Biases of Global Tropopause Altitude Products in Reanalyses and Implications for Estimates of Tropospheric Column Ozone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tropopause Data from Radiosonde Data
2.2. Tropopause Data from Reanalysis Data
2.3. Ozone Data and Derivation of TCO
3. Results
3.1. Spatial and Seasonal Variations in PLRT Biases
3.2. PLRT Biases in the Reanalyses at Different Horizontal Resolutions and Implication of PLRT Biases in Misidentification of the Tropopause Layer in Profiles with Different Vertical Resolutions
3.3. Implication of PLRT Biases to TCO Estimates
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Thresholds | 5 Days | 10 Days | 15 Days | 20 Days |
---|---|---|---|---|
Soundings | 203,203 | 190,304 | 174,285 | 148,643 |
Stations | 714 | 705 | 689 | 673 |
References
- Santer, B.D.; Wehner, M.F.; Wigley, T.M.L.; Sausen, R.; Meehl, G.A.; Taylor, K.E.; Ammann, C.; Arblaster, J.; Washington, W.M.; Boyle, J.S.; et al. Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 2003, 301, 479–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santer, B.D.; Sausen, R.; Wigley, T.M.L.; Boyle, J.S.; AchutaRao, K.M.; Doutriaux, C.; Hansen, J.E.; Meehl, G.A.; Roeckner, E.; Ruedy, R.; et al. Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Santer, B.D.; Wigley, T.M.L.; Simmons, A.J.; Kållberg, P.W.; Kelly, G.A.; Uppala, S.M.; Ammann, C.; Boyle, J.S.; Brüggemann, W.; Doutriaux, C.; et al. Identification of anthropogenic climate change using a second-generation reanalysis. J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Lucas, C.; Timbal, B.; Nguyen, H. The expanding tropics: A critical assessment of the observational and modeling studies. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 89–112. [Google Scholar] [CrossRef]
- Holton, J.R.; Haynes, P.H.; McIntyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratosphere-troposphere exchange. Rev. Geophys. 1995, 33, 403–439. [Google Scholar] [CrossRef]
- Eyring, V.; Butchart, N.; Waugh, D.W.; Akiyoshi, H.; Austin, J.; Bekki, S.; Bodeker, G.E.; Boville, B.A.; Bruhl, C.; Chipper-field, M.P.; et al. Assessment of temperature, trace species, and ozone in chemistry-climate model sim-ulations of the recent past. J. Geophys. Res. Atmos. 2006, 111, D22. [Google Scholar] [CrossRef]
- Fueglistaler, S.; Dessler, A.E.; Dunkerton, T.J.; Folkins, I.; Fu, Q.; Mote, P.W. Tropical tropopause layer. Rev. Geophys. 2009, 47, 47. [Google Scholar] [CrossRef]
- Sullivan, J.T.; McGee, T.J.; Thompson, A.M.; Pierce, R.B.; Sumnicht, G.K.; Twigg, L.W.; Eloranta, E.; Hoff, R.M. Characterizing the lifetime and occurrence of stratospheric-tropospheric exchange events in the rocky mountain region using high-resolution ozone measurements. J. Geophys. Res. Atmos. 2015, 120, 12410–12424. [Google Scholar] [CrossRef]
- Boothe, A.C.; Homeyer, C.R. Global large-scale stratosphere–troposphere exchange in modern reanalyses. Atmos. Chem. Phys. Discuss. 2017, 17, 5537–5559. [Google Scholar] [CrossRef] [Green Version]
- Di Noia, A.; Sellitto, P.; Del Frate, F.; De Laat, J. Global tropospheric ozone column retrievals from OMI data by means of neural networks. Atmos. Meas. Tech. 2013, 6, 895–915. [Google Scholar] [CrossRef] [Green Version]
- Gaudel, A.; Cooper, O.R.; Ancellet, G.; Barret, B.; Boynard, A.; Burrows, J.P.; Clerbaux, C.; Coheur, P.-F.; Cuesta, J.; Cuevas, E.; et al. Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elem. Sci. Anth. 2018, 6, 39. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Xie, S.-P.; Kosaka, Y.; Liu, Q.; Zheng, X.-T. Global Influence of Tropical Pacific Variability with Implications for Global Warming Slowdown. J. Clim. 2017, 30, 2679–2695. [Google Scholar] [CrossRef]
- Ridley, D.A.; Solomon, S.; Barnes, J.E.; Burlakov, V.D.; Deshler, T.; Dolgii, S.I.; Herber, A.B.; Nagai, T.; Neely, R.R.; Nevzorov, A.V.; et al. Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys. Res. Lett. 2014, 41, 7763–7769. [Google Scholar] [CrossRef] [Green Version]
