Syst. Sci. 2016, 20, 1681–1702. [Google Scholar] [CrossRef] [Green Version]
- Schneider, P.; Hook, S.J. Space observations of inland water bodies show rapid surface warming since 1985. Geophys. Res. Lett. 2010, 37, L22405. [Google Scholar] [CrossRef] [Green Version]
- Woolway, R.I.; Weyhenmeyer, G.A.; Schmid, M.; Dokulil, M.T.; de Eyto, E.; Maberly, S.C.; May, L.; Merchant, C.J. Substantial increase in minimum lake surface temperatures under climate change. Clim. Chang. 2019, 155, 81–94. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z. MODIS Land Surface Temperature Products Users’ Guide; Collection-6, ERI; University of California: Santa Barbara, CA, USA, 2014. [Google Scholar] [CrossRef]
- Pinker, R.T.; Ma, Y.; Chen, W.; Hulley, G.; Borbas, E.; Islam, T.; Hain, C.; Cawse-Nicholson, K.; Hook, S.; Basara, J. Towards a unified and coherent land surface temperature Earth system data record from geostationary satellites. Remote Sens. 2019, 11, 1399. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Borbas, E.; Hulley, G.; Feltz, M.; Knuteson, R.; Hook, S. The combined ASTER MODIS emissivity over land (CAMEL) Part 1: Methodology and high spectral resolution application. Remote Sens. 2018, 10, 643. [Google Scholar] [CrossRef] [Green Version]
- Stefan, H.G.; Fang, X.; Hondzo, M. Simulated climate change effects on year-round water temperatures in temperate zone lakes. Clim. Chang. 1998, 40, 547–576. [Google Scholar] [CrossRef]
- Laszlo, I.; Liu, H.; Kim, H.-Y.; Pinker, R.T. Shortwave radiation from ABI on the GOES-R series (Chapter 15). In SERIES: A New Generation of Geostationary Environmental Satellites 2019; Goodman, S.J., Schmit, T.J., Daniels, J., Redmon, R.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Leathers, D.J.; Palecki, M.A.; Robinson, R.A.; Dewey, K.F. Climatology of the daily temperature range annual cycle in the United States. Clim. Res. 1998, 9, 197–211. [Google Scholar] [CrossRef] [Green Version]
- Shuter, B.J.; Schlesinger, B.A.; Zimmerman, A.P. Empirical predictors of annual surface water temperature cycles in North American lakes. Can. J. Fish. Aquat. Sci. 1983, 40, 1838–1845. [Google Scholar] [CrossRef]
- McCombie, A.M. Some relations between air temperatures and the surface water temperatures of lakes. Limnol. Oceanogr. 1959, 4, 252–258. [Google Scholar] [CrossRef]
- Livingstone, D.M.; Lotter, A.F. The relationship between air and water temperatures in lakes of the Swiss Plateau: A case study with pal\sgmaelig;olimnological implications. J. Paleolimnol. 1998, 19, 181–198. [Google Scholar] [CrossRef]
- Livingstone, D.M.; Lotter, A.F.; Walkery, I.R. The decrease in summer surface water temperature with altitude in Swiss Alpine Lakes: A comparison with air temperature lapse rates. Arct. Antarct. Alpine Res. 1999, 31, 341–352. [Google Scholar] [CrossRef]
- Sun, X.; Xie, L.; Semazzi, F.H.M.; Liu, B. A numerical investigation of the precipitation over lake Victoria Basin using a coupled atmosphere-lake limited-area model. Adv. Meteorol. 2014, 2014, 960924. [Google Scholar] [CrossRef] [Green Version]
- Picolroaz, S. Prediction of lake surface temperature using the air2water model: Guidelines, challenges, and future perspectives. Adv. Oceanogr. Limnol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Walker, C.; Jackson, D.A. Empirical modelling of lake-water-temperature relationships: A comparison of approaches SAPNA. Freshwater Biol. 2008, 53, 897–911. [Google Scholar] [CrossRef]
GOES-E | r | Bias | Std | RMSE | N |
---|---|---|---|---|---|
PathFinder | 0.98 | 1.34 | 1.26 | 1.83 | 318 |
MODIS-Terra | 0.99 | 0.42 | 1.17 | 1.24 | 268 |
MODIS-Aqua | 0.99 | 0.29 | 0.98 | 1.02 | 270 |
AASTR | 0.99 | 0.38 | 1.06 | 1.12 | 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Pinker, R.T.; Rivera, G.; Hook, S. Diurnal Variability of Surface Temperature over Lakes: Case Study for Lake Huron. Atmosphere 2021, 12, 252. https://doi.org/10.3390/atmos12020252
Chen W, Pinker RT, Rivera G, Hook S. Diurnal Variability of Surface Temperature over Lakes: Case Study for Lake Huron. Atmosphere. 2021; 12(2):252. https://doi.org/10.3390/atmos12020252
Chicago/Turabian StyleChen, Wen, Rachel T. Pinker, Gerardo Rivera, and Simon Hook. 2021. "Diurnal Variability of Surface Temperature over Lakes: Case Study for Lake Huron" Atmosphere 12, no. 2: 252. https://doi.org/10.3390/atmos12020252
APA StyleChen, W., Pinker, R. T., Rivera, G., & Hook, S. (2021). Diurnal Variability of Surface Temperature over Lakes: Case Study for Lake Huron. Atmosphere, 12(2), 252. https://doi.org/10.3390/atmos12020252