- Friberg, J.; Martinsson, B.G.; Andersson, S.M.; Sandvik, O.S. Volcanic impact on the climate—The stratospheric aerosol load in the period 2006–2015. Atmos. Chem. Phys. Discuss. 2018, 18, 11149–11169. [Google Scholar] [CrossRef] [Green Version]
- Wild, O. Modelling the global tropospheric ozone budget: Exploring the variability in current models. Atmos. Chem. Phys. Discuss. 2007, 7, 2643–2660. [Google Scholar] [CrossRef] [Green Version]
- Prather, M.J.; Zhu, X.; Tang, Q.; Hsu, J.; Neu, J.L. An atmospheric chemist in search of the tropopause. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.-F.; Shindell, D.T.; Voulgarakis, A.; Skeie, R.B.; Dalsoren, S.B.; Myhre, G.; Berntsen, T.K.; et al. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. Discuss. 2013, 13, 3063–3085. [Google Scholar] [CrossRef] [Green Version]
- WMO. Meteorology: A three-dimensional science: Second session of the Commission for Aerology. WMO Bull. 1957, 4, 134–138. [Google Scholar]
- Schmidt, T.; Wickert, J.; Beyerle, G.; Heise, S. Global tropopause height trends estimated from GPS radio occultation data. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Highwood, E.J.; Hoskins, B.J. The tropical tropopause (vol 124, pg 1579, 1998). Q. J. R. Meteorol. Soc. 1998, 124, 2536. [Google Scholar]
- Randel, W.J.; Wu, F.; Oltmans, S.J.; Rosenlof, K.; Nedoluha, G.E. Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J. Atmos. Sci. 2004, 61, 2133–2148. [Google Scholar] [CrossRef]
- Kuang, S.; Newchurch, M.J.; Burris, J.; Wang, L.; Knupp, K.; Huang, G. Stratosphere-to-troposphere transport revealed by ground-based lidar and ozonesonde at a midlatitude site. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Kunz, A.; Sprenger, M.; Wernli, H. Climatology of potential vorticity streamers and associated isentropic transport pathways across PV gradient barriers. J. Geophys. Res. Atmos. 2015, 120, 3802–3821. [Google Scholar] [CrossRef]
- Sivakumar, V.; Bencherif, H.; Bègue, N.; Thompson, A.M. Tropopause Characteristics and Variability from 11 yr of SHA-DOZ Observations in the Southern Tropics and Subtropics. J. Appl. Meteorol. Climatol. 2011, 50, 1403–1416. [Google Scholar] [CrossRef]
- Randel, W.J.; Seidel, D.J.; Pan, L.L. Observational characteristics of double tropopauses. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.L.; Honomichl, S.B.; Bui, T.V.; Thornberry, T.; Rollins, A.; Hintsa, E.; Jensen, E.J. Lapse Rate or Cold Point: The Tropical Tropopause Identified by In Situ Trace Gas Measurements. Geophys. Res. Lett. 2018, 45, 10-756–10-763. [Google Scholar] [CrossRef]
- Zängl, G.; Hoinka, K.P. The Tropopause in the Polar Regions. J. Clim. 2001, 14, 3117–3139. [Google Scholar] [CrossRef]
- Seidel, D.J.; Randel, W.J. Variability and trends in the global tropopause estimated from radiosonde data. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Son, S.-W.; Tandon, N.F.; Polvani, L.M. The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurements. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Wang, W.; Matthes, K.; Schmidt, T.; Neef, L. Recent variability of the tropical tropopause inversion layer. Geophys. Res. Lett. 2013, 40, 6308–6313. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yuan, Y.-B.; Chai, Y.-J.; Liou, Y.-A.; Ou, J.-K.; Zhong, S.-M. Characteristics of the global thermal tropopause derived from multiple radio occultation measurements. Atmos. Res. 2017, 185, 142–157. [Google Scholar] [CrossRef]
- Hoinka, K.P. Statistics of the Global Tropopause Pressure. Mon. Weather. Rev. 1998, 126, 3303–3325. [Google Scholar] [CrossRef]
- Xie, F.; Li, J.; Tian, W.; Feng, J.; Huo, Y. Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmospheric Chem. Phys. Discuss. 2012, 12, 5259–5273. [Google Scholar] [CrossRef] [Green Version]
- Zerefos, C.S.; Tourpali, K.; Zanis, P.; Eleftheratos, K.; Repapis, C.; Goodman, A.; Wuebbles, D.; Isaksen, I.S.A.; Luterbacher, J. Evidence for an earlier greenhouse cooling effect in the stratosphere before 1980 over the Northern Hemisphere. Atmos. Chem. Phys. Discuss. 2014, 14, 7705–7720. [Google Scholar] [CrossRef] [Green Version]
- Hess, P.G.; Lamarque, J.-F. Ozone source attribution and its modulation by the Arctic oscillation during the spring months. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Fitzka, M.; Hadzimustafic, J.; Simic, S. Total ozone and Umkehr observations at Hoher Sonnblick 1994-2011: Climatology and extreme events. J. Geophys. Res. Atmos. 2014, 119, 739–752. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Birner, T.; Dörnbrack, A.; Schumann, U. How sharp is the tropopause at midlatitudes? Geophys. Res. Lett. 2002, 29, 45-1–45-4. [Google Scholar] [CrossRef] [Green Version]
- Birner, T. Fine-scale structure of the extratropical tropopause region. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Xian, T.; Homeyer, C.R. Global tropopause altitudes in radiosondes and reanalyses. Atmos. Chem. Phys. Discuss. 2019, 19, 5661–5678. [Google Scholar] [CrossRef] [Green Version]
- Tegtmeier, S.; Anstey, J.; Davis, S.; Dragani, R.; Harada, Y.; Ivanciu, I.; Pilch Kedzierski, R.; Krüger, K.; Legras, B.; Long, C.; et al. Temperature and tropopause characteristics from reanalyses data in the tropical trop-opause layer. Atmos. Chem. Phys. 2020, 20, 753–770. [Google Scholar] [CrossRef] [Green Version]
- Randel, W.J.; Gaffen, D.J.; Wu, F. Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J. Geophys. Res. Space Phys. 2000, 105, 15509–15523. [Google Scholar] [CrossRef]
- Luan, L.; Staten, P.W.; Ao, C.O.; Fu, Q. Seasonal and Annual Changes of the Regional Tropical Belt in GPS-RO Measure-ments and Reanalysis Datasets. J. Clim. 2020, 33, 4083–4094. [Google Scholar] [CrossRef] [Green Version]
- Fishman, J.; Watson, C.E.; Larsen, J.C.; Logan, J.A. Distribution of tropospheric ozone determined from satellite data. J. Geophys. Res. Space Phys. 1990, 95, 3599. [Google Scholar] [CrossRef]
- Ziemke, J.R.; Chandra, S.; Duncan, B.N.; Froidevaux, L.; Bhartia, P.K.; Levelt, P.F.; Waters, J.W. Tropospheric ozone determined from aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res.-Atmos. 2006, 111, D19. [Google Scholar] [CrossRef]
- Young, P.J.; Archibald, A.T.; Bowman, H.; Lamarque, J.-F.; Naik, V.; Stevenson, D.S.; Tilmes, S.; Voulgarakis, A.; Wild, O.; Bergmann, D.; et al. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. Discuss. 2013, 13, 2063–2090. [Google Scholar] [CrossRef] [Green Version]
- Young, P.J.; Naik, V.; Fiore, A.M.; Gaudel, A.; Guo, J.; Lin, M.Y.; Neu, J.L.; Parrish, D.D.; Rieder, H.E.; Schnell, J.L.; et al. Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends. Elem. Sci. Anth. 2018, 6. [Google Scholar] [CrossRef]
- Griffiths, P.T.; Murray, L.T.; Zeng, G.; Archibald, A.T.; Emmons, L.K.; Galbally, I.; Hassler, B.; Horowitz, L.W.; Keeble, J.; Liu, J.; et al. Tropospheric ozone in CMIP6 Simulations. Atmos. Chem. Phys. Discuss. 2020. under review. [Google Scholar]
- Emili, E.; Barret, B.; Massart, S.; Le Flochmoen, E.; Piacentini, A.; El Amraoui, L.; Pannekoucke, O.; Cariolle, D. Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model. Atmos. Chem. Phys. Discuss. 2014, 14, 177–198. [Google Scholar] [CrossRef] [Green Version]
- Durre, I.; Vose, R.S.; Yin, X.; Applequist, S.; Arnfield, J. Integrated Global Radiosonde Archive (IGRA) Version 2. NOAA Natl. Centers Environ. Inf. 2016, 10, V5X63X0Q. [Google Scholar] [CrossRef]
- Gelaro, R.; Mccarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Putman, W.M.; Lin, S.-J. Finite-volume transport on various cubed-sphere grids. J. Comput. Phys. 2007, 227, 55–78. [Google Scholar] [CrossRef]
- Birner, T. Recent widening of the tropical belt from global tropopause statistics: Sensitivities. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Evtushevsky, O.M.; Grytsai, A.V.; Klekociuk, A.R.; Milinevsky, G.P. Total ozone and tropopause zonal asymmetry during the Antarctic spring. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]
- Fujiwara, M.; Wright, J.S.; Manney, G.L.; Gray, L.J.; Anstey, J.; Birner, T.; Davis, S.; Gerber, E.P.; Harvey, V.L.; Hegglin, M.I.; et al. Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys. Discuss. 2017, 17, 1417–1452. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Liu, J.; Tarasick, D.W.; Fioletov, V.E.; Jin, J.J.; Moeini, O.; Liu, X.; Sioris, C.E.; Osman, M. A global tropospheric ozone climatology from trajectory-mapped ozone soundings. Atmos. Chem. Phys. Discuss. 2013, 13, 10659–10675. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Tarasick, D.W.; Fioletov, V.E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, C.; Jin, J.J.; Liu, G.; Moeini, O. A global ozone climatology from ozone soundings via trajectory mapping: A stratospheric perspective. Atmos. Chem. Phys. Discuss. 2013, 13, 11441–11464. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, T.; Liu, J. Characteristics of the seasonal variation of the global tropopause revealed by COSMIC/GPS data. Adv. Space Res. 2014, 54, 2274–2285. [Google Scholar] [CrossRef]
- Davis, S.M.; Hegglin, M.I.; Fujiwara, M.; Dragani, R.; Harada, Y.; Kobayashi, C.; Long, C.; Manney, G.L.; Nash, E.R.; Potter, G.L.; et al. Assessment of upper tropospheric and stratospheric water vapor and ozone in reanalyses as part of S-RIP. Atmos. Chem. Phys. Discuss. 2017, 17, 12743–12778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wargan, K.; Labow, G.; Frith, S.; Pawson, S.; Livesey, N.; Partyka, G. Evaluation of the Ozone Fields in NASA’s MERRA-2 Reanalysis. J. Clim. 2017, 30, 2961–2988. [Google Scholar] [CrossRef] [Green Version]
- Manney, G.L.; Hegglin, M.I.; Lawrence, Z.D.; Wargan, K.; Millán, L.F.; Schwartz, M.J.; Santee, M.L.; Lambert, A.; Pawson, S.; Knosp, B.W.; et al. Reanalysis comparisons of upper tropospheric-lower stratospheric jets and multiple tropopauses. Atmos. Chem. Phys. 2017, 17, 11541–11566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homeyer, C.R.; Bowman, K.P.; Pan, L.L. Extratropical tropopause transition layer characteristics from high-resolution sounding data. J. Geophys. Res. Space Phys. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
Domain | Yearly | MAM | JJA | SON | DJF |
---|---|---|---|---|---|
PLRT Difference (NCEP—Radiosonde, hPa) | |||||
Globe | −2.28 (5.84) | −2.87 (6.09) | −2.79 (6.48) | −2.56 (6.9) | −3.08 (6.06) |
NH | −0.57 (6.04) | −1.04 (7.57) | −1.91 (7.69) | −0.32 (6.91) | −0.59 (7.76) |
SH | −4.00 (5.64) | −4.74 (4.58) | −3.69 (5.25) | −4.80 (6.9) | −5.56 (4.35) |
PLRT Difference (MERRA-2—Radiosonde, hPa) | |||||
Globe | −0.92 (6.71) | −2.53 (7.89) | −0.07 (8.77) | −0.16 (7.71) | −3.61 (7.78) |
NH | −1.34 (9.83) | −2.95 (12.02) | −0.97 (12.09) | −0.24 (10.88) | −3.48 (11.78) |
SH | −0.49 (3.6) | −2.10 (3.69) | 0.85 (5.4) | −0.09 (4.55) | −3.74 (3.78) |
HLRT Difference (NCEP—Radiosonde, m) | |||||
Globe | 52 (232) | 116 (238) | 33 (251) | 45 (267) | 138 (243) |
NH | 14 (249) | 76 (297) | 29 (300) | −20 (272) | 48 (301) |
SH | 91 (216) | 157 (178) | 37 (201) | 111 (262) | 228 (184) |
HLRT Difference (MERRA-2—Radiosonde, m) | |||||
Globe | 16 (257) | 107 (291) | −56 (319) | −28 (287) | 159 (292) |
NH | 46 (365) | 150 (429) | −21 (424) | −25 (392) | 178 (418) |
SH | −14 (149) | 63 (151) | −92 (214) | −30 (182) | 141 (167) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Liu, J.; Tarasick, D.W.; Li, Y. Biases of Global Tropopause Altitude Products in Reanalyses and Implications for Estimates of Tropospheric Column Ozone. Atmosphere 2021, 12, 417. https://doi.org/10.3390/atmos12040417
Meng L, Liu J, Tarasick DW, Li Y. Biases of Global Tropopause Altitude Products in Reanalyses and Implications for Estimates of Tropospheric Column Ozone. Atmosphere. 2021; 12(4):417. https://doi.org/10.3390/atmos12040417
Chicago/Turabian StyleMeng, Lingyun, Jane Liu, David W. Tarasick, and Yingjie Li. 2021. "Biases of Global Tropopause Altitude Products in Reanalyses and Implications for Estimates of Tropospheric Column Ozone" Atmosphere 12, no. 4: 417. https://doi.org/10.3390/atmos12040417